mirror of
https://github.com/AI4Finance-Foundation/FinGPT.git
synced 2024-02-15 23:10:01 +03:00
Update README.md
This commit is contained in:
committed by
GitHub
parent
261237c961
commit
09632a3433
@@ -12,8 +12,6 @@
|
||||
|
||||
Let us DO NOT expect Wall Street to open-source LLMs nor open APIs, due to FinTech institutes' internal regulations and policies.
|
||||
|
||||
We democratize Internet-scale data for financial large language models (FinLLMs) at [FinNLP](https://github.com/AI4Finance-Foundation/FinNLP) and [FinNLP Website](https://ai4finance-foundation.github.io/FinNLP/)
|
||||
|
||||
[Blueprint of FinGPT](https://arxiv.org/abs/2306.06031)
|
||||
|
||||
**Disclaimer: We are sharing codes for academic purposes under the MIT education license. Nothing herein is financial advice, and NOT a recommendation to trade real money. Please use common sense and always first consult a professional before trading or investing.**
|
||||
@@ -34,7 +32,7 @@ We democratize Internet-scale data for financial large language models (FinLLMs)
|
||||
## FinGPT Demos
|
||||
* [FinGPT V3 (Updated on 8/4/2023)](./fingpt)
|
||||
|
||||
+ **FinGPT v3 series are LLMs finetuned with the LoRA method on the News and Tweets sentiment analysis dataset which achieve the best scores on most of the financial sentiment analysis datasets.**
|
||||
+ **FinGPT v3 series are LLMs finetuned with the LoRA method on the News and Tweets sentiment analysis dataset which achieve the best scores on most of the financial sentiment analysis datasets with low cost.**
|
||||
+ FinGPT v3.1 uses chatglm2-6B as base model; FinGPT v3.2 uses llama2-7b as base model
|
||||
+ Benchmark Results:
|
||||
| Weighted F1 | [BloombergGPT](https://arxiv.org/abs/2303.17564) | [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B) | [Llama2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |[FinGPT v3.1](https://huggingface.co/oliverwang15/FinGPT_v31_ChatGLM2_Sentiment_Instruction_LoRA_FT) |v3.1.1 (8bit)|v3.1.2 (QLoRA)| [FinGPT v3.2](https://huggingface.co/oliverwang15/FinGPT_v32_Llama2_Sentiment_Instruction_LoRA_FT) |
|
||||
@@ -51,10 +49,8 @@ We democratize Internet-scale data for financial large language models (FinLLMs)
|
||||
* Reproduce the results by running [benchmarks](./fingpt/FinGPT-v3/benchmark/benchmarks.ipynb), and the detailed tutorial is on the way.
|
||||
* Finetune your own FinGPT v3 model with the LoRA method on only an RTX 3090 with this [notebook](./fingpt/FinGPT-v3/training_8bit/train.ipynb) in 8bit or this [notebook](./fingpt/FinGPT-v3/training_int4/train.ipynb) in int4 (QLoRA)
|
||||
|
||||
* [FinGPT V2](./fingpt)
|
||||
+ **Let's train our own FinGPT in American Financial Market with LLaMA and LoRA (Low-Rank Adaptation)**
|
||||
* [FinGPT V1](./fingpt)
|
||||
+ **Let's train our own FinGPT in Chinese Financial Market with ChatGLM and LoRA (Low-Rank Adaptation)**
|
||||
+ **FinGPT by finetuning ChatGLM2 / Llama2 with LoRA with the market-labeled data for Chinese Market**
|
||||
|
||||
## Tutorials
|
||||
[[Training] Beginner’s Guide to FinGPT: Training with LoRA and ChatGLM2–6B One Notebook, $10 GPU](https://byfintech.medium.com/beginners-guide-to-fingpt-training-with-lora-chatglm2-6b-9eb5ace7fe99)
|
||||
|
||||
Reference in New Issue
Block a user