selenium works; stick to ChromeDriverManager

This commit is contained in:
raphaelzhou1
2023-10-14 17:18:07 -04:00
parent 72ed952461
commit 88dced3784
5 changed files with 41 additions and 20 deletions

View File

@@ -0,0 +1,18 @@
from selenium import webdriver
from selenium.webdriver.chromium.service import ChromiumService
from webdriver_manager.chrome import ChromeDriverManager
# Set up ChromeOptions
options = webdriver.ChromeOptions()
# options.binary_location = "/Users/tianyu/Desktop/Coding/Network/chrome/chrome-mac-arm64"
# Start Chrome using a specific ChromeDriver
executable_path='/Users/tianyu/Desktop/Coding/Network/chrome/chromedriver-mac-arm64'
executable_path=ChromeDriverManager().install()
service=ChromiumService(executable_path=executable_path)
driver = webdriver.Chrome(service=service, options=options)
# Now you can use the driver object to interact with the browser
driver.get('https://www.google.com')
print(driver.title)
driver.quit()

View File

@@ -8,7 +8,7 @@ from external_LLMs import external_LLMs
import pandas as pd
import openai
from datasets import load_dataset
from sklearn.metrics import accuracy_score, f1_score,confusion_matrix
from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score
from tqdm import tqdm
try:
@@ -33,12 +33,15 @@ try:
df = df.dropna(subset=[actual_classifications_column, predicted_classifications_column])
df[actual_classifications_column] = df[actual_classifications_column].astype(int)
df[predicted_classifications_column] = df[predicted_classifications_column].astype(int)
computed_f1 = f1_score(df[actual_classifications_column], df[predicted_classifications_column], average='micro')
computed_f1 = f1_score(df[actual_classifications_column], df[predicted_classifications_column], average=None)
computed_accuracy_score = accuracy_score(df[actual_classifications_column], df[predicted_classifications_column])
computed_precision_score = precision_score(df[actual_classifications_column], df[predicted_classifications_column], average=None)
computed_recall_score = recall_score(df[actual_classifications_column], df[predicted_classifications_column], average=None)
print("f1 score: ", computed_f1)
print("accuracy score: ", computed_accuracy_score)
print("precision score: ", computed_precision_score)
print("recall score: ", computed_recall_score)
except Exception as e:
gui.exceptionbox(str(e))

View File

@@ -23,23 +23,23 @@ def find_different_rows():
else:
gui.msgbox("No rows found without 'http' in 'link' column.")
# if file_path:
# # Read CSV file using pandas
# df = pd.read_csv(file_path)
#
# # Ensure "text" and "contextualized sentences" columns exist
# if "text" not in df.columns or "contextualized_sentence" not in df.columns:
# gui.msgbox("Either or both 'text' and 'contextualized_sentences' columns are missing.")
# return
#
# # Find rows where "text" and "contextualized sentences" values are different
# different_rows = df[df['text'] != df['contextualized_sentence']]
#
# # Report the different row indexes
# if not different_rows.empty:
# gui.msgbox("total number is {}".format(len(different_rows.index.tolist())))
# else:
# gui.msgbox("No rows found with different values for 'text' and 'contextualized_sentences'.")
if file_path:
# Read CSV file using pandas
df = pd.read_csv(file_path)
# Ensure "text" and "contextualized sentences" columns exist
if "text" not in df.columns or "contextualized_sentence" not in df.columns:
gui.msgbox("Either or both 'text' and 'contextualized_sentences' columns are missing.")
return
# Find rows where "text" and "contextualized sentences" values are different
different_rows = df[df['text'] != df['contextualized_sentence']]
# Report the different row indexes
if not different_rows.empty:
gui.msgbox("total number is {}".format(len(different_rows.index.tolist())))
else:
gui.msgbox("No rows found with different values for 'text' and 'contextualized_sentences'.")
else:
gui.msgbox("No file selected.")