mirror of
https://github.com/zjunlp/Generative_KG_Construction_Papers.git
synced 2023-07-18 10:12:48 +03:00
update
update
This commit is contained in:
8
.idea/GenKBC_Papers.iml
generated
Normal file
8
.idea/GenKBC_Papers.iml
generated
Normal file
@@ -0,0 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
||||
6
.idea/inspectionProfiles/profiles_settings.xml
generated
Normal file
6
.idea/inspectionProfiles/profiles_settings.xml
generated
Normal file
@@ -0,0 +1,6 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<settings>
|
||||
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||
<version value="1.0" />
|
||||
</settings>
|
||||
</component>
|
||||
4
.idea/misc.xml
generated
Normal file
4
.idea/misc.xml
generated
Normal file
@@ -0,0 +1,4 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8" project-jdk-type="Python SDK" />
|
||||
</project>
|
||||
8
.idea/modules.xml
generated
Normal file
8
.idea/modules.xml
generated
Normal file
@@ -0,0 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectModuleManager">
|
||||
<modules>
|
||||
<module fileurl="file://$PROJECT_DIR$/.idea/GenKBC_Papers.iml" filepath="$PROJECT_DIR$/.idea/GenKBC_Papers.iml" />
|
||||
</modules>
|
||||
</component>
|
||||
</project>
|
||||
6
.idea/vcs.xml
generated
Normal file
6
.idea/vcs.xml
generated
Normal file
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
||||
23
.idea/workspace.xml
generated
23
.idea/workspace.xml
generated
@@ -1,7 +1,10 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ChangeListManager">
|
||||
<list default="true" id="16338359-5063-4a6a-9257-7b8e6356e990" name="Changes" comment="" />
|
||||
<list default="true" id="16338359-5063-4a6a-9257-7b8e6356e990" name="Changes" comment="">
|
||||
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
|
||||
<change beforePath="$PROJECT_DIR$/README.md" beforeDir="false" afterPath="$PROJECT_DIR$/README.md" afterDir="false" />
|
||||
</list>
|
||||
<option name="SHOW_DIALOG" value="false" />
|
||||
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
||||
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
||||
@@ -19,14 +22,14 @@
|
||||
<option name="hideEmptyMiddlePackages" value="true" />
|
||||
<option name="showLibraryContents" value="true" />
|
||||
</component>
|
||||
<component name="PropertiesComponent"><![CDATA[{
|
||||
"keyToString": {
|
||||
"RunOnceActivity.OpenProjectViewOnStart": "true",
|
||||
"RunOnceActivity.ShowReadmeOnStart": "true",
|
||||
"WebServerToolWindowFactoryState": "false",
|
||||
"last_opened_file_path": "/Users/admin/Documents/GitHub/GenKBC_Papers"
|
||||
<component name="PropertiesComponent">{
|
||||
"keyToString": {
|
||||
"RunOnceActivity.OpenProjectViewOnStart": "true",
|
||||
"RunOnceActivity.ShowReadmeOnStart": "true",
|
||||
"WebServerToolWindowFactoryState": "false",
|
||||
"last_opened_file_path": "/Users/admin/Documents/GitHub/GenKBC_Papers"
|
||||
}
|
||||
}]]></component>
|
||||
}</component>
|
||||
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
|
||||
<component name="TaskManager">
|
||||
<task active="true" id="Default" summary="Default task">
|
||||
@@ -37,7 +40,9 @@
|
||||
<updated>1663412949494</updated>
|
||||
<workItem from="1663412952649" duration="108000" />
|
||||
<workItem from="1663595570665" duration="4000" />
|
||||
<workItem from="1665726550749" duration="1694000" />
|
||||
<workItem from="1665726550749" duration="1735000" />
|
||||
<workItem from="1666338687396" duration="132000" />
|
||||
<workItem from="1666338853458" duration="11572000" />
|
||||
</task>
|
||||
<servers />
|
||||
</component>
|
||||
|
||||
BIN
Blank-based.png
Normal file
BIN
Blank-based.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 248 KiB |
BIN
Copy-based.png
Normal file
BIN
Copy-based.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 126 KiB |
BIN
Indice-based.png
Normal file
BIN
Indice-based.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 189 KiB |
BIN
Label-based.png
Normal file
BIN
Label-based.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 171 KiB |
267
README.md
267
README.md
@@ -10,6 +10,268 @@
|
||||
**[:bell: News! :bell: ]
|
||||
We have released a new survey paper based on this repository, with a perspective of existing Generative Knowledge Graph Construction! We are looking forward to any comments or discussions on this topic :)**
|
||||
|
||||
## 🕵️ Introduction
|
||||
Generative Knowledge Graph Construction (KGC) refers to those methods that leverage the sequence-to-sequence framework for building knowledge graphs, which is flexible and can be adapted to widespread tasks.
|
||||
In this study, we summarize the recent compelling progress in generative knowledge graph construction.
|
||||
We present the advantages and weaknesses of each paradigm in terms of different generation targets and provide theoretical insight and empirical analysis.
|
||||
Based on the review, we suggest promising research directions for the future. Our contributions are threefold: (1) We present a detailed, complete taxonomy for the generative KGC methods;
|
||||
(2) We provide a theoretical and empirical analysis of the generative KGC methods;
|
||||
(3) We propose several research directions that can be developed in the future.
|
||||
|
||||
## *👋 News!*
|
||||
- Congratulations! Our work has been accepted by the EMNLP2022 main conference.
|
||||
- We will release our paper on arivx soon!
|
||||
|
||||
## 🏳🌈 A Taxonomy of Current Methods
|
||||
|
||||
In this Survey, we summarize recent progress in generative KGC. We propose to organize relevant work by the generation target of models and also present the axis of the task level.
|
||||
|
||||
|
||||
<p align='center'>
|
||||
</br>
|
||||
<img src='Taxonomy.png' width='1000'>
|
||||
</p>
|
||||
|
||||
|
||||
### 1. Copy-based Sequence.
|
||||
This paradigm refers to developing more robust models to copy the corresponding entity directly from the input sentence during the generation process.
|
||||
As shown in figure, the model copies the head entity from the input sentence and then the tail entity.
|
||||
|
||||
<p align='center'>
|
||||
</br>
|
||||
<img src='Copy-based.png' width='500'>
|
||||
</p>
|
||||
|
||||
- ***Directly copy entity***
|
||||
- **"Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism"**, ACL 2018
|
||||
- Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu, Jun Zhao
|
||||
- [[Paper]](https://aclanthology.org/P18-1047/)
|
||||
|
||||
- **"Learning the Extraction Order of Multiple Relational Facts in a Sentence with Reinforcement Learning"**, AAAI 2020
|
||||
- Xiangrong Zeng, Shizhu He, Daojian Zeng, Kang Liu, Shengping Liu, Jun Zhao
|
||||
- [[Paper]](https://doi.org/10.18653/v1/D19-1035)
|
||||
|
||||
- **"CopyMTL: Copy Mechanism for Joint Extraction of Entities and Relations with Multi-Task Learning"**, EMNLP 2019
|
||||
- Daojian Zeng, Haoran Zhang, Qianying Liu
|
||||
- [[Paper]](https://ojs.aaai.org/index.php/AAAI/article/view/6495)
|
||||
|
||||
- **"Document-level Entity-based Extraction as Template Generation"**, EMNLP 2021
|
||||
- Kung-Hsiang Huang, Sam Tang, Nanyun Peng
|
||||
- [[Paper]](https://aclanthology.org/2021.emnlp-main.426/)
|
||||
|
||||
- ***Restricted target vocabulary***
|
||||
- **"A sequence-to-sequence approach for document-level relation extraction"**, BioNLP 2022
|
||||
- John Giorgi, Gary Bader, Bo Wang
|
||||
- [[Paper]](https://aclanthology.org/2022.bionlp-1.2/)
|
||||
|
||||
### 2. Structure-linearized Sequence.
|
||||
This paradigm refers to utilizing structural knowledge and label semantics, making it prone to handling a unified output format.
|
||||
As shown in figure, the output is a linearization of the extracted knowledge structure.
|
||||
<p align='center'>
|
||||
</br>
|
||||
<img src='Structure-linearized.png' width='500'>
|
||||
</p>
|
||||
|
||||
- ***Per-token tag encoding***
|
||||
- **"Exploring Sequence-to-Sequence Learning in Aspect Term Extraction"**, ACL 2019
|
||||
- Dehong Ma, Sujian Li, Fangzhao Wu, Xing Xie, Houfeng Wang
|
||||
- [[Paper]](https://aclanthology.org/P19-1344/)
|
||||
|
||||
- **"Neural Architectures for Nested NER through Linearization"**, ACL 2019
|
||||
- Jana Straková, Milan Straka, Jan Hajic
|
||||
- [[Paper]](https://aclanthology.org/P19-1527/)
|
||||
|
||||
- ***Faithful contrastive learning***
|
||||
|
||||
- **"Contrastive Triple Extraction with Generative Transformer"**, AAAI 2021
|
||||
- Hongbin Ye, Ningyu Zhang, Shumin Deng, Mosha Chen, Chuanqi Tan, Fei Huang, Huajun Chen
|
||||
- [[Paper]](https://ojs.aaai.org/index.php/AAAI/article/view/17677/)
|
||||
|
||||
- **"Contrastive Triple Extraction with Generative Transformer"**, IEEE ACM Trans. Audio Speech Lang. Process
|
||||
- Ningyu Zhang, Hongbin Ye, Shumin Deng, Chuanqi Tan, Mosha Chen, Songfang Huang, Fei Huang, Huajun Chen
|
||||
- [[Paper]](https://ieeexplore.ieee.org/document/9537684)
|
||||
|
||||
- **"Explanation Graph Generation via Pre-trained Language Models: An Empirical Study with Contrastive Learning"**, ACL 2022
|
||||
- Swarnadeep Saha, Prateek Yadav, Mohit Bansal
|
||||
- [[Paper]](https://aclanthology.org/2022.acl-long.85/)
|
||||
|
||||
|
||||
- ***Prefix tree constraint decoding***
|
||||
|
||||
- **"Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction"**, ACL 2021
|
||||
- Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong Tang, Annan Li, Le Sun, Meng Liao, Shaoyi Chen
|
||||
- [[Paper]](https://aclanthology.org/2021.acl-long.217/)
|
||||
|
||||
|
||||
- ***Triplet linearization***
|
||||
|
||||
- **"REBEL: Relation Extraction By End-to-end Language generation"**, EMNLP 2021
|
||||
- Pere-Lluís Huguet Cabot, Roberto Navigli
|
||||
- [[Paper]](https://aclanthology.org/2021.findings-emnlp.204/)
|
||||
|
||||
- **"De-Bias for Generative Extraction in Unified NER Task"**, ACL 2022
|
||||
- Shuai Zhang, Yongliang Shen, Zeqi Tan, Yiquan Wu, Weiming Lu
|
||||
- [[Paper]](https://aclanthology.org/2022.acl-long.59/)
|
||||
|
||||
- ***Entity-aware hierarchical decoding***
|
||||
|
||||
- **"From Discrimination to Generation: Knowledge Graph Completion with Generative Transformer"**, WWW 2022
|
||||
- Xin Xie, Ningyu Zhang, Zhoubo Li, Shumin Deng, Hui Chen, Feiyu Xiong, Mosha Chen, Huajun Chen
|
||||
- [[Paper]](https://doi.org/10.1145/3487553.3524238)
|
||||
|
||||
- ***Unified structure generation***
|
||||
|
||||
- **"Unified Structure Generation for Universal Information Extraction"**, ACL 2022
|
||||
- Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu Lin, Xianpei Han, Le Sun, Hua Wu
|
||||
- [[Paper]](https://aclanthology.org/2022.acl-long.395/)
|
||||
|
||||
- **"DeepStruct: Pretraining of Language Models for Structure Prediction"**, ACL 2022
|
||||
- Chenguang Wang, Xiao Liu, Zui Chen, Haoyun Hong, Jie Tang, Dawn Song
|
||||
- [[Paper]](https://aclanthology.org/2022.findings-acl.67/)
|
||||
|
||||
|
||||
- ***Reformulating triple prediction***
|
||||
|
||||
- **"Intent Classification and Slot Filling for Privacy Policies"**, ACL 2021
|
||||
- Wasi Uddin Ahmad, Jianfeng Chi, Tu Le, Thomas Norton, Yuan Tian, Kai-Wei Chang
|
||||
- [[Paper]](https://aclanthology.org/2021.acl-long.340/)
|
||||
|
||||
- **"HySPA: Hybrid Span Generation for Scalable Text-to-Graph Extraction"**, ACL 2021
|
||||
- Liliang Ren, Chenkai Sun, Heng Ji, Julia Hockenmaier
|
||||
- [[Paper]](https://aclanthology.org/2021.findings-acl.356/)
|
||||
|
||||
- **"SQUIRE: A Sequence-to-sequence Framework for Multi-hop Knowledge Graph Reasoning"**, EMNLP 2022
|
||||
- Yushi Bai, Xin Lv, Juanzi Li, Lei Hou, Yincen Qu, Zelin Dai, Feiyu Xiong
|
||||
- [[Paper]](https://arxiv.org/abs/2201.06206)
|
||||
|
||||
|
||||
|
||||
- ***Query Verbalization***
|
||||
|
||||
- **"Improving Candidate Retrieval with Entity Profile Generation for Wikidata Entity Linking"**, ACL 2022
|
||||
- Tuan Lai, Heng Ji, ChengXiang Zhai
|
||||
- [[Paper]](https://aclanthology.org/2022.findings-acl.292/)
|
||||
|
||||
- **"Sequence-to-Sequence Knowledge Graph Completion and Question Answering"**, ACL 2022
|
||||
- Apoorv Saxena, Adrian Kochsiek, Rainer Gemulla
|
||||
- [[Paper]](https://aclanthology.org/2022.acl-long.201/)
|
||||
|
||||
- **"Knowledge Is Flat: A Seq2Seq Generative Framework for Various Knowledge Graph Completion"**, COLING 2022
|
||||
- Chen Chen, Yufei Wang, Bing Li, Kwok-Yan Lam
|
||||
- [[Paper]](https://arxiv.org/abs/2209.07299)
|
||||
|
||||
### 3. Label-based Sequence.
|
||||
This paradigm refers to utilizing the extra markers to indicate specific entities or relationships.
|
||||
As shown in figure, the output sequence copies all words in the input sentence, as it helps to reduce ambiguity.
|
||||
In addition, this paradigm uses square brackets or other identifiers to specify the tagging sequence for the entity of interest.
|
||||
The relevant labels are separated by the separator "$|$" within enclosed brackets.
|
||||
Meanwhile, the labeled words are described with natural words so that the potential knowledge of the pre-trained model can be leveraged.
|
||||
<p align='center'>
|
||||
</br>
|
||||
<img src='Label-based.png' width='500'>
|
||||
</p>
|
||||
|
||||
- ***Augmented natural language***
|
||||
|
||||
- **"Augmented Natural Language for Generative Sequence Labeling"**, EMNLP 2020
|
||||
- Ben Athiwaratkun, Cicero Nogueira dos Santos, Jason Krone, Bing Xiang
|
||||
- [[Paper]](https://doi.org/10.18653/v1/2020.emnlp-main.27)
|
||||
|
||||
- **"Autoregressive Entity Retrieval "**, ICLR 2021
|
||||
- Nicola De Cao, Gautier Izacard, Sebastian Riedel, Fabio Petroni
|
||||
- [[Paper]](https://openreview.net/forum?id=5k8F6UU39V)
|
||||
|
||||
- **"Structured Prediction as Translation between Augmented Natural Languages "**, ICLR 2021
|
||||
- Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie Ma, Alessandro Achille, RISHITA ANUBHAI, Cicero Nogueira dos Santos, Bing Xiang, Stefano Soatto
|
||||
- [[Paper]](https://openreview.net/forum?id=US-TP-xnXI)
|
||||
|
||||
|
||||
|
||||
### 4. Indice-based Sequence.
|
||||
This paradigm generates the indices of the words in the input text of interest directly, and encodes class labels as label indices.
|
||||
As the output is strictly restricted, it will not generate indices that corresponding entities do not exist in the input text, except for relation labels.
|
||||
|
||||
<p align='center'>
|
||||
</br>
|
||||
<img src='Indice-based.png' width='500'>
|
||||
</p>
|
||||
|
||||
- ***Pointer mechanism***
|
||||
|
||||
- **"Effective Modeling of Encoder-Decoder Architecture for Joint Entity and Relation Extraction Authors"**, AAAI 2020
|
||||
- Tapas Nayak, Hwee Tou Ng
|
||||
- [[Paper]](https://ojs.aaai.org/index.php/AAAI/article/view/6374)
|
||||
|
||||
- **"Don’t Parse, Generate! A Sequence to Sequence Architecture for Task-Oriented Semantic Parsing"**, WWW 2020
|
||||
- Subendhu Rongali, Luca Soldaini, Emilio Monti, Wael Hamza
|
||||
- [[Paper]](https://dl.acm.org/doi/10.1145/3366423.3380064)
|
||||
|
||||
- **"A Unified Generative Framework for Various NER Subtasks"**, ACL 2021
|
||||
- Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng Zhang, Xipeng Qiu
|
||||
- [[Paper]](https://aclanthology.org/2021.acl-long.451/)
|
||||
|
||||
- **"A Unified Generative Framework for Aspect-based Sentiment Analysis"**, ACL 2021
|
||||
- Hang Yan, Junqi Dai, Tuo Ji, Xipeng Qiu, Zheng Zhang
|
||||
- [[Paper]](https://aclanthology.org/2021.acl-long.188/)
|
||||
|
||||
- ***Pointer selection***
|
||||
|
||||
- **"GRIT: Generative Role-filler Transformers for Document-level Event Entity Extraction"**, EACL 2021
|
||||
- Xinya Du, Alexander Rush, Claire Cardie
|
||||
- [[Paper]](https://aclanthology.org/2021.eacl-main.52/)
|
||||
|
||||
|
||||
### 5. Blank-based Sequence.
|
||||
This paradigm refers to utilizing templates to define the appropriate order and relationship for the generated spans.
|
||||
As shown in figure, the template refers to a text describing an event type, which adds blank argument role placeholders.
|
||||
The output sequences are sentences where the blank placeholders are replaced by specific event arguments.
|
||||
|
||||
<p align='center'>
|
||||
</br>
|
||||
<img src='Blank-based.png' width='500'>
|
||||
</p>
|
||||
|
||||
- ***Template filling as generation***
|
||||
|
||||
- **"COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"**, ACL 2019
|
||||
- Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, Yejin Choi
|
||||
- [[Paper]](https://aclanthology.org/P19-1470/)
|
||||
|
||||
- **"Document-Level Event Argument Extraction by Conditional Generation"**, NAACL 2021
|
||||
- Sha Li, Heng Ji, Jiawei Han
|
||||
- [[Paper]](https://aclanthology.org/2021.naacl-main.69/)
|
||||
|
||||
- **"Template Filling with Generative Transformers"**, NAACL 2021
|
||||
- Xinya Du, Alexander Rush, Claire Cardie
|
||||
- [[Paper]](https://aclanthology.org/2021.naacl-main.70/)
|
||||
|
||||
- **"ClarET: Pre-training a Correlation-Aware Context-To-Event Transformer for Event-Centric Generation and Classification"**, ACL 2022
|
||||
- Yucheng Zhou, Tao Shen, Xiubo Geng, Guodong Long, Daxin Jiang
|
||||
- [[Paper]](https://aclanthology.org/2022.acl-long.183/)
|
||||
|
||||
- ***Prompt semantic guidance***
|
||||
|
||||
- **"DEGREE: A Data-Efficient Generation-Based Event Extraction Model"**, NAACL 2022
|
||||
- I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee, Scott Miller, Prem Natarajan, Kai-Wei Chang, Nanyun Peng
|
||||
- [[Paper]](http://arxiv.org/abs/2108.12724)
|
||||
|
||||
- **"Dynamic Prefix-Tuning for Generative Template-based Event Extraction"**, ACL 2022
|
||||
- Xiao Liu, Heyan Huang, Ge Shi, Bo Wang
|
||||
- [[Paper]](https://aclanthology.org/2022.acl-long.358/)
|
||||
|
||||
- **"Prompt for Extraction? PAIE: Prompting Argument Interaction for Event Argument Extraction"**, ACL 2022
|
||||
- Yubo Ma, Zehao Wang, Yixin Cao, Mukai Li, Meiqi Chen, Kun Wang, Jing Shao
|
||||
- [[Paper]](https://aclanthology.org/2022.acl-long.466/)
|
||||
|
||||
- ***Language-agnostic template***
|
||||
|
||||
- **"Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction"**, ACL 2022
|
||||
- Kuan-Hao Huang, I-Hung Hsu, Prem Natarajan, Kai-Wei Chang, Nanyun Peng
|
||||
- [[Paper]](https://aclanthology.org/2022.acl-long.317)
|
||||
|
||||
|
||||
|
||||
## 🏆 A List of Survey Papers
|
||||
|
||||
| Survey Paper | Publish |
|
||||
|:-----------------------------------------------------------------------------------------------------------------------------------|:----------:|
|
||||
@@ -18,6 +280,9 @@ We have released a new survey paper based on this repository, with a perspective
|
||||
| [Multi-Modal Knowledge Graph Construction and Application: A Survey](https://arxiv.org/abs/2202.05786) | Arxiv 2022 |
|
||||
| [Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey](https://arxiv.org/abs/2111.01243) | Arxiv 2021 |
|
||||
|
||||
## 🕚 A Timeline of generative KGC.
|
||||
The time for each paper is based on its first arXiv version (if exists) or estimated submission time.
|
||||
|
||||
|
||||
| Papers | Method | Conference | Code |
|
||||
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------:|:-----------:|:----------------------------------------------------------------------:|
|
||||
@@ -59,7 +324,7 @@ We have released a new survey paper based on this repository, with a perspective
|
||||
| [COMET: Commonsense Transformers for Automatic Knowledge Graph Construction](https://aclanthology.org/P19-1470/) | Blank-based | ACL 2019 | [COMET](https://github.com/atcbosselut/comet-commonsense) |
|
||||
| [Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism](https://aclanthology.org/P18-1047/) | Copy-based | ACL 2018 | - |
|
||||
|
||||
## TIPS
|
||||
## 🌟 TIPS
|
||||
If you find this repository useful to your research or work, it is really appreciate to star this repository.
|
||||
|
||||
|
||||
|
||||
BIN
Structure-linearized.png
Normal file
BIN
Structure-linearized.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 180 KiB |
BIN
Taxonomy.png
Normal file
BIN
Taxonomy.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 769 KiB |
Reference in New Issue
Block a user