mirror of
https://github.com/zjunlp/Generative_KG_Construction_Papers.git
synced 2023-07-18 10:12:48 +03:00
update
update
This commit is contained in:
6
.idea/workspace.xml
generated
6
.idea/workspace.xml
generated
@@ -1,9 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ChangeListManager">
|
||||
<list default="true" id="16338359-5063-4a6a-9257-7b8e6356e990" name="Changes" comment="">
|
||||
<change beforePath="$PROJECT_DIR$/README.md" beforeDir="false" afterPath="$PROJECT_DIR$/README.md" afterDir="false" />
|
||||
</list>
|
||||
<list default="true" id="16338359-5063-4a6a-9257-7b8e6356e990" name="Changes" comment="" />
|
||||
<option name="SHOW_DIALOG" value="false" />
|
||||
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
||||
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
||||
@@ -45,7 +43,7 @@
|
||||
<workItem from="1666338853458" duration="11803000" />
|
||||
<workItem from="1666498855517" duration="7000" />
|
||||
<workItem from="1666794438661" duration="9000" />
|
||||
<workItem from="1666839060878" duration="2385000" />
|
||||
<workItem from="1666839060878" duration="2476000" />
|
||||
</task>
|
||||
<servers />
|
||||
</component>
|
||||
|
||||
@@ -22,7 +22,7 @@ Based on the review, we suggest promising research directions for the future. Ou
|
||||
- We conducted the development of knowledge extraction toolkits such as [DEEPKE](https://github.com/zjunlp/DeepKE) and [PromptKG](https://github.com/zjunlp/PromptKG).
|
||||
- Due to the rise of generative extraction methods in the NLP community,we summarize recent progress in generative KGC.
|
||||
- Congratulations! Our work has been accepted by the EMNLP2022 main conference.
|
||||
- We release our paper on arivx.
|
||||
- We release our paper on [arivx](https://arxiv.org/pdf/2210.12714.pdf).
|
||||
|
||||
### 🚩Citation
|
||||
If you find this survey useful for your research, please consider citing
|
||||
@@ -43,9 +43,9 @@ Knowledge Graph Construction mainly aims to extract structural information from
|
||||
such as Named Entity Recognition (NER), Relation Extraction (RE), Event Extraction (EE), Entity Linking (EL), and Knowledge Graph Completion (KGC).
|
||||
|
||||
Generally, KGC can be regarded as structure prediction tasks, where a model is trained to approximate a target function $F(x) \rightarrow y$, where $x \in \mathcal{X}$ denotes the input data and $y \in \mathcal{Y}$ denotes the output structure sequence.
|
||||
For instance, given a sentence, *"Steve Jobs and Steve Wozniak co-founded Apple in 1977.}"*:
|
||||
For instance, given a sentence, *"Steve Jobs and Steve Wozniak co-founded Apple in 1977."*:
|
||||
|
||||
- Named Entity Recognition aims to identify the types of entities, \eg, *‘Steve Job'*, *‘Steve Wozniak'* $\Rightarrow$ *PERSON*, *‘Apple'* $\Rightarrow$ *ORG*;
|
||||
- Named Entity Recognition aims to identify the types of entities, i.e., *‘Steve Job'*, *‘Steve Wozniak'* $\Rightarrow$ *PERSON*, *‘Apple'* $\Rightarrow$ *ORG*;
|
||||
|
||||
- Relation Extraction aims to identify the relationship of the given entity pair $\langle$*Steve Job*, *Apple*$\rangle$ as *founder*;
|
||||
|
||||
|
||||
Reference in New Issue
Block a user