Merge pull request #1 from Dormiveglia-elf/dev-zhenyu

Doc Refinement and Fixes
This commit is contained in:
haoyuhuang
2025-03-15 01:50:03 +08:00
committed by GitHub
2 changed files with 41 additions and 1 deletions

34
config.yaml Normal file
View File

@@ -0,0 +1,34 @@
# OpenAI Configuration
openai:
embedding_model: "text-embedding-ada-002"
model: "gpt-4o"
api_key: "***"
base_url: "***"
# GLM Configuration
glm:
model: "glm-4-plus"
api_key: "***"
base_url: "https://open.bigmodel.cn/api/paas/v4"
embedding_model: "embedding-3"
# Deepseek Configuration
deepseek:
model: "deepseek-chat"
api_key: "***"
base_url: "https://api.deepseek.com"
# Model Parameters
model_params:
openai_embedding_dim: 1536
glm_embedding_dim: 2048
max_token_size: 8192
# HiRAG Configuration
hirag:
working_dir: "your_work_dir"
enable_llm_cache: false
enable_hierachical_mode: true
embedding_batch_num: 6
embedding_func_max_async: 8
enable_naive_rag: true

View File

@@ -34,7 +34,7 @@ print("Perform hi search:")
print(graph_func.query("The question you want to ask?", param=QueryParam(mode="hi")))
```
Or if you want to employ HiRAG with DeepSeek, ChatGLM, or other third-party retrieval api, here are the examples in `./hi_Search_deepseek.py`, `./hi_search_glm.py`, and `./hi_search_openai.py`. The API keys and the LLM configurations can be set at `config.yaml`.
Or if you want to employ HiRAG with DeepSeek, ChatGLM, or other third-party retrieval api, here are the examples in `./hi_Search_deepseek.py`, `./hi_Search_glm.py`, and `./hi_Search_openai.py`. The API keys and the LLM configurations can be set at `./config.yaml`.
## Evaluation
@@ -243,6 +243,12 @@ python batch_eval.py -m result -api openai
| |Diversity| 3.5| **96.5**|
| |Overall| 0.0| **100.0**|
## Acknowledgement
We gratefully acknowledge the use of the following open-source projects in our work:
- [nano-graphrag](https://github.com/gusye1234/nano-graphrag): a simple, easy-to-hack GraphRAG implementation
- [RAPTOR](https://github.com/parthsarthi03/raptor): a novel approach to retrieval-augmented language models by constructing a recursive tree structure from documents.
## Cite Us
```
@misc{huang2025retrievalaugmentedgenerationhierarchicalknowledge,