adding true-false notebook

This commit is contained in:
root
2024-03-18 01:00:43 -07:00
parent 9b0fcdefd7
commit 3e37b3a500
2 changed files with 161 additions and 1 deletions

View File

@@ -37,7 +37,7 @@ SAVE_RESULTS_PATH : '/data/somank/KG_RAG/data/analysis_results'
# File paths for test questions
MCQ_PATH : '/data/somank/KG_RAG/data/benchmark_data/test_questions_two_hop_mcq_from_monarch_and_robokop.csv'
TRUE_FALSE_PATH : '/data/somank/KG_RAG/data/benchmark_data/test_questions_one_hop_true_false_v3.csv'
TRUE_FALSE_PATH : '/data/somank/kg_rag_fork/KG_RAG/data/benchmark_data/test_questions_one_hop_true_false_v3.csv'
ONE_HOP_GRAPH_TRAVERSAL : '/data/somank/KG_RAG/data/hyperparam_tuning_data/one_hop_graph_traversal_questions_v2.csv'
TWO_HOP_GRAPH_TRAVERSAL : '/data/somank/KG_RAG/data/hyperparam_tuning_data/two_hop_graph_traversal_questions.csv'

View File

@@ -0,0 +1,160 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "6396b4b5-4a64-4a91-9dd0-8961dd1fb7ad",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.chdir('..')\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e1f43477-120b-4cc5-a588-22b5f18eee92",
"metadata": {},
"outputs": [],
"source": [
"from kg_rag.utility import *\n",
"from tqdm import tqdm\n"
]
},
{
"cell_type": "markdown",
"id": "6a0e7155-fa9e-46cc-98df-1950603b1193",
"metadata": {},
"source": [
"## Choose the LLM"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "75bb74c1-e4ac-48d2-ad36-a793f4c140c5",
"metadata": {},
"outputs": [],
"source": [
"LLM_MODEL = 'gpt-35-turbo'\n"
]
},
{
"cell_type": "markdown",
"id": "4aa934b0-81a0-4ab7-b144-af53a350bf1a",
"metadata": {},
"source": [
"## Configure KG-RAG"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "155bda08-d15b-413c-89d1-d1f97f43bb30",
"metadata": {},
"outputs": [],
"source": [
"QUESTION_PATH = config_data[\"TRUE_FALSE_PATH\"]\n",
"SYSTEM_PROMPT = system_prompts[\"TRUE_FALSE_QUESTION\"]\n",
"QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD = float(config_data[\"QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD\"])\n",
"QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY = float(config_data[\"QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY\"])\n",
"VECTOR_DB_PATH = config_data[\"VECTOR_DB_PATH\"]\n",
"NODE_CONTEXT_PATH = config_data[\"NODE_CONTEXT_PATH\"]\n",
"SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL = config_data[\"SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL\"]\n",
"SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL = config_data[\"SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL\"]\n",
"TEMPERATURE = config_data[\"LLM_TEMPERATURE\"]\n",
"SAVE_PATH = config_data[\"SAVE_RESULTS_PATH\"]\n",
"CONTEXT_VOLUME = 100\n",
"EDGE_EVIDENCE = False\n",
"\n",
"CHAT_MODEL_ID = LLM_MODEL\n",
"CHAT_DEPLOYMENT_ID = LLM_MODEL\n",
"\n",
"vectorstore = load_chroma(VECTOR_DB_PATH, SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL)\n",
"embedding_function_for_context_retrieval = load_sentence_transformer(SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL)\n",
"node_context_df = pd.read_csv(NODE_CONTEXT_PATH)\n"
]
},
{
"cell_type": "markdown",
"id": "df93fd81-3cd1-4a87-b024-ea21f4c79956",
"metadata": {},
"source": [
"## Load test data"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "041b21f3-8746-47ff-b4f2-c3c29f2a0dcf",
"metadata": {},
"outputs": [],
"source": [
"question_df = pd.read_csv(QUESTION_PATH)\n",
" \n",
" "
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "6f4632d9-6a60-4cfe-851d-4d65d4089a52",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"0it [01:21, ?it/s]\n",
"\n",
"KeyboardInterrupt\n",
"\n"
]
}
],
"source": [
"%%time\n",
"\n",
"answer_list = []\n",
"for index, row in tqdm(question_df.iterrows()):\n",
" question = row[\"text\"]\n",
" context = retrieve_context(question, vectorstore, embedding_function_for_context_retrieval, node_context_df, CONTEXT_VOLUME, QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD, QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY, EDGE_EVIDENCE)\n",
" enriched_prompt = \"Context: \"+ context + \"\\n\" + \"Question: \"+ question\n",
" output = get_GPT_response(enriched_prompt, SYSTEM_PROMPT, CHAT_MODEL_ID, CHAT_DEPLOYMENT_ID, temperature=TEMPERATURE)\n",
" answer_list.append((row[\"text\"], row[\"label\"], output))\n",
"\n",
"answer_df = pd.DataFrame(answer_list, columns=[\"question\", \"label\", \"llm_answer\"])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bf710d7c-db58-4083-9762-03de0dd5eb1a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}