Merge remote-tracking branch 'teslanaut/feature/gradio-interface' into gradio-ui

This commit is contained in:
Pierre Bruno
2025-01-16 16:07:54 +01:00
2 changed files with 289 additions and 23 deletions

228
gradio_interface.py Normal file
View File

@@ -0,0 +1,228 @@
"""
Kokoro-TTS Local Generator
-------------------------
A Gradio interface for the Kokoro-TTS-Local text-to-speech system.
Supports multiple voices and audio formats, with cross-platform compatibility.
Key Features:
- Multiple voice models support
- Real-time generation with progress logging
- WAV, MP3, and AAC output formats
- Network sharing capabilities
- Cross-platform compatibility (Windows, macOS, Linux)
Dependencies:
- gradio: Web interface framework
- soundfile: Audio file handling
- models: Custom module for voice model management
"""
import gradio as gr
import subprocess
import os
import platform
from datetime import datetime
import shutil
import json
import soundfile as sf
from pathlib import Path
# Global configuration
CONFIG_FILE = "tts_config.json" # Stores user preferences and paths
DEFAULT_OUTPUT_DIR = "outputs" # Directory for generated audio files
def get_default_voices_path():
"""Get OS-agnostic path to voice models directory."""
system = platform.system().lower()
if system == "windows":
base = os.getenv("APPDATA", os.path.expanduser("~"))
return str(Path(base) / "huggingface" / "hub" / "models--hexgrad--Kokoro-82M" / "voices")
else: # Linux and macOS
return str(Path.home() / ".cache" / "huggingface" / "hub" / "models--hexgrad--Kokoro-82M" / "voices")
def get_available_voices():
"""Get list of available voice models by checking the directory."""
voices_path = get_default_voices_path() # Use platform-agnostic path
try:
# List all files in the directory and filter by .pt extension
voices = [os.path.splitext(f)[0] for f in os.listdir(voices_path) if f.endswith('.pt')]
print("Available voices:", voices) # Debugging log
return voices
except Exception as e:
print(f"Error retrieving voices: {e}")
return [] # Return an empty list if there's an error
def generate_tts_with_logs(voice, text, format):
"""Generate TTS audio with real-time logging and format conversion.
This function:
1. Validates input text
2. Runs TTS generation subprocess
3. Streams progress logs in real-time
4. Converts output to requested format
5. Saves with timestamp in output directory
Args:
voice (str): Selected voice model identifier (e.g., "af", "af_bella")
text (str): Input text to synthesize
format (str): Output audio format ("wav", "mp3", or "aac")
Yields:
tuple: (log_text, output_path)
- log_text (str): Accumulated process logs
- output_path (str): Path to generated audio file, or None on error
Notes:
- Temporary WAV file is created and deleted after conversion
- Output filename includes timestamp to prevent overwrites
- Errors are caught and reported in logs
"""
if not text.strip():
return "❌ Error: Text required", None
logs_text = ""
try:
process = subprocess.Popen(
["python", "tts_demo.py", "--text", text, "--voice", voice],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True
)
while True:
output = process.stdout.readline()
if output == '' and process.poll() is not None:
break
if output:
logs_text += output
yield logs_text, None
if process.returncode != 0:
logs_text += "❌ Generation failed\n"
yield logs_text, None
return
if not os.path.exists("output.wav"):
logs_text += "❌ No output generated\n"
yield logs_text, None
return
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"output_{timestamp}.{format}"
os.makedirs(DEFAULT_OUTPUT_DIR, exist_ok=True)
output_path = Path(DEFAULT_OUTPUT_DIR) / filename
if format == "wav":
shutil.copy2("output.wav", output_path)
else:
data, samplerate = sf.read("output.wav")
sf.write(str(output_path), data, samplerate)
os.remove("output.wav")
logs_text += f"✅ Saved: {output_path}\n"
yield logs_text, str(output_path)
except Exception as e:
logs_text += f"❌ Error: {str(e)}\n"
yield logs_text, None
def create_interface(server_name="0.0.0.0", server_port=7860):
"""Create and configure Gradio interface with network sharing capabilities.
Creates a web interface with:
- Text input area
- Voice model selection
- Audio format selection (WAV/MP3/AAC)
- Real-time progress logging
- Audio playback and download
- Example inputs for testing
Args:
server_name (str): Server address for network sharing (default: "0.0.0.0" for all interfaces)
server_port (int): Port number to serve on (default: 7860)
Returns:
gr.Blocks: Configured Gradio interface ready for launching
"""
theme = gr.themes.Base(
primary_hue="zinc",
secondary_hue="slate",
neutral_hue="zinc",
font=gr.themes.GoogleFont("Inter")
)
with gr.Blocks(theme=theme) as demo:
gr.Markdown(
"""
<div style="text-align: center; margin-bottom: 2rem;">
<h1 style="font-size: 2.5em; margin-bottom: 0.5rem;">🎙️ Kokoro-TTS Local Generator</h1>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 2rem; background: rgba(0,0,0,0.05); padding: 1.5rem; border-radius: 8px; margin-top: 1rem;">
<div style="text-align: left;">
<h3>✨ Instructions</h3>
<p>1. Type or paste your text into the input box</p>
<p>2. Choose a voice from the dropdown menu</p>
<p>3. Click Generate and wait for processing</p>
<p>4. Play or download your generated audio</p>
</div>
<div style="text-align: left; border-left: 1px solid rgba(255,255,255,0.1); padding-left: 2rem;">
<h3>Introduction</h3>
<p>A local text-to-speech system using the Kokoro-82M model for natural-sounding voice synthesis.</p>
<p>Based on <a href="https://github.com/PierrunoYT/Kokoro-TTS-Local">Kokoro-TTS-Local</a> by <a href="https://github.com/PierrunoYT">PierrunoYT</a></p>
<p>Model: <a href="https://huggingface.co/hexgrad/Kokoro-82M">Kokoro-82M</a> by <a href="https://huggingface.co/hexgrad">hexgrad</a></p>
<p>Gradio Interface by ChatGPT, Claude & <a href="https://github.com/teslanaut">Teslanaut</a></p>
</div>
</div>
</div>
"""
)
text_input = gr.Textbox(
label="✍️ Text to Synthesize",
placeholder="Enter text here...",
lines=3
)
generate_button = gr.Button("🔊 Generate", variant="primary")
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
voice = gr.Dropdown(
choices=get_available_voices(),
label="🗣️ Select Voice",
value=None
)
format = gr.Radio(
choices=["wav", "mp3", "aac"],
label="🎵 Output Format",
value="wav"
)
with gr.Column(scale=2):
audio_output = gr.Audio(
label="🎧 Output",
type="filepath"
)
logs_output = gr.Textbox(
label="📋 Process Log",
lines=8,
interactive=False
)
generate_button.click(
fn=generate_tts_with_logs,
inputs=[voice, text_input, format],
outputs=[logs_output, audio_output]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0", # Allow external connections
server_port=7860, # Default Gradio port
share=True, # Enable Gradio sharing link
show_error=True
)

View File

@@ -1,20 +1,77 @@
import torch
import os
import sys
import platform
import glob
from huggingface_hub import hf_hub_download, list_repo_files
import espeakng_loader
from phonemizer.backend.espeak.wrapper import EspeakWrapper
from importlib.util import spec_from_file_location, module_from_spec
__all__ = ['list_available_voices', 'build_model', 'load_voice', 'generate_speech']
def list_available_voices():
"""List all available voices from the official voicepacks."""
return ["af", "af_bella", "af_sarah", "am_adam", "am_michael"]
def get_platform_paths():
"""Get platform-specific paths for espeak-ng"""
system = platform.system().lower()
if system == "windows":
lib_path = os.path.join(os.getenv("ProgramFiles"), "eSpeak NG", "libespeak-ng.dll")
data_path = os.path.join(os.getenv("ProgramFiles"), "eSpeak NG", "espeak-ng-data")
elif system == "darwin": # macOS
lib_path = "/opt/homebrew/lib/libespeak-ng.dylib"
brew_data = "/opt/homebrew/share/espeak-ng-data"
sys_lib = "/usr/local/lib/libespeak-ng.dylib"
sys_data = "/usr/local/share/espeak-ng-data"
lib_path = lib_path if os.path.exists(lib_path) else sys_lib
data_path = brew_data if os.path.exists(brew_data) else sys_data
else: # Linux
data_path = "/usr/lib/x86_64-linux-gnu/espeak-ng-data"
lib_paths = [
"/lib/x86_64-linux-gnu/libespeak-ng.so.1",
"/usr/lib/x86_64-linux-gnu/libespeak-ng.so",
"/usr/lib/libespeak-ng.so",
"/usr/lib/x86_64-linux-gnu/libespeak-ng.so.1",
"/usr/lib/aarch64-linux-gnu/libespeak-ng.so",
"/usr/lib64/libespeak-ng.so"
]
lib_path = None
for path in lib_paths:
if os.path.exists(path):
lib_path = path
break
if lib_path is None:
lib_path = lib_paths[0] # Default for error message
return lib_path, data_path
def setup_espeak():
"""Set up espeak library paths for phonemizer."""
try:
# Set up espeak library paths
EspeakWrapper.set_library(espeakng_loader.get_library_path())
EspeakWrapper.set_data_path(espeakng_loader.get_data_path())
lib_path, data_path = get_platform_paths()
if not os.path.exists(lib_path):
raise FileNotFoundError(f"espeak-ng library not found at {lib_path}")
if not os.path.exists(data_path):
raise FileNotFoundError(f"espeak-ng data not found at {data_path}")
EspeakWrapper.set_library(lib_path)
EspeakWrapper.data_path = data_path
print("espeak-ng library paths set up successfully")
except Exception as e:
print(f"Error setting up espeak: {e}")
print("\nPlease ensure espeak-ng is installed:")
print("- Windows: Download from https://github.com/espeak-ng/espeak-ng/releases")
print("- macOS: brew install espeak-ng")
print("- Linux: sudo apt install espeak-ng")
raise e
def import_module_from_path(module_name, module_path):
@@ -32,19 +89,15 @@ def import_module_from_path(module_name, module_path):
def build_model(model_file, device='cpu'):
"""Build the Kokoro model following official implementation."""
try:
# Set up espeak first
setup_espeak()
# Download necessary files from Hugging Face
repo_id = "hexgrad/Kokoro-82M"
model_path = hf_hub_download(repo_id=repo_id, filename="kokoro-v0_19.pth")
kokoro_py = hf_hub_download(repo_id=repo_id, filename="kokoro.py")
models_py = hf_hub_download(repo_id=repo_id, filename="models.py")
istftnet_py = hf_hub_download(repo_id=repo_id, filename="istftnet.py")
plbert_py = hf_hub_download(repo_id=repo_id, filename="plbert.py")
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
# Import modules in correct dependency order
print("Importing plbert module...")
plbert_module = import_module_from_path("plbert", plbert_py)
print("Importing istftnet module...")
@@ -54,12 +107,10 @@ def build_model(model_file, device='cpu'):
print("Importing kokoro module...")
kokoro_module = import_module_from_path("kokoro", kokoro_py)
# Test phonemizer
from phonemizer import phonemize
test_phonemes = phonemize("Hello")
print(f"Phonemizer test successful: 'Hello' -> {test_phonemes}")
# Build and load the model
print("Building model...")
model = models_module.build_model(model_path, device)
print(f"Model loaded successfully on {device}")
@@ -93,17 +144,4 @@ def generate_speech(model, text, voice=None, lang='a', device='cpu'):
print(f"Error generating speech: {e}")
import traceback
traceback.print_exc()
return None, None
def list_available_voices():
"""List all available voices from the official voicepacks."""
try:
repo_id = "hexgrad/Kokoro-82M"
files = list_repo_files(repo_id)
# Filter for voice files in the voices directory and remove .pt extension
voices = [f.replace('voices/', '').replace('.pt', '')
for f in files if f.startswith('voices/') and f.endswith('.pt')]
return sorted(voices)
except Exception as e:
print(f"Error listing voices: {e}")
return []
return None, None