init commit
29
.gitattributes
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
# https://git-scm.com/docs/gitattributes
|
||||
|
||||
# Set the default behavior, in case people don't have core.autocrlf set.
|
||||
# https://git-scm.com/docs/gitattributes#_end_of_line_conversion
|
||||
* text=auto
|
||||
|
||||
# common python attributes, taken from https://github.com/alexkaratarakis/gitattributes/blob/710900479a2bedeec7003d381719521ffbb18bf8/Python.gitattributes
|
||||
# Source files
|
||||
# ============
|
||||
*.pxd text diff=python
|
||||
*.py text diff=python
|
||||
*.py3 text diff=python
|
||||
*.pyw text diff=python
|
||||
*.pyx text diff=python
|
||||
*.pyz text diff=python
|
||||
*.pyi text diff=python
|
||||
|
||||
# Binary files
|
||||
# ============
|
||||
*.db binary
|
||||
*.p binary
|
||||
*.pkl binary
|
||||
*.pickle binary
|
||||
*.pyc binary export-ignore
|
||||
*.pyo binary export-ignore
|
||||
*.pyd binary
|
||||
|
||||
# Jupyter notebook
|
||||
*.ipynb text eol=lf
|
||||
35
.gitignore
vendored
Normal file
@@ -0,0 +1,35 @@
|
||||
# Python
|
||||
__pycache__
|
||||
*.pyc
|
||||
*.egg-info
|
||||
dist
|
||||
|
||||
# Log
|
||||
*.log
|
||||
*.log.*
|
||||
*.json
|
||||
*.jsonl
|
||||
|
||||
# Data
|
||||
!**/alpaca-data-conversation.json
|
||||
|
||||
# Editor
|
||||
.idea
|
||||
*.swp
|
||||
|
||||
# Other
|
||||
.DS_Store
|
||||
wandb
|
||||
output
|
||||
|
||||
checkpoints
|
||||
ckpts*
|
||||
|
||||
.ipynb_checkpoints
|
||||
*.ipynb
|
||||
|
||||
# DevContainer
|
||||
!.devcontainer/*
|
||||
|
||||
# Demo
|
||||
serve_images/
|
||||
201
LICENSE
Normal file
@@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
141
README.md
Normal file
@@ -0,0 +1,141 @@
|
||||
<div align="center">
|
||||
<img src="images/image_no_back.png" width="200" height="200">
|
||||
<h1> 🔥 LLaVA-MORE 🔥
|
||||
|
||||
Enhancing Visual Instruction Tuning with LLaMA 3.1
|
||||
</h1>
|
||||
|
||||
[](https://huggingface.co/collections/aimagelab/llava-more-66aa6c49167e190bf27e7be4)
|
||||
[](https://huggingface.co/aimagelab)
|
||||
[](https://aimagelab.ing.unimore.it/imagelab)
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<div align='center'>
|
||||
|
||||
#### [Federico Cocchi](https://federico1-creator.github.io/Federico_Cocchi/), [Nicholas Moratelli](https://github.com/NicholasMoratelli), [Davide Caffagni](https://github.com/dcaffo98), [Sara Sarto](https://github.com/sarasarto),
|
||||
[Marcella Cornia](), [Lorenzo Baraldi](), and [Rita Cucchiara]()
|
||||
|
||||
</div>
|
||||
|
||||
## Citation
|
||||
If you make use of our work, please cite our repo:
|
||||
|
||||
```bibtex
|
||||
@misc{cocchi2024llavamore,
|
||||
title={{LLaVA-MORE: Enhancing Visual Instruction Tuning with LLaMA 3.1}},
|
||||
author={Federico, Cocchi and Nicholas, Moratelli and Davide, Caffagni and Sara, Sarto and Marcella, Cornia and Lorenzo, Baraldi and Rita, Cucchiara},
|
||||
url={https://github.com/aimagelab/LLaVA-MORE},
|
||||
year={2024}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
## 📢 Latest Updates
|
||||
- [2024/08] 🔥 First release of our LLaVA-MORE 8B model.
|
||||
- [2024/08] 🔎 If you are interested in this area of research, check out [our survey](https://arxiv.org/abs/2402.12451),
|
||||
recently published in ACL (Findings).
|
||||
- [2024/08] 📚 Check out the latest researches from [AImageLab](https://aimagelab.ing.unimore.it/imagelab/).
|
||||
|
||||
## Table of Contents
|
||||
|
||||
1. [Overview](#overview)
|
||||
2. [Performance](#performance)
|
||||
3. [Checkpoints](#checkpoints)
|
||||
4. [Installation](#installation)
|
||||
5. [Training](#training)
|
||||
6. [Inference](#inference)
|
||||
7. [Acknowledgments](#acknowledgments)
|
||||
|
||||
## Overview
|
||||
|
||||
```LLaVA-MORE``` enhances the well-known LLaVA architecture by integrating for the first time the use of LLaMA 3.1 as the language model. We are publicly releasing the checkpoints for stages one and two for the first model with 8B parameters.
|
||||
|
||||
To further support the research community in enhancing Multimodal LLM performance, we are also releasing the training code and scripts for distributed training.
|
||||
|
||||
Remember to star the repository to stay updated on future releases 🤗 and try our models [here](http://www.more.unimore.it/)!
|
||||
|
||||
## Performance
|
||||
In this section, we present the performance of our model compared to other versions of LLaVA across different multimodal datasets.
|
||||
|
||||
<div align="center">
|
||||
<img src="images/radar_plot.png" width="500"">
|
||||
</div>
|
||||
|
||||
### Benchmarks and Comparisons on Instrucion Multimodal Datasets in the Literature
|
||||
|
||||
<div align="center">
|
||||
|
||||
| Model Name | Text-VQA* | Science-QA | AI2D | SEED-vid | SEED-all | SEED-img | MMMU | MMBench-Cn | MMBench-En | POPE | GQA | MME-P | MME-C |
|
||||
|----------------------|:----------: |:------------:|:------:|:----------:|:----------:|:----------:|:------:|:------------:|:------------:|:------:|:-----:|:--------:|:-------:|
|
||||
| LLaVA-v1.5-7B | 58.2 | 69.0 | 56.4 | 42.0 | 61.6 | 66.8 | 34.2 | 56.5 | 65.3 | **85.6** | 62.4 | 1474.3 | 314.6 |
|
||||
| LLaVA-v1.5-LLaMA3-8B | 57.6 | 74.2 | 60.7 | 42.0 | **64.3** | **70.1** | 37.3 | 65.4 | 70.3 | 85.4 | 63.5 | **1544.4** | 330.3 |
|
||||
| **LLaVA-MORE-8B** | **58.4** | **76.3** | **61.8** | **42.4** | 64.1 | 69.8 | **39.4** | **68.2** | **72.4** | 85.1 | **63.6** | 1531.5 | **353.3** |
|
||||
</div>
|
||||
|
||||
*\* the results of TextVQA are calculated with OCR token in the input prompt.*
|
||||
|
||||
## Checkpoints
|
||||
|
||||
In the table below, you can find links to ours 🤗 Hugging Face models.
|
||||
|
||||
| Model Name | 🤗 Hugging Face | Summary |
|
||||
|---------------------------|:-------------------------:|------------------------------------------------|
|
||||
| LLaVA_MORE-llama_3_1-8B-pretrain | [Hugging Face Model](https://huggingface.co/aimagelab/LLaVA_MORE-llama_3_1-8B-pretrain) | Pretrained on [LCS-558K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) and using [LLaMA 3.1 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) as LLM backbone |
|
||||
| LLaVA_MORE-llama_3_1-8B-finetuning | [Hugging Face Model](https://huggingface.co/aimagelab/LLaVA_MORE-llama_3_1-8B-finetuning) | Finetuned on [LLaVA-Instruct-665K](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) and using [LLaMA 3.1 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) as LLM backbone |
|
||||
|
||||
|
||||
## Installation
|
||||
To create the conda environment named ```more``` use the following instructions.
|
||||
With this environment you will have all the packages to run the code in this repo.
|
||||
```
|
||||
conda create -n more python==3.8.16
|
||||
conda activate more
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Note that the requirements are heavily inspired by the original [LLaVA](https://github.com/haotian-liu/LLaVA.git) repo.
|
||||
|
||||
## Training
|
||||
To help the community in training complex systems in distributed scenarios, we are publicly releasing not only the source code but also the bash scripts needed to train ```LLaVA-MORE``` on HPC facilities with a SLURM scheduler.
|
||||
|
||||
To further extend the reproducibility of our approach, we are also releasing the [wandb logs](https://api.wandb.ai/links/aimagelab/kq668y5l) of the training runs.
|
||||
|
||||
**Pretraining**
|
||||
|
||||
``` bash
|
||||
sbatch scripts/more/11_pretrain_llama_31_acc_st_1.sh
|
||||
```
|
||||
**Finetuning**
|
||||
``` bash
|
||||
sbatch scripts/more/12_finetuning_llama_31_acc_st_1.sh
|
||||
```
|
||||
|
||||
### Visual Backbones
|
||||
|
||||
As mentioned before, ```LLaVA-MORE``` introduces the use of LLaMA 3.1 within the LLaVA architecture for the first time. However, this repository goes beyond that single enhancement.
|
||||
We have also incorporated the ability to use different visual backbones, such as SigLIP, and various methods for managing image resolutions (S2). Additionally, we have experimented with different data mixtures to stress data quality during the LLaVA training stages.
|
||||
|
||||
Considering that, you can view this repos as an effort to expand the study of Multimodal LLMs in multiple directions and as a
|
||||
starting point for enhancing new features to improve the connection between images and language.
|
||||
|
||||
You can find more references in this folder: ```scripts/more```
|
||||
|
||||
|
||||
## Inference
|
||||
You can try our ```LLaVA-MORE``` in the Image-To-Text task by running the following script.
|
||||
``` python
|
||||
python -u llava/eval/run_llava.py
|
||||
```
|
||||
If you get out-of-memory problems, consider loading the model weights in 8 bit (```load_in_8bit=True```).
|
||||
|
||||
## Acknowledgments
|
||||
We are thankful to the [LLaVA](https://github.com/haotian-liu/LLaVA.git) team for open-sourcing a modular codebase to extend and train different models within the LLaVA family.
|
||||
We are also happy users of the [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval.git) library , which has significantly reduced the evaluation time of our checkpoints across different datasets.
|
||||
Furthermore, we extend our gratitude to [CINECA](https://www.hpc.cineca.it/systems/hardware/leonardo/) for providing the HPC facilities used to train ```LLaVA-MORE```.
|
||||
|
||||
|
||||
In case you face any issues or have any questions, please feel free to create an issue.
|
||||
Additionally, we welcome you to open a pull request to integrate new features and contribute to our project.
|
||||
20
docs/Customize_Component.md
Normal file
@@ -0,0 +1,20 @@
|
||||
# Customize Components in LLaVA
|
||||
|
||||
This is an initial guide on how to replace the LLMs, visual encoders, etc. with your choice of components.
|
||||
|
||||
## LLM
|
||||
|
||||
It is quite simple to swap out LLaMA to any other LLMs. You can refer to our implementation of [`llava_llama.py`](https://raw.githubusercontent.com/haotian-liu/LLaVA/main/llava/model/language_model/llava_llama.py) for an example of how to replace the LLM.
|
||||
|
||||
Although it may seem that it still needs ~100 lines of code, most of them are copied from the original `llama.py` from HF. The only part that is different is to insert some lines for processing the multimodal inputs.
|
||||
|
||||
In `forward` function, you can see that we call `self.prepare_inputs_labels_for_multimodal` to process the multimodal inputs. This function is defined in `LlavaMetaForCausalLM` and you just need to insert it into the `forward` function of your LLM.
|
||||
|
||||
In `prepare_inputs_for_generation` function, you can see that we add `images` to the `model_inputs`. This is because we need to pass the images to the LLM during generation.
|
||||
|
||||
These are basically all the changes you need to make to replace the LLM.
|
||||
|
||||
## Visual Encoder
|
||||
|
||||
You can check out [`clip_encoder.py`](https://github.com/haotian-liu/LLaVA/blob/main/llava/model/multimodal_encoder/clip_encoder.py) on how we implement the CLIP visual encoder.
|
||||
|
||||
29
docs/Data.md
Normal file
@@ -0,0 +1,29 @@
|
||||
## Data
|
||||
|
||||
| Data file name | Size |
|
||||
| --- | ---: |
|
||||
| [llava_instruct_150k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_instruct_150k.json) | 229 MB |
|
||||
| [llava_instruct_80k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_instruct_80k.json) | 229 MB |
|
||||
| [conversation_58k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/conversation_58k.json) | 126 MB |
|
||||
| [detail_23k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/detail_23k.json) | 20.5 MB |
|
||||
| [complex_reasoning_77k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/complex_reasoning_77k.json) | 79.6 MB |
|
||||
|
||||
### Pretraining Dataset
|
||||
The pretraining dataset used in this release is a subset of CC-3M dataset, filtered with a more balanced concept coverage distribution. Please see [here](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K) for a detailed description of the dataset structure and how to download the images.
|
||||
|
||||
If you already have CC-3M dataset on your disk, the image names follow this format: `GCC_train_000000000.jpg`. You may edit the `image` field correspondingly if necessary.
|
||||
|
||||
| Data | Chat File | Meta Data | Size |
|
||||
| --- | --- | --- | ---: |
|
||||
| CC-3M Concept-balanced 595K | [chat.json](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/chat.json) | [metadata.json](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/metadata.json) | 211 MB
|
||||
| LAION/CC/SBU BLIP-Caption Concept-balanced 558K | [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/blip_laion_cc_sbu_558k.json) | [metadata.json](#) | 181 MB
|
||||
|
||||
**Important notice**: Upon the request from the community, as ~15% images of the original CC-3M dataset are no longer accessible, we upload [`images.zip`](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/images.zip) for better reproducing our work in research community. It must not be used for any other purposes. The use of these images must comply with the CC-3M license. This may be taken down at any time when requested by the original CC-3M dataset owner or owners of the referenced images.
|
||||
|
||||
### GPT-4 Prompts
|
||||
|
||||
We provide our prompts and few-shot samples for GPT-4 queries, to better facilitate research in this domain. Please check out the [`prompts`](https://github.com/haotian-liu/LLaVA/tree/main/playground/data/prompts) folder for three kinds of questions: conversation, detail description, and complex reasoning.
|
||||
|
||||
They are organized in a format of `system_message.txt` for system message, pairs of `abc_caps.txt` for few-shot sample user input, and `abc_conv.txt` for few-shot sample reference output.
|
||||
|
||||
Note that you may find them in different format. For example, `conversation` is in `jsonl`, and detail description is answer-only. The selected format in our preliminary experiments works slightly better than a limited set of alternatives that we tried: `jsonl`, more natural format, answer-only. If interested, you may try other variants or conduct more careful study in this. Contributions are welcomed!
|
||||
167
docs/Evaluation.md
Normal file
@@ -0,0 +1,167 @@
|
||||
# Evaluation
|
||||
|
||||
In LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs.
|
||||
|
||||
Currently, we mostly utilize the official toolkit or server for the evaluation.
|
||||
|
||||
## Evaluate on Custom Datasets
|
||||
|
||||
You can evaluate LLaVA on your custom datasets by converting your dataset to LLaVA's jsonl format, and evaluate using [`model_vqa.py`](https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/model_vqa.py).
|
||||
|
||||
Below we provide a general guideline for evaluating datasets with some common formats.
|
||||
|
||||
1. Short-answer (e.g. VQAv2, MME).
|
||||
|
||||
```
|
||||
<question>
|
||||
Answer the question using a single word or phrase.
|
||||
```
|
||||
|
||||
2. Option-only for multiple-choice (e.g. MMBench, SEED-Bench).
|
||||
|
||||
```
|
||||
<question>
|
||||
A. <option_1>
|
||||
B. <option_2>
|
||||
C. <option_3>
|
||||
D. <option_4>
|
||||
Answer with the option's letter from the given choices directly.
|
||||
```
|
||||
|
||||
3. Natural QA (e.g. LLaVA-Bench, MM-Vet).
|
||||
|
||||
No postprocessing is needed.
|
||||
|
||||
## Scripts
|
||||
|
||||
Before preparing task-specific data, **you MUST first download [eval.zip](https://drive.google.com/file/d/1atZSBBrAX54yYpxtVVW33zFvcnaHeFPy/view?usp=sharing)**. It contains custom annotations, scripts, and the prediction files with LLaVA v1.5. Extract to `./playground/data/eval`. This also provides a general structure for all datasets.
|
||||
|
||||
### VQAv2
|
||||
|
||||
1. Download [`test2015`](http://images.cocodataset.org/zips/test2015.zip) and put it under `./playground/data/eval/vqav2`.
|
||||
2. Multi-GPU inference.
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/v1_5/eval/vqav2.sh
|
||||
```
|
||||
3. Submit the results to the [evaluation server](https://eval.ai/web/challenges/challenge-page/830/my-submission): `./playground/data/eval/vqav2/answers_upload`.
|
||||
|
||||
### GQA
|
||||
|
||||
1. Download the [data](https://cs.stanford.edu/people/dorarad/gqa/download.html) and [evaluation scripts](https://cs.stanford.edu/people/dorarad/gqa/evaluate.html) following the official instructions and put under `./playground/data/eval/gqa/data`. You may need to modify `eval.py` as [this](https://gist.github.com/haotian-liu/db6eddc2a984b4cbcc8a7f26fd523187) due to the missing assets in the GQA v1.2 release.
|
||||
2. Multi-GPU inference.
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/v1_5/eval/gqa.sh
|
||||
```
|
||||
|
||||
### VisWiz
|
||||
|
||||
1. Download [`test.json`](https://vizwiz.cs.colorado.edu/VizWiz_final/vqa_data/Annotations.zip) and extract [`test.zip`](https://vizwiz.cs.colorado.edu/VizWiz_final/images/test.zip) to `test`. Put them under `./playground/data/eval/vizwiz`.
|
||||
2. Single-GPU inference.
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/vizwiz.sh
|
||||
```
|
||||
3. Submit the results to the [evaluation server](https://eval.ai/web/challenges/challenge-page/2185/my-submission): `./playground/data/eval/vizwiz/answers_upload`.
|
||||
|
||||
### ScienceQA
|
||||
|
||||
1. Under `./playground/data/eval/scienceqa`, download `images`, `pid_splits.json`, `problems.json` from the `data/scienceqa` folder of the ScienceQA [repo](https://github.com/lupantech/ScienceQA).
|
||||
2. Single-GPU inference and evaluate.
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/sqa.sh
|
||||
```
|
||||
|
||||
### TextVQA
|
||||
|
||||
1. Download [`TextVQA_0.5.1_val.json`](https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json) and [images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip) and extract to `./playground/data/eval/textvqa`.
|
||||
2. Single-GPU inference and evaluate.
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/textvqa.sh
|
||||
```
|
||||
|
||||
### POPE
|
||||
|
||||
1. Download `coco` from [POPE](https://github.com/AoiDragon/POPE/tree/e3e39262c85a6a83f26cf5094022a782cb0df58d/output/coco) and put under `./playground/data/eval/pope`.
|
||||
2. Single-GPU inference and evaluate.
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/pope.sh
|
||||
```
|
||||
|
||||
### MME
|
||||
|
||||
1. Download the data following the official instructions [here](https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation).
|
||||
2. Downloaded images to `MME_Benchmark_release_version`.
|
||||
3. put the official `eval_tool` and `MME_Benchmark_release_version` under `./playground/data/eval/MME`.
|
||||
4. Single-GPU inference and evaluate.
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/mme.sh
|
||||
```
|
||||
|
||||
### MMBench
|
||||
|
||||
1. Download [`mmbench_dev_20230712.tsv`](https://download.openmmlab.com/mmclassification/datasets/mmbench/mmbench_dev_20230712.tsv) and put under `./playground/data/eval/mmbench`.
|
||||
2. Single-GPU inference.
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/mmbench.sh
|
||||
```
|
||||
3. Submit the results to the [evaluation server](https://opencompass.org.cn/leaderboard-multimodal): `./playground/data/eval/mmbench/answers_upload/mmbench_dev_20230712`.
|
||||
|
||||
### MMBench-CN
|
||||
|
||||
1. Download [`mmbench_dev_cn_20231003.tsv`](https://download.openmmlab.com/mmclassification/datasets/mmbench/mmbench_dev_cn_20231003.tsv) and put under `./playground/data/eval/mmbench`.
|
||||
2. Single-GPU inference.
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/mmbench_cn.sh
|
||||
```
|
||||
3. Submit the results to the evaluation server: `./playground/data/eval/mmbench/answers_upload/mmbench_dev_cn_20231003`.
|
||||
|
||||
|
||||
### SEED-Bench
|
||||
|
||||
1. Following the official [instructions](https://github.com/AILab-CVC/SEED-Bench/blob/main/DATASET.md) to download the images and the videos. Put images under `./playground/data/eval/seed_bench/SEED-Bench-image`.
|
||||
2. Extract the video frame in the middle from the downloaded videos, and put them under `./playground/data/eval/seed_bench/SEED-Bench-video-image`. We provide our script `extract_video_frames.py` modified from the official one.
|
||||
3. Multiple-GPU inference and evaluate.
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/v1_5/eval/seed.sh
|
||||
```
|
||||
4. Optionally, submit the results to the leaderboard: `./playground/data/eval/seed_bench/answers_upload` using the official jupyter notebook.
|
||||
|
||||
### LLaVA-Bench-in-the-Wild
|
||||
|
||||
1. Extract contents of [`llava-bench-in-the-wild`](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild) to `./playground/data/eval/llava-bench-in-the-wild`.
|
||||
2. Single-GPU inference and evaluate.
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/llavabench.sh
|
||||
```
|
||||
|
||||
### MM-Vet
|
||||
|
||||
1. Extract [`mm-vet.zip`](https://github.com/yuweihao/MM-Vet/releases/download/v1/mm-vet.zip) to `./playground/data/eval/mmvet`.
|
||||
2. Single-GPU inference.
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/mmvet.sh
|
||||
```
|
||||
3. Evaluate the predictions in `./playground/data/eval/mmvet/results` using the official jupyter notebook.
|
||||
|
||||
## More Benchmarks
|
||||
|
||||
Below are awesome benchmarks for multimodal understanding from the research community, that are not initially included in the LLaVA-1.5 release.
|
||||
|
||||
### Q-Bench
|
||||
|
||||
1. Download [`llvisionqa_dev.json`](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/llvisionqa_dev.json) (for `dev`-subset) and [`llvisionqa_test.json`](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/llvisionqa_test.json) (for `test`-subset). Put them under `./playground/data/eval/qbench`.
|
||||
2. Download and extract [images](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/images_llvisionqa.tar) and put all the images directly under `./playground/data/eval/qbench/images_llviqionqa`.
|
||||
3. Single-GPU inference (change `dev` to `test` for evaluation on test set).
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/qbench.sh dev
|
||||
```
|
||||
4. Submit the results by instruction [here](https://github.com/VQAssessment/Q-Bench#option-1-submit-results): `./playground/data/eval/qbench/llvisionqa_dev_answers.jsonl`.
|
||||
|
||||
### Chinese-Q-Bench
|
||||
|
||||
1. Download [`质衡-问答-验证集.json`](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/%E8%B4%A8%E8%A1%A1-%E9%97%AE%E7%AD%94-%E9%AA%8C%E8%AF%81%E9%9B%86.json) (for `dev`-subset) and [`质衡-问答-测试集.json`](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/%E8%B4%A8%E8%A1%A1-%E9%97%AE%E7%AD%94-%E6%B5%8B%E8%AF%95%E9%9B%86.json) (for `test`-subset). Put them under `./playground/data/eval/qbench`.
|
||||
2. Download and extract [images](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/images_llvisionqa.tar) and put all the images directly under `./playground/data/eval/qbench/images_llviqionqa`.
|
||||
3. Single-GPU inference (change `dev` to `test` for evaluation on test set).
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/qbench_zh.sh dev
|
||||
```
|
||||
4. Submit the results by instruction [here](https://github.com/VQAssessment/Q-Bench#option-1-submit-results): `./playground/data/eval/qbench/llvisionqa_zh_dev_answers.jsonl`.
|
||||
37
docs/Finetune_Custom_Data.md
Normal file
@@ -0,0 +1,37 @@
|
||||
# Finetune LLaVA on Custom Datasets
|
||||
|
||||
## Dataset Format
|
||||
|
||||
Convert your data to a JSON file of a List of all samples. Sample metadata should contain `id` (a unique identifier), `image` (the path to the image), and `conversations` (the conversation data between human and AI).
|
||||
|
||||
A sample JSON for finetuning LLaVA for generating tag-style captions for Stable Diffusion:
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"id": "997bb945-628d-4724-b370-b84de974a19f",
|
||||
"image": "part-000001/997bb945-628d-4724-b370-b84de974a19f.jpg",
|
||||
"conversations": [
|
||||
{
|
||||
"from": "human",
|
||||
"value": "<image>\nWrite a prompt for Stable Diffusion to generate this image."
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "a beautiful painting of chernobyl by nekro, pascal blanche, john harris, greg rutkowski, sin jong hun, moebius, simon stalenhag. in style of cg art. ray tracing. cel shading. hyper detailed. realistic. ue 5. maya. octane render. "
|
||||
},
|
||||
]
|
||||
},
|
||||
...
|
||||
]
|
||||
```
|
||||
|
||||
## Command
|
||||
|
||||
If you have a limited task-specific data, we recommend finetuning from LLaVA checkpoints with LoRA following this [script](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_task_lora.sh).
|
||||
|
||||
If the amount of the task-specific data is sufficient, you can also finetune from LLaVA checkpoints with full-model finetuning following this [script](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_task.sh).
|
||||
|
||||
You may need to adjust the hyperparameters to fit each specific dataset and your hardware constraint.
|
||||
|
||||
|
||||
7
docs/Intel.md
Normal file
@@ -0,0 +1,7 @@
|
||||
# Intel Platforms
|
||||
|
||||
* Support [Intel GPU Max Series](https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html)
|
||||
* Support [Intel CPU Sapphire Rapides](https://ark.intel.com/content/www/us/en/ark/products/codename/126212/products-formerly-sapphire-rapids.html)
|
||||
* Based on [Intel Extension for Pytorch](https://intel.github.io/intel-extension-for-pytorch)
|
||||
|
||||
More details in [**intel branch**](https://github.com/haotian-liu/LLaVA/tree/intel/docs/intel)
|
||||
31
docs/LLaVA_Bench.md
Normal file
@@ -0,0 +1,31 @@
|
||||
# LLaVA-Bench [[Download](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild)]
|
||||
|
||||
**-Introduction-** Large commercial multimodal chatbots have been released in this week, including
|
||||
- [Multimodal Bing-Chat by Microsoft](https://blogs.bing.com/search/july-2023/Bing-Chat-Enterprise-announced,-multimodal-Visual-Search-rolling-out-to-Bing-Chat) (July 18, 2023)
|
||||
- [Multimodal Bard by Google](https://bard.google.com/).
|
||||
|
||||
These chatbots are presumably supported by proprietary large multimodal models (LMM). Compared with the open-source LMM such as LLaVA, proprietary LMM represent the scaling success upperbound of the current SoTA techniques. They share the goal of developing multimodal chatbots that follow human intents to complete various daily-life visual tasks in the wild. While it remains less explored how to evaluate multimodal chat ability, it provides useful feedback to study open-source LMMs against the commercial multimodal chatbots. In addition to the *LLaVA-Bench (COCO)* dataset we used to develop the early versions of LLaVA, we are releasing [*LLaVA-Bench (In-the-Wild)*](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild) to the community for the public use.
|
||||
|
||||
## LLaVA-Bench (In-the-Wild *[Ongoing work]*)
|
||||
|
||||
To evaluate the model's capability in more challenging tasks and generalizability to novel domains, we collect a diverse set of 24 images with 60 questions in total, including indoor and outdoor scenes, memes, paintings, sketches, etc, and associate each image with a highly-detailed and manually-curated description and a proper selection of questions. Such design also assesses the model's robustness to different prompts. In this release, we also categorize questions into three categories: conversation (simple QA), detailed description, and complex reasoning. We continue to expand and improve the diversity of the LLaVA-Bench (In-the-Wild). We manually query Bing-Chat and Bard to get the responses.
|
||||
|
||||
### Results
|
||||
|
||||
The score is measured by comparing against a reference answer generated by text-only GPT-4. It is generated by feeding the question, along with the ground truth image annotations as the context. A text-only GPT-4 evaluator rates both answers. We query GPT-4 by putting the reference answer first, and then the answer generated by the candidate model. We upload images at their original resolution to Bard and Bing-Chat to obtain the results.
|
||||
|
||||
| Approach | Conversation | Detail | Reasoning | Overall |
|
||||
|----------------|--------------|--------|-----------|---------|
|
||||
| Bard-0718 | 83.7 | 69.7 | 78.7 | 77.8 |
|
||||
| Bing-Chat-0629 | 59.6 | 52.2 | 90.1 | 71.5 |
|
||||
| LLaVA-13B-v1-336px-0719 (beam=1) | 64.3 | 55.9 | 81.7 | 70.1 |
|
||||
| LLaVA-13B-v1-336px-0719 (beam=5) | 68.4 | 59.9 | 84.3 | 73.5 |
|
||||
|
||||
Note that Bard sometimes refuses to answer questions about images containing humans, and Bing-Chat blurs the human faces in the images. We also provide the benchmark score for the subset without humans.
|
||||
|
||||
| Approach | Conversation | Detail | Reasoning | Overall |
|
||||
|----------------|--------------|--------|-----------|---------|
|
||||
| Bard-0718 | 94.9 | 74.3 | 84.3 | 84.6 |
|
||||
| Bing-Chat-0629 | 55.8 | 53.6 | 93.5 | 72.6 |
|
||||
| LLaVA-13B-v1-336px-0719 (beam=1) | 62.2 | 56.4 | 82.2 | 70.0 |
|
||||
| LLaVA-13B-v1-336px-0719 (beam=5) | 65.6 | 61.7 | 85.0 | 73.6 |
|
||||
29
docs/LLaVA_from_LLaMA2.md
Normal file
@@ -0,0 +1,29 @@
|
||||
# LLaVA (based on Llama 2 LLM, Preview)
|
||||
|
||||
*NOTE: This is a technical preview. We are still running hyperparameter search, and will release the final model soon. If you'd like to contribute to this, please contact us.*
|
||||
|
||||
:llama: **-Introduction-** [Llama 2 is an open-source LLM released by Meta AI](https://about.fb.com/news/2023/07/llama-2/) today (July 18, 2023). Compared with its early version [Llama 1](https://ai.meta.com/blog/large-language-model-llama-meta-ai/), Llama 2 is more favored in ***stronger language performance***, ***longer context window***, and importantly ***commercially usable***! While Llama 2 is changing the LLM market landscape in the language space, its multimodal ability remains unknown. We quickly develop the LLaVA variant based on the latest Llama 2 checkpoints, and release it to the community for the public use.
|
||||
|
||||
You need to apply for and download the latest Llama 2 checkpoints to start your own training (apply [here](https://ai.meta.com/resources/models-and-libraries/llama-downloads/))
|
||||
|
||||
|
||||
## Training
|
||||
|
||||
Please checkout [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain.sh), [`finetune.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune.sh), [`finetune_lora.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_lora.sh).
|
||||
|
||||
## LLaVA (based on Llama 2), What is different?
|
||||
|
||||
:volcano: How is the new LLaVA based on Llama 2 different from Llama 1? The comparisons of the training process are described:
|
||||
- **Pre-training**. The pre-trained base LLM is changed from Llama 1 to Llama 2
|
||||
- **Language instruction-tuning**. The previous LLaVA model starts with Vicuna, which is instruct tuned on ShareGPT data from Llama 1; The new LLaVA model starts with Llama 2 Chat, which is an instruct tuned checkpoint on dialogue data from Llama 2.
|
||||
- **Multimodal instruction-tuning**. The same LLaVA-Lighting process is applied.
|
||||
|
||||
|
||||
### Results
|
||||
|
||||
- Llama 2 is better at following the instructions of role playing; Llama 2 fails in following the instructions of translation
|
||||
- The quantitative evaluation on [LLaVA-Bench](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_Bench.md) demonstrates on-par performance between Llama 2 and Llama 1 in LLaVA's multimodal chat ability.
|
||||
|
||||
|
||||
<img src="../images/llava_example_cmp.png" width="100%">
|
||||
|
||||
46
docs/LoRA.md
Normal file
@@ -0,0 +1,46 @@
|
||||
# LLaVA (LoRA, Preview)
|
||||
|
||||
NOTE: This is a technical preview, and is not yet ready for production use. We are still running hyperparameter search for the LoRA model, and will release the final model soon. If you'd like to contribute to this, please contact us.
|
||||
|
||||
You need latest code base for LoRA support (instructions [here](https://github.com/haotian-liu/LLaVA#upgrade-to-latest-code-base))
|
||||
|
||||
## Demo (Web UI)
|
||||
|
||||
Please execute each of the commands below one by one (after the previous one has finished). The commands are the same as launching other demos except for an additional `--model-base` flag to specify the base model to use. Please make sure the base model corresponds to the LoRA checkpoint that you are using. For this technical preview, you need Vicuna v1.1 (7B) checkpoint (if you do not have that already, follow the instructions [here](https://github.com/lm-sys/FastChat#vicuna-weights)).
|
||||
|
||||
#### Launch a controller
|
||||
```Shell
|
||||
python -m llava.serve.controller --host 0.0.0.0 --port 10000
|
||||
```
|
||||
|
||||
#### Launch a gradio web server.
|
||||
```Shell
|
||||
python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload
|
||||
```
|
||||
You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
|
||||
|
||||
#### Launch a model worker
|
||||
```Shell
|
||||
python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-vicuna-7b-v1.1-lcs_558k-instruct_80k_3e-lora-preview-alpha --model-base /path/to/vicuna-v1.1
|
||||
```
|
||||
Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.
|
||||
|
||||
You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the `--controller` the same, and modify the `--port` and `--worker` to a different port number for each worker.
|
||||
|
||||
|
||||
## Training
|
||||
|
||||
Please see sample training scripts for [LoRA](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_lora.sh) and [QLoRA](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_qlora.sh).
|
||||
|
||||
We provide sample DeepSpeed configs, [`zero3.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3.json) is more like PyTorch FSDP, and [`zero3_offload.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3_offload.json) can further save memory consumption by offloading parameters to CPU. `zero3.json` is usually faster than `zero3_offload.json` but requires more GPU memory, therefore, we recommend trying `zero3.json` first, and if you run out of GPU memory, try `zero3_offload.json`. You can also tweak the `per_device_train_batch_size` and `gradient_accumulation_steps` in the config to save memory, and just to make sure that `per_device_train_batch_size` and `gradient_accumulation_steps` remains the same.
|
||||
|
||||
If you are having issues with ZeRO-3 configs, and there are enough VRAM, you may try [`zero2.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero2.json). This consumes slightly more memory than ZeRO-3, and behaves more similar to PyTorch FSDP, while still supporting parameter-efficient tuning.
|
||||
|
||||
## Create Merged Checkpoints
|
||||
|
||||
```Shell
|
||||
python scripts/merge_lora_weights.py \
|
||||
--model-path /path/to/lora_model \
|
||||
--model-base /path/to/base_model \
|
||||
--save-model-path /path/to/merge_model
|
||||
```
|
||||
150
docs/MODEL_ZOO.md
Normal file
@@ -0,0 +1,150 @@
|
||||
# Model Zoo
|
||||
|
||||
**To Use LLaVA-1.6 checkpoints, your llava package version must be newer than 1.2.0. [Instructions](https://github.com/haotian-liu/LLaVA#upgrade-to-latest-code-base) on how to upgrade.**
|
||||
|
||||
If you are interested in including any other details in Model Zoo, please open an issue :)
|
||||
|
||||
The model weights below are *merged* weights. You do not need to apply delta. The usage of LLaVA checkpoints should comply with the base LLM's model license.
|
||||
|
||||
## LLaVA-v1.6
|
||||
|
||||
| Version | LLM | Schedule | Checkpoint | MMMU | MathVista | VQAv2 | GQA | VizWiz | SQA | TextVQA | POPE | MME | MM-Bench | MM-Bench-CN | SEED-IMG | LLaVA-Bench-Wild | MM-Vet |
|
||||
|----------|----------|-----------|-----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
||||
| LLaVA-1.6 | Vicuna-7B | full_ft-1e | [liuhaotian/llava-v1.6-vicuna-7b](https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b) | 35.8 | 34.6 | 81.8 | 64.2 | 57.6 | 70.1 | 64.9 | 86.5 | 1519/332 | 67.4 | 60.6 | 70.2 | 81.6 | 43.9 |
|
||||
| LLaVA-1.6 | Vicuna-13B | full_ft-1e | [liuhaotian/llava-v1.6-vicuna-13b](https://huggingface.co/liuhaotian/llava-v1.6-vicuna-13b) | 36.2 | 35.3 | 82.8 | 65.4 | 60.5 | 73.6 | 67.1 | 86.2 | 1575/326 | 70 | 64.4 | 71.9 | 87.3 | 48.4 |
|
||||
| LLaVA-1.6 | Mistral-7B | full_ft-1e | [liuhaotian/llava-v1.6-mistral-7b](https://huggingface.co/liuhaotian/llava-v1.6-mistral-7b) | 35.3 | 37.7 | 82.2 | 64.8 | 60.0 | 72.8 | 65.7 | 86.7 | 1498/321 | 68.7 | 61.2 | 72.2 | 83.2 | 47.3 |
|
||||
| LLaVA-1.6 | Hermes-Yi-34B | full_ft-1e | [liuhaotian/llava-v1.6-34b](https://huggingface.co/liuhaotian/llava-v1.6-34b) | 51.1 | 46.5 | 83.7 | 67.1 | 63.8 | 81.8 | 69.5 | 87.7 | 1631/397 | 79.3 | 79 | 75.9 | 89.6 | 57.4 |
|
||||
|
||||
*LLaVA-1.6-34B outperforms Gemini Pro on benchmarks like MMMU and MathVista.*
|
||||
|
||||
|
||||
## LLaVA-v1.5
|
||||
|
||||
| Version | Size | Schedule | Checkpoint | VQAv2 | GQA | VizWiz | SQA | TextVQA | POPE | MME | MM-Bench | MM-Bench-CN | SEED | LLaVA-Bench-Wild | MM-Vet |
|
||||
|----------|----------|-----------|-----------|---|---|---|---|---|---|---|---|---|---|---|---|
|
||||
| LLaVA-1.5 | 7B | full_ft-1e | [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 78.5 | 62.0 | 50.0 | 66.8 | 58.2 | 85.9 | 1510.7 | 64.3 | 58.3 | 58.6 | 65.4 | 31.1 |
|
||||
| LLaVA-1.5 | 13B | full_ft-1e | [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) | 80.0 | 63.3 | 53.6 | 71.6 | 61.3 | 85.9 | 1531.3 | 67.7 | 63.6 | 61.6 | 72.5 | 36.1 |
|
||||
| LLaVA-1.5 | 7B | lora-1e | [liuhaotian/llava-v1.5-7b-lora](https://huggingface.co/liuhaotian/llava-v1.5-7b-lora) | 79.1 | 63.0 | 47.8 | 68.4 | 58.2 | 86.4 | 1476.9 | 66.1 | 58.9 | 60.1 | 67.9 | 30.2 |
|
||||
| LLaVA-1.5 | 13B | lora-1e | [liuhaotian/llava-v1.5-13b-lora](https://huggingface.co/liuhaotian/llava-v1.5-13b-lora) | 80.0 | 63.3 | 58.9 | 71.2 | 60.2 | 86.7 | 1541.7 | 68.5 | 61.5 | 61.3 | 69.5 | 38.3 |
|
||||
|
||||
Base model: Vicuna v1.5. Training logs: [wandb](https://api.wandb.ai/links/lht/6orh56wc).
|
||||
|
||||
<p align="center">
|
||||
<img src="../images/llava_v1_5_radar.jpg" width="500px"> <br>
|
||||
LLaVA-1.5 achieves SoTA performance across 11 benchmarks.
|
||||
</p>
|
||||
|
||||
|
||||
## LLaVA-v1
|
||||
|
||||
*Note: We recommend using the most capable LLaVA-v1.6 series above for the best performance.*
|
||||
|
||||
| Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Finetuning Data | Finetuning schedule | LLaVA-Bench-Conv | LLaVA-Bench-Detail | LLaVA-Bench-Complex | LLaVA-Bench-Overall | Download |
|
||||
|----------|----------------|---------------|----------------------|-----------------|--------------------|------------------|--------------------|---------------------|---------------------|---------------------|
|
||||
| Vicuna-13B-v1.3 | CLIP-L-336px | LCS-558K | 1e | LLaVA-Instruct-80K | proj-1e, lora-1e | 64.3 | 55.9 | 81.7 | 70.1 | [LoRA](https://huggingface.co/liuhaotian/llava-v1-0719-336px-lora-vicuna-13b-v1.3) [LoRA-Merged](https://huggingface.co/liuhaotian/llava-v1-0719-336px-lora-merge-vicuna-13b-v1.3) |
|
||||
| LLaMA-2-13B-Chat | CLIP-L | LCS-558K | 1e | LLaVA-Instruct-80K | full_ft-1e | 56.7 | 58.6 | 80.0 | 67.9 | [ckpt](https://huggingface.co/liuhaotian/llava-llama-2-13b-chat-lightning-preview) |
|
||||
| LLaMA-2-7B-Chat | CLIP-L | LCS-558K | 1e | LLaVA-Instruct-80K | lora-1e | 51.2 | 58.9 | 71.6 | 62.8 | [LoRA](https://huggingface.co/liuhaotian/llava-llama-2-7b-chat-lightning-lora-preview) |
|
||||
|
||||
|
||||
## Projector weights
|
||||
|
||||
These are projector weights we have pretrained. You can use these projector weights for visual instruction tuning. They are just pretrained on image-text pairs and are NOT instruction-tuned, which means they do NOT follow instructions as well as our official models and can output repetitive, lengthy, and garbled outputs. If you want to have nice conversations with LLaVA, use the checkpoints above (LLaVA v1.6).
|
||||
|
||||
NOTE: These projector weights are only compatible with `llava>=1.0.0`. Please check out the latest codebase if your local code version is below v1.0.0.
|
||||
|
||||
NOTE: When you use our pretrained projector for visual instruction tuning, it is very important to use the same base LLM and vision encoder as the one we used for pretraining the projector. Otherwise, the performance will be very poor.
|
||||
|
||||
When using these projector weights to instruction-tune your LMM, please make sure that these options are correctly set as follows,
|
||||
|
||||
```Shell
|
||||
--mm_use_im_start_end False
|
||||
--mm_use_im_patch_token False
|
||||
```
|
||||
|
||||
| Base LLM | Vision Encoder | Projection | Pretrain Data | Pretraining schedule | Download |
|
||||
|----------|----------------|---------------|----------------------|----------|----------|
|
||||
| Vicuna-13B-v1.5 | CLIP-L-336px | MLP-2x | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-v1.5-mlp2x-336px-pretrain-vicuna-13b-v1.5) |
|
||||
| Vicuna-7B-v1.5 | CLIP-L-336px | MLP-2x | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-v1.5-mlp2x-336px-pretrain-vicuna-7b-v1.5) |
|
||||
| LLaMA-2-13B-Chat | CLIP-L-336px | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-336px-pretrain-llama-2-13b-chat) |
|
||||
| LLaMA-2-7B-Chat | CLIP-L-336px | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-336px-pretrain-llama-2-7b-chat) |
|
||||
| LLaMA-2-13B-Chat | CLIP-L | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-pretrain-llama-2-13b-chat) |
|
||||
| LLaMA-2-7B-Chat | CLIP-L | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-pretrain-llama-2-7b-chat) |
|
||||
| Vicuna-13B-v1.3 | CLIP-L-336px | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-336px-pretrain-vicuna-13b-v1.3) |
|
||||
| Vicuna-7B-v1.3 | CLIP-L-336px | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-336px-pretrain-vicuna-7b-v1.3) |
|
||||
| Vicuna-13B-v1.3 | CLIP-L | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-pretrain-vicuna-13b-v1.3) |
|
||||
| Vicuna-7B-v1.3 | CLIP-L | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-pretrain-vicuna-7b-v1.3) |
|
||||
|
||||
|
||||
## Science QA Checkpoints
|
||||
|
||||
| Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Finetuning Data | Finetuning schedule | Download |
|
||||
|----------|----------------|---------------|----------------------|-----------------|--------------------|---------------------|
|
||||
| Vicuna-13B-v1.3 | CLIP-L | LCS-558K | 1e | ScienceQA | full_ft-12e | [ckpt](https://huggingface.co/liuhaotian/llava-lcs558k-scienceqa-vicuna-13b-v1.3) |
|
||||
|
||||
|
||||
## Legacy Models (merged weights)
|
||||
|
||||
The model weights below are *merged* weights. You do not need to apply delta. The usage of LLaVA checkpoints should comply with the base LLM's model license.
|
||||
|
||||
| Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Finetuning Data | Finetuning schedule | Download |
|
||||
|----------|----------------|---------------|----------------------|-----------------|--------------------|------------------|
|
||||
| MPT-7B-Chat | CLIP-L | LCS-558K | 1e | LLaVA-Instruct-80K | full_ft-1e | [preview](https://huggingface.co/liuhaotian/LLaVA-Lightning-MPT-7B-preview) |
|
||||
|
||||
|
||||
## Legacy Models (delta weights)
|
||||
|
||||
The model weights below are *delta* weights. The usage of LLaVA checkpoints should comply with the base LLM's model license: [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md).
|
||||
|
||||
You can add our delta to the original LLaMA weights to obtain the LLaVA weights.
|
||||
|
||||
Instructions:
|
||||
|
||||
1. Get the original LLaMA weights in the huggingface format by following the instructions [here](https://huggingface.co/docs/transformers/main/model_doc/llama).
|
||||
2. Use the following scripts to get LLaVA weights by applying our delta. It will automatically download delta weights from our Hugging Face account. In the script below, we use the delta weights of [`liuhaotian/LLaVA-7b-delta-v0`](https://huggingface.co/liuhaotian/LLaVA-7b-delta-v0) as an example. It can be adapted for other delta weights by changing the `--delta` argument (and base/target accordingly).
|
||||
|
||||
```bash
|
||||
python3 -m llava.model.apply_delta \
|
||||
--base /path/to/llama-7b \
|
||||
--target /output/path/to/LLaVA-7B-v0 \
|
||||
--delta liuhaotian/LLaVA-7b-delta-v0
|
||||
```
|
||||
|
||||
| Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Finetuning Data | Finetuning schedule | Download |
|
||||
|----------|----------------|---------------|----------------------|-----------------|--------------------|------------------|
|
||||
| Vicuna-13B-v1.1 | CLIP-L | CC-595K | 1e | LLaVA-Instruct-158K | full_ft-3e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1) |
|
||||
| Vicuna-7B-v1.1 | CLIP-L | LCS-558K | 1e | LLaVA-Instruct-80K | full_ft-1e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-Lightning-7B-delta-v1-1) |
|
||||
| Vicuna-13B-v0 | CLIP-L | CC-595K | 1e | LLaVA-Instruct-158K | full_ft-3e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v0) |
|
||||
| Vicuna-13B-v0 | CLIP-L | CC-595K | 1e | ScienceQA | full_ft-12e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v0-science_qa) |
|
||||
| Vicuna-7B-v0 | CLIP-L | CC-595K | 1e | LLaVA-Instruct-158K | full_ft-3e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-7b-delta-v0) |
|
||||
|
||||
|
||||
|
||||
## Legacy Projector weights
|
||||
|
||||
The following projector weights are deprecated, and the support for them may be removed in the future. They do not support zero-shot inference. Please use the projector weights in the [table above](#projector-weights) if possible.
|
||||
|
||||
**NOTE**: When you use our pretrained projector for visual instruction tuning, it is very important to **use the same base LLM and vision encoder** as the one we used for pretraining the projector. Otherwise, the performance will be very bad.
|
||||
|
||||
When using these projector weights to instruction tune your LMM, please make sure that these options are correctly set as follows,
|
||||
|
||||
```Shell
|
||||
--mm_use_im_start_end True
|
||||
--mm_use_im_patch_token False
|
||||
```
|
||||
|
||||
| Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Download |
|
||||
|----------|----------------|---------------|----------------------|----------|
|
||||
| Vicuna-7B-v1.1 | CLIP-L | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/LLaVA-Pretrained-Projectors/blob/main/LLaVA-7b-pretrain-projector-v1-1-LCS-558K-blip_caption.bin) |
|
||||
| Vicuna-13B-v0 | CLIP-L | CC-595K | 1e | [projector](https://huggingface.co/liuhaotian/LLaVA-Pretrained-Projectors/blob/main/LLaVA-13b-pretrain-projector-v0-CC3M-595K-original_caption.bin) |
|
||||
| Vicuna-7B-v0 | CLIP-L | CC-595K | 1e | [projector](https://huggingface.co/liuhaotian/LLaVA-Pretrained-Projectors/blob/main/LLaVA-7b-pretrain-projector-v0-CC3M-595K-original_caption.bin) |
|
||||
|
||||
When using these projector weights to instruction tune your LMM, please make sure that these options are correctly set as follows,
|
||||
|
||||
```Shell
|
||||
--mm_use_im_start_end False
|
||||
--mm_use_im_patch_token False
|
||||
```
|
||||
|
||||
| Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Download |
|
||||
|----------|----------------|---------------|----------------------|----------|
|
||||
| Vicuna-13B-v0 | CLIP-L | CC-595K | 1e | [projector](https://huggingface.co/liuhaotian/LLaVA-Pretrained-Projectors/blob/main/LLaVA-13b-pretrain-projector-v0-CC3M-595K-original_caption-no_im_token.bin) |
|
||||
53
docs/ScienceQA.md
Normal file
@@ -0,0 +1,53 @@
|
||||
### ScienceQA
|
||||
|
||||
#### Prepare Data
|
||||
1. Please see ScienceQA [repo](https://github.com/lupantech/ScienceQA) for setting up the dataset.
|
||||
2. Generate ScienceQA dataset for LLaVA conversation-style format.
|
||||
|
||||
```Shell
|
||||
python scripts/convert_sqa_to_llava.py \
|
||||
convert_to_llava \
|
||||
--base-dir /path/to/ScienceQA/data/scienceqa \
|
||||
--prompt-format "QCM-LEA" \
|
||||
--split {train,val,minival,test,minitest}
|
||||
```
|
||||
|
||||
#### Training
|
||||
|
||||
1. Pretraining
|
||||
|
||||
You can download our pretrained projector weights from our [Model Zoo](), or train your own projector weights using [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain.sh).
|
||||
|
||||
2. Finetuning
|
||||
|
||||
See [`finetune_sqa.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_sqa.sh).
|
||||
|
||||
#### Evaluation
|
||||
|
||||
1. Multiple-GPU inference
|
||||
You may evaluate this with multiple GPUs, and concatenate the generated jsonl files. Please refer to our script for [batch evaluation](https://github.com/haotian-liu/LLaVA/blob/main/scripts/sqa_eval_batch.sh) and [results gathering](https://github.com/haotian-liu/LLaVA/blob/main/scripts/sqa_eval_gather.sh).
|
||||
|
||||
2. Single-GPU inference
|
||||
|
||||
(a) Generate LLaVA responses on ScienceQA dataset
|
||||
|
||||
```Shell
|
||||
python -m llava.eval.model_vqa_science \
|
||||
--model-path liuhaotian/llava-lcs558k-scienceqa-vicuna-13b-v1.3 \
|
||||
--question-file /path/to/ScienceQA/data/scienceqa/llava_test_QCM-LEA.json \
|
||||
--image-folder /path/to/ScienceQA/data/scienceqa/images/test \
|
||||
--answers-file vqa/results/ScienceQA/test_llava-13b.jsonl \
|
||||
--conv-mode llava_v1
|
||||
```
|
||||
|
||||
(b) Evaluate the generated responses
|
||||
|
||||
```Shell
|
||||
python eval_science_qa.py \
|
||||
--base-dir /path/to/ScienceQA/data/scienceqa \
|
||||
--result-file vqa/results/ScienceQA/test_llava-13b.jsonl \
|
||||
--output-file vqa/results/ScienceQA/test_llava-13b_output.json \
|
||||
--output-result vqa/results/ScienceQA/test_llava-13b_result.json \
|
||||
```
|
||||
|
||||
For reference, we attach our prediction file [`test_sqa_llava_lcs_558k_sqa_12e_vicuna_v1_3_13b.json`](https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/results/test_sqa_llava_lcs_558k_sqa_12e_vicuna_v1_3_13b.json) and [`test_sqa_llava_13b_v0.json`](https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/results/test_sqa_llava_13b_v0.json) for comparison when reproducing our results, as well as for further analysis in detail.
|
||||
27
docs/Windows.md
Normal file
@@ -0,0 +1,27 @@
|
||||
# Run LLaVA on Windows
|
||||
|
||||
*NOTE: LLaVA on Windows is not fully supported. Currently we only support 16-bit inference. For a more complete support, please use [WSL2](https://learn.microsoft.com/en-us/windows/wsl/install) for now. More functionalities on Windows is to be added soon, stay tuned.*
|
||||
|
||||
## Installation
|
||||
|
||||
1. Clone this repository and navigate to LLaVA folder
|
||||
```bash
|
||||
git clone https://github.com/haotian-liu/LLaVA.git
|
||||
cd LLaVA
|
||||
```
|
||||
|
||||
2. Install Package
|
||||
```Shell
|
||||
conda create -n llava python=3.10 -y
|
||||
conda activate llava
|
||||
python -m pip install --upgrade pip # enable PEP 660 support
|
||||
pip install torch==2.0.1+cu117 torchvision==0.15.2+cu117 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu117
|
||||
pip install -e .
|
||||
pip uninstall bitsandbytes
|
||||
```
|
||||
|
||||
## Run demo
|
||||
|
||||
See instructions [here](https://github.com/haotian-liu/LLaVA#demo).
|
||||
|
||||
Note that quantization (4-bit, 8-bit) is *NOT* supported on Windows. Stay tuned for the 4-bit support on Windows!
|
||||
29
docs/macOS.md
Normal file
@@ -0,0 +1,29 @@
|
||||
# Run LLaVA on macOS
|
||||
|
||||
*NOTE: LLaVA on macOS is not fully supported. Currently we only support 16-bit inference. More functionalities on macOS is to be added soon, stay tuned.*
|
||||
|
||||
## Installation
|
||||
|
||||
1. Clone this repository and navigate to LLaVA folder
|
||||
```bash
|
||||
git clone https://github.com/haotian-liu/LLaVA.git
|
||||
cd LLaVA
|
||||
```
|
||||
|
||||
2. Install Package
|
||||
```Shell
|
||||
conda create -n llava python=3.10 -y
|
||||
conda activate llava
|
||||
python -mpip install --upgrade pip # enable PEP 660 support
|
||||
pip install -e .
|
||||
pip install torch==2.1.0 torchvision==0.16.0
|
||||
pip uninstall bitsandbytes
|
||||
```
|
||||
|
||||
## Run demo
|
||||
|
||||
Specify `--device mps` when launching model worker or CLI.
|
||||
|
||||
See instructions [here](https://github.com/haotian-liu/LLaVA#demo).
|
||||
|
||||
Note that quantization (4-bit, 8-bit) is *NOT* supported on macOS. Stay tuned for the 4-bit support on macOS!
|
||||
BIN
images/image.png
Normal file
|
After Width: | Height: | Size: 975 KiB |
BIN
images/image_no_back.png
Normal file
|
After Width: | Height: | Size: 187 KiB |
BIN
images/llava_logo.png
Normal file
|
After Width: | Height: | Size: 262 KiB |
BIN
images/radar_plot.png
Normal file
|
After Width: | Height: | Size: 244 KiB |
1
llava/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .model import LlavaLlamaForCausalLM
|
||||
13
llava/constants.py
Normal file
@@ -0,0 +1,13 @@
|
||||
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
||||
WORKER_HEART_BEAT_INTERVAL = 15
|
||||
|
||||
LOGDIR = "."
|
||||
|
||||
# Model Constants
|
||||
IGNORE_INDEX = -100
|
||||
IMAGE_TOKEN_INDEX = -200
|
||||
DEFAULT_IMAGE_TOKEN = "<image>"
|
||||
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
||||
DEFAULT_IM_START_TOKEN = "<im_start>"
|
||||
DEFAULT_IM_END_TOKEN = "<im_end>"
|
||||
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
||||
465
llava/conversation.py
Normal file
@@ -0,0 +1,465 @@
|
||||
import os
|
||||
import dataclasses
|
||||
from enum import auto, Enum
|
||||
from typing import List, Any, Dict, Union, Tuple
|
||||
import base64
|
||||
from io import BytesIO
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer
|
||||
import utils
|
||||
|
||||
class SeparatorStyle(Enum):
|
||||
"""Different separator style."""
|
||||
SINGLE = auto()
|
||||
TWO = auto()
|
||||
MPT = auto()
|
||||
PLAIN = auto()
|
||||
LLAMA_2 = auto()
|
||||
LLAMA_3 = auto()
|
||||
LLAMA_3_1 = auto()
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Conversation:
|
||||
"""A class that keeps all conversation history."""
|
||||
system: str
|
||||
roles: List[str]
|
||||
messages: List[List[str]]
|
||||
offset: int
|
||||
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
||||
sep: str = "###"
|
||||
sep2: str = None
|
||||
version: str = "Unknown"
|
||||
|
||||
tokenizer: Any = None
|
||||
# Stop criteria (the default one is EOS token)
|
||||
stop_str: Union[str, List[str]] = None
|
||||
# Stops generation if meeting any token in this list
|
||||
stop_token_ids: List[int] = None
|
||||
|
||||
skip_next: bool = False
|
||||
|
||||
def get_prompt(self):
|
||||
messages = self.messages
|
||||
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
||||
messages = self.messages.copy()
|
||||
init_role, init_msg = messages[0].copy()
|
||||
init_msg = init_msg[0].replace("<image>", "").strip()
|
||||
if 'mmtag' in self.version:
|
||||
messages[0] = (init_role, init_msg)
|
||||
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
|
||||
messages.insert(1, (self.roles[1], "Received."))
|
||||
else:
|
||||
messages[0] = (init_role, "<image>\n" + init_msg)
|
||||
|
||||
if self.sep_style == SeparatorStyle.SINGLE:
|
||||
ret = self.system + self.sep
|
||||
for role, message in messages:
|
||||
if message:
|
||||
if type(message) is tuple:
|
||||
message, _, _ = message
|
||||
ret += role + ": " + message + self.sep
|
||||
else:
|
||||
ret += role + ":"
|
||||
elif self.sep_style == SeparatorStyle.TWO:
|
||||
seps = [self.sep, self.sep2]
|
||||
ret = self.system + seps[0]
|
||||
for i, (role, message) in enumerate(messages):
|
||||
if message:
|
||||
if type(message) is tuple:
|
||||
message, _, _ = message
|
||||
ret += role + ": " + message + seps[i % 2]
|
||||
else:
|
||||
ret += role + ":"
|
||||
elif self.sep_style == SeparatorStyle.MPT:
|
||||
ret = self.system + self.sep
|
||||
for role, message in messages:
|
||||
if message:
|
||||
if type(message) is tuple:
|
||||
message, _, _ = message
|
||||
ret += role + message + self.sep
|
||||
else:
|
||||
ret += role
|
||||
elif self.sep_style == SeparatorStyle.LLAMA_2:
|
||||
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
|
||||
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
|
||||
ret = ""
|
||||
|
||||
for i, (role, message) in enumerate(messages):
|
||||
if i == 0:
|
||||
assert message, "first message should not be none"
|
||||
assert role == self.roles[0], "first message should come from user"
|
||||
if message:
|
||||
if type(message) is tuple:
|
||||
message, _, _ = message
|
||||
if i == 0: message = wrap_sys(self.system) + message
|
||||
if i % 2 == 0:
|
||||
message = wrap_inst(message)
|
||||
ret += self.sep + message
|
||||
else:
|
||||
ret += " " + message + " " + self.sep2
|
||||
else:
|
||||
ret += ""
|
||||
ret = ret.lstrip(self.sep)
|
||||
|
||||
elif self.sep_style == SeparatorStyle.LLAMA_3:
|
||||
chat_template_messages = [{"role": "system", "content": self.system}]
|
||||
for role, message in messages:
|
||||
if message:
|
||||
if type(message) is tuple:
|
||||
message, images = message
|
||||
message = "<image>" * len(images) + message
|
||||
chat_template_messages.append({"role": role, "content": message})
|
||||
|
||||
# print(chat_template_messages)
|
||||
return self.tokenizer.apply_chat_template(chat_template_messages, tokenize=False, add_generation_prompt=False)
|
||||
|
||||
elif self.sep_style == SeparatorStyle.LLAMA_3_1:
|
||||
chat_template_messages = [{"role": "system", "content": self.system}]
|
||||
for role, message in messages:
|
||||
if message:
|
||||
if type(message) is tuple:
|
||||
message, images = message
|
||||
message = "<image>" * len(images) + message
|
||||
chat_template_messages.append({"role": role, "content": message})
|
||||
|
||||
return self.tokenizer.apply_chat_template(chat_template_messages, tokenize=False, add_generation_prompt=False)
|
||||
|
||||
elif self.sep_style == SeparatorStyle.PLAIN:
|
||||
seps = [self.sep, self.sep2]
|
||||
ret = self.system
|
||||
for i, (role, message) in enumerate(messages):
|
||||
if message:
|
||||
if type(message) is tuple:
|
||||
message, _, _ = message
|
||||
ret += message + seps[i % 2]
|
||||
else:
|
||||
ret += ""
|
||||
else:
|
||||
raise ValueError(f"Invalid style: {self.sep_style}")
|
||||
|
||||
return ret
|
||||
|
||||
def append_message(self, role, message):
|
||||
self.messages.append([role, message])
|
||||
|
||||
def process_image(self, image, image_process_mode, return_pil=False, image_format='PNG', max_len=1344, min_len=672):
|
||||
if image_process_mode == "Pad":
|
||||
def expand2square(pil_img, background_color=(122, 116, 104)):
|
||||
width, height = pil_img.size
|
||||
if width == height:
|
||||
return pil_img
|
||||
elif width > height:
|
||||
result = Image.new(pil_img.mode, (width, width), background_color)
|
||||
result.paste(pil_img, (0, (width - height) // 2))
|
||||
return result
|
||||
else:
|
||||
result = Image.new(pil_img.mode, (height, height), background_color)
|
||||
result.paste(pil_img, ((height - width) // 2, 0))
|
||||
return result
|
||||
image = expand2square(image)
|
||||
elif image_process_mode in ["Default", "Crop"]:
|
||||
pass
|
||||
elif image_process_mode == "Resize":
|
||||
image = image.resize((336, 336))
|
||||
else:
|
||||
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
||||
if max(image.size) > max_len:
|
||||
max_hw, min_hw = max(image.size), min(image.size)
|
||||
aspect_ratio = max_hw / min_hw
|
||||
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
||||
longest_edge = int(shortest_edge * aspect_ratio)
|
||||
W, H = image.size
|
||||
if H > W:
|
||||
H, W = longest_edge, shortest_edge
|
||||
else:
|
||||
H, W = shortest_edge, longest_edge
|
||||
image = image.resize((W, H))
|
||||
if return_pil:
|
||||
return image
|
||||
else:
|
||||
buffered = BytesIO()
|
||||
image.save(buffered, format=image_format)
|
||||
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
||||
return img_b64_str
|
||||
|
||||
def get_images(self, return_pil=False):
|
||||
images = []
|
||||
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
||||
if i % 2 == 0:
|
||||
if type(msg) is tuple:
|
||||
msg, image, image_process_mode = msg
|
||||
image = self.process_image(image, image_process_mode, return_pil=return_pil)
|
||||
images.append(image)
|
||||
return images
|
||||
|
||||
def to_gradio_chatbot(self):
|
||||
ret = []
|
||||
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
||||
if i % 2 == 0:
|
||||
if type(msg) is tuple:
|
||||
msg, image, image_process_mode = msg
|
||||
img_b64_str = self.process_image(
|
||||
image, "Default", return_pil=False,
|
||||
image_format='JPEG')
|
||||
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />'
|
||||
msg = img_str + msg.replace('<image>', '').strip()
|
||||
ret.append([msg, None])
|
||||
else:
|
||||
ret.append([msg, None])
|
||||
else:
|
||||
ret[-1][-1] = msg
|
||||
return ret
|
||||
|
||||
def copy(self):
|
||||
return Conversation(
|
||||
system=self.system,
|
||||
roles=self.roles,
|
||||
messages=[[x, y] for x, y in self.messages],
|
||||
offset=self.offset,
|
||||
sep_style=self.sep_style,
|
||||
sep=self.sep,
|
||||
sep2=self.sep2,
|
||||
version=self.version,
|
||||
tokenizer=self.tokenizer,
|
||||
stop_str=self.stop_str,
|
||||
stop_token_ids=self.stop_token_ids,
|
||||
skip_next=self.skip_next
|
||||
)
|
||||
|
||||
def dict(self):
|
||||
if len(self.get_images()) > 0:
|
||||
return {
|
||||
"system": self.system,
|
||||
"roles": self.roles,
|
||||
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
||||
"offset": self.offset,
|
||||
"sep": self.sep,
|
||||
"sep2": self.sep2,
|
||||
}
|
||||
return {
|
||||
"system": self.system,
|
||||
"roles": self.roles,
|
||||
"messages": self.messages,
|
||||
"offset": self.offset,
|
||||
"sep": self.sep,
|
||||
"sep2": self.sep2,
|
||||
}
|
||||
|
||||
|
||||
conv_vicuna_v0 = Conversation(
|
||||
system="A chat between a curious human and an artificial intelligence assistant. "
|
||||
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
||||
roles=("Human", "Assistant"),
|
||||
messages=(
|
||||
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
|
||||
("Assistant",
|
||||
"Renewable energy sources are those that can be replenished naturally in a relatively "
|
||||
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
|
||||
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
|
||||
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
|
||||
"renewable and non-renewable energy sources:\n"
|
||||
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
|
||||
"energy sources are finite and will eventually run out.\n"
|
||||
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
|
||||
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
|
||||
"and other negative effects.\n"
|
||||
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
|
||||
"have lower operational costs than non-renewable sources.\n"
|
||||
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
|
||||
"locations than non-renewable sources.\n"
|
||||
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
|
||||
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
|
||||
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
|
||||
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
|
||||
),
|
||||
offset=2,
|
||||
sep_style=SeparatorStyle.SINGLE,
|
||||
sep="###",
|
||||
)
|
||||
|
||||
conv_vicuna_v1 = Conversation(
|
||||
system="A chat between a curious user and an artificial intelligence assistant. "
|
||||
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
||||
roles=("USER", "ASSISTANT"),
|
||||
version="v1",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.TWO,
|
||||
sep=" ",
|
||||
sep2="</s>",
|
||||
)
|
||||
|
||||
conv_llama_2 = Conversation(
|
||||
system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
||||
|
||||
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
|
||||
roles=("USER", "ASSISTANT"),
|
||||
version="llama_v2",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.LLAMA_2,
|
||||
sep="<s>",
|
||||
sep2="</s>",
|
||||
)
|
||||
|
||||
conv_llava_llama_2 = Conversation(
|
||||
system="You are a helpful language and vision assistant. "
|
||||
"You are able to understand the visual content that the user provides, "
|
||||
"and assist the user with a variety of tasks using natural language.",
|
||||
roles=("USER", "ASSISTANT"),
|
||||
version="llama_v2",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.LLAMA_2,
|
||||
sep="<s>",
|
||||
sep2="</s>",
|
||||
)
|
||||
|
||||
conv_mpt = Conversation(
|
||||
system="""<|im_start|>system
|
||||
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
|
||||
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
||||
version="mpt",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.MPT,
|
||||
sep="<|im_end|>",
|
||||
)
|
||||
|
||||
conv_llava_plain = Conversation(
|
||||
system="",
|
||||
roles=("", ""),
|
||||
messages=(
|
||||
),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.PLAIN,
|
||||
sep="\n",
|
||||
)
|
||||
|
||||
conv_llava_v0 = Conversation(
|
||||
system="A chat between a curious human and an artificial intelligence assistant. "
|
||||
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
||||
roles=("Human", "Assistant"),
|
||||
messages=(
|
||||
),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.SINGLE,
|
||||
sep="###",
|
||||
)
|
||||
|
||||
conv_llava_v0_mmtag = Conversation(
|
||||
system="A chat between a curious user and an artificial intelligence assistant. "
|
||||
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
||||
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
||||
roles=("Human", "Assistant"),
|
||||
messages=(
|
||||
),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.SINGLE,
|
||||
sep="###",
|
||||
version="v0_mmtag",
|
||||
)
|
||||
|
||||
conv_llava_v1 = Conversation(
|
||||
system="A chat between a curious human and an artificial intelligence assistant. "
|
||||
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
||||
roles=("USER", "ASSISTANT"),
|
||||
version="v1",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.TWO,
|
||||
sep=" ",
|
||||
sep2="</s>",
|
||||
)
|
||||
|
||||
conv_llava_v1_mmtag = Conversation(
|
||||
system="A chat between a curious user and an artificial intelligence assistant. "
|
||||
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
||||
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
||||
roles=("USER", "ASSISTANT"),
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.TWO,
|
||||
sep=" ",
|
||||
sep2="</s>",
|
||||
version="v1_mmtag",
|
||||
)
|
||||
|
||||
conv_mistral_instruct = Conversation(
|
||||
system="",
|
||||
roles=("USER", "ASSISTANT"),
|
||||
version="llama_v2",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.LLAMA_2,
|
||||
sep="",
|
||||
sep2="</s>",
|
||||
)
|
||||
|
||||
conv_chatml_direct = Conversation(
|
||||
system="""<|im_start|>system
|
||||
Answer the questions.""",
|
||||
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
||||
version="mpt",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.MPT,
|
||||
sep="<|im_end|>",
|
||||
)
|
||||
|
||||
# define the correct tokenizer path
|
||||
tokenizer_path= os.getenv("TOKENIZER_PATH")
|
||||
llama_tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
||||
|
||||
conv_llava_llama_3 = Conversation(
|
||||
system="You are a helpful language and vision assistant. " "You are able to understand the visual content that the user provides, " "and assist the user with a variety of tasks using natural language.",
|
||||
#roles=("<|start_header_id|>user", "<|start_header_id|>assistant"),
|
||||
roles=("user", "assistant"),
|
||||
version="llama_3",
|
||||
messages=[],
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.LLAMA_3,
|
||||
tokenizer=llama_tokenizer,
|
||||
stop_token_ids=[128009],
|
||||
)
|
||||
|
||||
conv_llava_llama_3_1 = Conversation(
|
||||
system="You are a helpful language and vision assistant. " "You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.",
|
||||
#roles=("<|start_header_id|>user", "<|start_header_id|>assistant"),
|
||||
roles=("user", "assistant"),
|
||||
version="llama_3_1",
|
||||
messages=[],
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.LLAMA_3_1,
|
||||
tokenizer=llama_tokenizer,
|
||||
stop_token_ids=[128009, 128008, 128001],
|
||||
)
|
||||
|
||||
default_conversation = conv_vicuna_v1
|
||||
conv_templates = {
|
||||
"default": conv_vicuna_v0,
|
||||
"v0": conv_vicuna_v0,
|
||||
"v1": conv_vicuna_v1,
|
||||
"vicuna_v1": conv_vicuna_v1,
|
||||
"llama_2": conv_llama_2,
|
||||
"mistral_instruct": conv_mistral_instruct,
|
||||
"chatml_direct": conv_chatml_direct,
|
||||
"mistral_direct": conv_chatml_direct,
|
||||
|
||||
"plain": conv_llava_plain,
|
||||
"v0_plain": conv_llava_plain,
|
||||
"llava_v0": conv_llava_v0,
|
||||
"v0_mmtag": conv_llava_v0_mmtag,
|
||||
"llava_v1": conv_llava_v1,
|
||||
"v1_mmtag": conv_llava_v1_mmtag,
|
||||
"llava_llama_2": conv_llava_llama_2,
|
||||
|
||||
"mpt": conv_mpt,
|
||||
"llama_3": conv_llava_llama_3,
|
||||
"llama_3_1": conv_llava_llama_3_1,
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(default_conversation.get_prompt())
|
||||
113
llava/eval/eval_gpt_review.py
Normal file
@@ -0,0 +1,113 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
|
||||
import openai
|
||||
import tqdm
|
||||
import ray
|
||||
import time
|
||||
|
||||
NUM_SECONDS_TO_SLEEP = 3
|
||||
|
||||
@ray.remote(num_cpus=4)
|
||||
def get_eval(content: str, max_tokens: int):
|
||||
while True:
|
||||
try:
|
||||
response = openai.ChatCompletion.create(
|
||||
model='gpt-4',
|
||||
messages=[{
|
||||
'role': 'system',
|
||||
'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
|
||||
}, {
|
||||
'role': 'user',
|
||||
'content': content,
|
||||
}],
|
||||
temperature=0.2, # TODO: figure out which temperature is best for evaluation
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
break
|
||||
except openai.error.RateLimitError:
|
||||
pass
|
||||
except Exception as e:
|
||||
print(e)
|
||||
time.sleep(NUM_SECONDS_TO_SLEEP)
|
||||
|
||||
print('success!')
|
||||
return response['choices'][0]['message']['content']
|
||||
|
||||
|
||||
def parse_score(review):
|
||||
try:
|
||||
score_pair = review.split('\n')[0]
|
||||
score_pair = score_pair.replace(',', ' ')
|
||||
sp = score_pair.split(' ')
|
||||
if len(sp) == 2:
|
||||
return [float(sp[0]), float(sp[1])]
|
||||
else:
|
||||
print('error', review)
|
||||
return [-1, -1]
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print('error', review)
|
||||
return [-1, -1]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
||||
parser.add_argument('-q', '--question')
|
||||
# parser.add_argument('-a', '--answer')
|
||||
parser.add_argument('-a', '--answer-list', nargs='+', default=[])
|
||||
parser.add_argument('-r', '--rule')
|
||||
parser.add_argument('-o', '--output')
|
||||
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
||||
args = parser.parse_args()
|
||||
|
||||
ray.init()
|
||||
|
||||
f_q = open(os.path.expanduser(args.question))
|
||||
f_ans1 = open(os.path.expanduser(args.answer_list[0]))
|
||||
f_ans2 = open(os.path.expanduser(args.answer_list[1]))
|
||||
rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
|
||||
|
||||
review_file = open(f'{args.output}', 'w')
|
||||
|
||||
js_list = []
|
||||
handles = []
|
||||
idx = 0
|
||||
for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
|
||||
# if idx == 1:
|
||||
# break
|
||||
|
||||
ques = json.loads(ques_js)
|
||||
ans1 = json.loads(ans1_js)
|
||||
ans2 = json.loads(ans2_js)
|
||||
|
||||
category = json.loads(ques_js)['category']
|
||||
if category in rule_dict:
|
||||
rule = rule_dict[category]
|
||||
else:
|
||||
rule = rule_dict['default']
|
||||
prompt = rule['prompt']
|
||||
role = rule['role']
|
||||
content = (f'[Question]\n{ques["text"]}\n\n'
|
||||
f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
|
||||
f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
|
||||
f'[System]\n{prompt}\n\n')
|
||||
js_list.append({
|
||||
'id': idx+1,
|
||||
'question_id': ques['question_id'],
|
||||
'answer1_id': ans1['answer_id'],
|
||||
'answer2_id': ans2['answer_id'],
|
||||
'category': category})
|
||||
idx += 1
|
||||
handles.append(get_eval.remote(content, args.max_tokens))
|
||||
# To avoid the rate limit set by OpenAI
|
||||
time.sleep(NUM_SECONDS_TO_SLEEP)
|
||||
|
||||
reviews = ray.get(handles)
|
||||
for idx, review in enumerate(reviews):
|
||||
scores = parse_score(review)
|
||||
js_list[idx]['content'] = review
|
||||
js_list[idx]['tuple'] = scores
|
||||
review_file.write(json.dumps(js_list[idx]) + '\n')
|
||||
review_file.close()
|
||||
121
llava/eval/eval_gpt_review_bench.py
Normal file
@@ -0,0 +1,121 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
|
||||
import openai
|
||||
import time
|
||||
|
||||
NUM_SECONDS_TO_SLEEP = 0.5
|
||||
|
||||
|
||||
def get_eval(content: str, max_tokens: int):
|
||||
while True:
|
||||
try:
|
||||
response = openai.ChatCompletion.create(
|
||||
model='gpt-4-0314',
|
||||
messages=[{
|
||||
'role': 'system',
|
||||
'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
|
||||
}, {
|
||||
'role': 'user',
|
||||
'content': content,
|
||||
}],
|
||||
temperature=0.2, # TODO: figure out which temperature is best for evaluation
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
break
|
||||
except openai.error.RateLimitError:
|
||||
pass
|
||||
except Exception as e:
|
||||
print(e)
|
||||
time.sleep(NUM_SECONDS_TO_SLEEP)
|
||||
|
||||
return response['choices'][0]['message']['content']
|
||||
|
||||
|
||||
def parse_score(review):
|
||||
try:
|
||||
score_pair = review.split('\n')[0]
|
||||
score_pair = score_pair.replace(',', ' ')
|
||||
sp = score_pair.split(' ')
|
||||
if len(sp) == 2:
|
||||
return [float(sp[0]), float(sp[1])]
|
||||
else:
|
||||
print('error', review)
|
||||
return [-1, -1]
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print('error', review)
|
||||
return [-1, -1]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
||||
parser.add_argument('-q', '--question')
|
||||
parser.add_argument('-c', '--context')
|
||||
parser.add_argument('-a', '--answer-list', nargs='+', default=[])
|
||||
parser.add_argument('-r', '--rule')
|
||||
parser.add_argument('-o', '--output')
|
||||
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
||||
args = parser.parse_args()
|
||||
|
||||
f_q = open(os.path.expanduser(args.question))
|
||||
f_ans1 = open(os.path.expanduser(args.answer_list[0]))
|
||||
f_ans2 = open(os.path.expanduser(args.answer_list[1]))
|
||||
rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
|
||||
|
||||
if os.path.isfile(os.path.expanduser(args.output)):
|
||||
cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))]
|
||||
else:
|
||||
cur_reviews = []
|
||||
|
||||
review_file = open(f'{args.output}', 'a')
|
||||
|
||||
context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))]
|
||||
image_to_context = {context['image']: context for context in context_list}
|
||||
|
||||
handles = []
|
||||
idx = 0
|
||||
for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
|
||||
ques = json.loads(ques_js)
|
||||
ans1 = json.loads(ans1_js)
|
||||
ans2 = json.loads(ans2_js)
|
||||
|
||||
inst = image_to_context[ques['image']]
|
||||
|
||||
if isinstance(inst['caption'], list):
|
||||
cap_str = '\n'.join(inst['caption'])
|
||||
else:
|
||||
cap_str = inst['caption']
|
||||
|
||||
category = 'llava_bench_' + json.loads(ques_js)['category']
|
||||
if category in rule_dict:
|
||||
rule = rule_dict[category]
|
||||
else:
|
||||
assert False, f"Visual QA category not found in rule file: {category}."
|
||||
prompt = rule['prompt']
|
||||
role = rule['role']
|
||||
content = (f'[Context]\n{cap_str}\n\n'
|
||||
f'[Question]\n{ques["text"]}\n\n'
|
||||
f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
|
||||
f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
|
||||
f'[System]\n{prompt}\n\n')
|
||||
cur_js = {
|
||||
'id': idx+1,
|
||||
'question_id': ques['question_id'],
|
||||
'answer1_id': ans1.get('answer_id', ans1['question_id']),
|
||||
'answer2_id': ans2.get('answer_id', ans2['answer_id']),
|
||||
'category': category
|
||||
}
|
||||
if idx >= len(cur_reviews):
|
||||
review = get_eval(content, args.max_tokens)
|
||||
scores = parse_score(review)
|
||||
cur_js['content'] = review
|
||||
cur_js['tuple'] = scores
|
||||
review_file.write(json.dumps(cur_js) + '\n')
|
||||
review_file.flush()
|
||||
else:
|
||||
print(f'Skipping {idx} as we already have it.')
|
||||
idx += 1
|
||||
print(idx)
|
||||
review_file.close()
|
||||
118
llava/eval/eval_gpt_review_visual.py
Normal file
@@ -0,0 +1,118 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
|
||||
import openai
|
||||
import time
|
||||
|
||||
NUM_SECONDS_TO_SLEEP = 0.5
|
||||
|
||||
|
||||
def get_eval(content: str, max_tokens: int):
|
||||
while True:
|
||||
try:
|
||||
response = openai.ChatCompletion.create(
|
||||
model='gpt-4-0314',
|
||||
messages=[{
|
||||
'role': 'system',
|
||||
'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
|
||||
}, {
|
||||
'role': 'user',
|
||||
'content': content,
|
||||
}],
|
||||
temperature=0.2, # TODO: figure out which temperature is best for evaluation
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
break
|
||||
except openai.error.RateLimitError:
|
||||
pass
|
||||
except Exception as e:
|
||||
print(e)
|
||||
time.sleep(NUM_SECONDS_TO_SLEEP)
|
||||
|
||||
return response['choices'][0]['message']['content']
|
||||
|
||||
|
||||
def parse_score(review):
|
||||
try:
|
||||
score_pair = review.split('\n')[0]
|
||||
score_pair = score_pair.replace(',', ' ')
|
||||
sp = score_pair.split(' ')
|
||||
if len(sp) == 2:
|
||||
return [float(sp[0]), float(sp[1])]
|
||||
else:
|
||||
print('error', review)
|
||||
return [-1, -1]
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print('error', review)
|
||||
return [-1, -1]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
||||
parser.add_argument('-q', '--question')
|
||||
parser.add_argument('-c', '--context')
|
||||
parser.add_argument('-a', '--answer-list', nargs='+', default=[])
|
||||
parser.add_argument('-r', '--rule')
|
||||
parser.add_argument('-o', '--output')
|
||||
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
||||
args = parser.parse_args()
|
||||
|
||||
f_q = open(os.path.expanduser(args.question))
|
||||
f_ans1 = open(os.path.expanduser(args.answer_list[0]))
|
||||
f_ans2 = open(os.path.expanduser(args.answer_list[1]))
|
||||
rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
|
||||
|
||||
if os.path.isfile(os.path.expanduser(args.output)):
|
||||
cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))]
|
||||
else:
|
||||
cur_reviews = []
|
||||
|
||||
review_file = open(f'{args.output}', 'a')
|
||||
|
||||
context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))]
|
||||
image_to_context = {context['image']: context for context in context_list}
|
||||
|
||||
handles = []
|
||||
idx = 0
|
||||
for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
|
||||
ques = json.loads(ques_js)
|
||||
ans1 = json.loads(ans1_js)
|
||||
ans2 = json.loads(ans2_js)
|
||||
|
||||
inst = image_to_context[ques['image']]
|
||||
cap_str = '\n'.join(inst['captions'])
|
||||
box_str = '\n'.join([f'{instance["category"]}: {instance["bbox"]}' for instance in inst['instances']])
|
||||
|
||||
category = json.loads(ques_js)['category']
|
||||
if category in rule_dict:
|
||||
rule = rule_dict[category]
|
||||
else:
|
||||
assert False, f"Visual QA category not found in rule file: {category}."
|
||||
prompt = rule['prompt']
|
||||
role = rule['role']
|
||||
content = (f'[Context]\n{cap_str}\n\n{box_str}\n\n'
|
||||
f'[Question]\n{ques["text"]}\n\n'
|
||||
f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
|
||||
f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
|
||||
f'[System]\n{prompt}\n\n')
|
||||
cur_js = {
|
||||
'id': idx+1,
|
||||
'question_id': ques['question_id'],
|
||||
'answer1_id': ans1.get('answer_id', ans1['question_id']),
|
||||
'answer2_id': ans2.get('answer_id', ans2['answer_id']),
|
||||
'category': category
|
||||
}
|
||||
if idx >= len(cur_reviews):
|
||||
review = get_eval(content, args.max_tokens)
|
||||
scores = parse_score(review)
|
||||
cur_js['content'] = review
|
||||
cur_js['tuple'] = scores
|
||||
review_file.write(json.dumps(cur_js) + '\n')
|
||||
review_file.flush()
|
||||
else:
|
||||
print(f'Skipping {idx} as we already have it.')
|
||||
idx += 1
|
||||
print(idx)
|
||||
review_file.close()
|
||||
81
llava/eval/eval_pope.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import os
|
||||
import json
|
||||
import argparse
|
||||
|
||||
def eval_pope(answers, label_file):
|
||||
label_list = [json.loads(q)['label'] for q in open(label_file, 'r')]
|
||||
|
||||
for answer in answers:
|
||||
text = answer['text']
|
||||
|
||||
# Only keep the first sentence
|
||||
if text.find('.') != -1:
|
||||
text = text.split('.')[0]
|
||||
|
||||
text = text.replace(',', '')
|
||||
words = text.split(' ')
|
||||
if 'No' in words or 'not' in words or 'no' in words:
|
||||
answer['text'] = 'no'
|
||||
else:
|
||||
answer['text'] = 'yes'
|
||||
|
||||
for i in range(len(label_list)):
|
||||
if label_list[i] == 'no':
|
||||
label_list[i] = 0
|
||||
else:
|
||||
label_list[i] = 1
|
||||
|
||||
pred_list = []
|
||||
for answer in answers:
|
||||
if answer['text'] == 'no':
|
||||
pred_list.append(0)
|
||||
else:
|
||||
pred_list.append(1)
|
||||
|
||||
pos = 1
|
||||
neg = 0
|
||||
yes_ratio = pred_list.count(1) / len(pred_list)
|
||||
|
||||
TP, TN, FP, FN = 0, 0, 0, 0
|
||||
for pred, label in zip(pred_list, label_list):
|
||||
if pred == pos and label == pos:
|
||||
TP += 1
|
||||
elif pred == pos and label == neg:
|
||||
FP += 1
|
||||
elif pred == neg and label == neg:
|
||||
TN += 1
|
||||
elif pred == neg and label == pos:
|
||||
FN += 1
|
||||
|
||||
print('TP\tFP\tTN\tFN\t')
|
||||
print('{}\t{}\t{}\t{}'.format(TP, FP, TN, FN))
|
||||
|
||||
precision = float(TP) / float(TP + FP)
|
||||
recall = float(TP) / float(TP + FN)
|
||||
f1 = 2*precision*recall / (precision + recall)
|
||||
acc = (TP + TN) / (TP + TN + FP + FN)
|
||||
print('Accuracy: {}'.format(acc))
|
||||
print('Precision: {}'.format(precision))
|
||||
print('Recall: {}'.format(recall))
|
||||
print('F1 score: {}'.format(f1))
|
||||
print('Yes ratio: {}'.format(yes_ratio))
|
||||
print('%.3f, %.3f, %.3f, %.3f, %.3f' % (f1, acc, precision, recall, yes_ratio) )
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--annotation-dir", type=str)
|
||||
parser.add_argument("--question-file", type=str)
|
||||
parser.add_argument("--result-file", type=str)
|
||||
args = parser.parse_args()
|
||||
|
||||
questions = [json.loads(line) for line in open(args.question_file)]
|
||||
questions = {question['question_id']: question for question in questions}
|
||||
answers = [json.loads(q) for q in open(args.result_file)]
|
||||
for file in os.listdir(args.annotation_dir):
|
||||
assert file.startswith('coco_pope_')
|
||||
assert file.endswith('.json')
|
||||
category = file[10:-5]
|
||||
cur_answers = [x for x in answers if questions[x['question_id']]['category'] == category]
|
||||
print('Category: {}, # samples: {}'.format(category, len(cur_answers)))
|
||||
eval_pope(cur_answers, os.path.join(args.annotation_dir, file))
|
||||
print("====================================")
|
||||
114
llava/eval/eval_science_qa.py
Normal file
@@ -0,0 +1,114 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import random
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--base-dir', type=str)
|
||||
parser.add_argument('--result-file', type=str)
|
||||
parser.add_argument('--output-file', type=str)
|
||||
parser.add_argument('--output-result', type=str)
|
||||
parser.add_argument('--split', type=str, default='test')
|
||||
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def convert_caps(results):
|
||||
fakecaps = []
|
||||
for result in results:
|
||||
image_id = result['question_id']
|
||||
caption = result['text']
|
||||
fakecaps.append({"image_id": int(image_id), "caption": caption})
|
||||
return fakecaps
|
||||
|
||||
|
||||
def get_pred_idx(prediction, choices, options):
|
||||
"""
|
||||
Get the index (e.g. 2) from the prediction (e.g. 'C')
|
||||
"""
|
||||
if prediction in options[:len(choices)]:
|
||||
return options.index(prediction)
|
||||
else:
|
||||
return -1
|
||||
return random.choice(range(len(choices)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
base_dir = args.base_dir
|
||||
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
|
||||
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
||||
predictions = [json.loads(line) for line in open(args.result_file)]
|
||||
predictions = {pred['question_id']: pred for pred in predictions}
|
||||
split_problems = {idx: problems[idx] for idx in split_indices}
|
||||
|
||||
results = {'correct': [], 'incorrect': []}
|
||||
sqa_results = {}
|
||||
sqa_results['acc'] = None
|
||||
sqa_results['correct'] = None
|
||||
sqa_results['count'] = None
|
||||
sqa_results['results'] = {}
|
||||
sqa_results['outputs'] = {}
|
||||
|
||||
for prob_id, prob in split_problems.items():
|
||||
if prob_id not in predictions:
|
||||
pred = {'text': 'FAILED', 'prompt': 'Unknown'}
|
||||
pred_text = 'FAILED'
|
||||
else:
|
||||
pred = predictions[prob_id]
|
||||
pred_text = pred['text']
|
||||
|
||||
if pred_text in args.options:
|
||||
answer = pred_text
|
||||
elif len(pred_text) >= 3 and pred_text[0] in args.options and pred_text[1:3] == ". ":
|
||||
answer = pred_text[0]
|
||||
else:
|
||||
pattern = re.compile(r'The answer is ([A-Z]).')
|
||||
res = pattern.findall(pred_text)
|
||||
if len(res) == 1:
|
||||
answer = res[0] # 'A', 'B', ...
|
||||
else:
|
||||
answer = "FAILED"
|
||||
|
||||
pred_idx = get_pred_idx(answer, prob['choices'], args.options)
|
||||
|
||||
analysis = {
|
||||
'question_id': prob_id,
|
||||
'parsed_ans': answer,
|
||||
'ground_truth': args.options[prob['answer']],
|
||||
'question': pred['prompt'],
|
||||
'pred': pred_text,
|
||||
'is_multimodal': '<image>' in pred['prompt'],
|
||||
}
|
||||
|
||||
sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options)
|
||||
sqa_results['outputs'][prob_id] = pred_text
|
||||
|
||||
if pred_idx == prob['answer']:
|
||||
results['correct'].append(analysis)
|
||||
else:
|
||||
results['incorrect'].append(analysis)
|
||||
|
||||
correct = len(results['correct'])
|
||||
total = len(results['correct']) + len(results['incorrect'])
|
||||
|
||||
###### IMG ######
|
||||
multimodal_correct = len([x for x in results['correct'] if x['is_multimodal']])
|
||||
multimodal_incorrect = len([x for x in results['incorrect'] if x['is_multimodal']])
|
||||
multimodal_total = multimodal_correct + multimodal_incorrect
|
||||
###### IMG ######
|
||||
|
||||
print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%, IMG-Accuracy: {multimodal_correct / multimodal_total * 100:.2f}%')
|
||||
|
||||
sqa_results['acc'] = correct / total * 100
|
||||
sqa_results['correct'] = correct
|
||||
sqa_results['count'] = total
|
||||
|
||||
with open(args.output_file, 'w') as f:
|
||||
json.dump(results, f, indent=2)
|
||||
with open(args.output_result, 'w') as f:
|
||||
json.dump(sqa_results, f, indent=2)
|
||||
104
llava/eval/eval_science_qa_gpt4.py
Normal file
@@ -0,0 +1,104 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import random
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--base-dir', type=str)
|
||||
parser.add_argument('--gpt4-result', type=str)
|
||||
parser.add_argument('--our-result', type=str)
|
||||
parser.add_argument('--split', type=str, default='test')
|
||||
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def convert_caps(results):
|
||||
fakecaps = []
|
||||
for result in results:
|
||||
image_id = result['question_id']
|
||||
caption = result['text']
|
||||
fakecaps.append({"image_id": int(image_id), "caption": caption})
|
||||
return fakecaps
|
||||
|
||||
|
||||
def get_pred_idx(prediction, choices, options):
|
||||
"""
|
||||
Get the index (e.g. 2) from the prediction (e.g. 'C')
|
||||
"""
|
||||
if prediction in options[:len(choices)]:
|
||||
return options.index(prediction)
|
||||
else:
|
||||
return random.choice(range(len(choices)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
base_dir = args.base_dir
|
||||
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
|
||||
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
||||
our_predictions = [json.loads(line) for line in open(args.our_result)]
|
||||
our_predictions = {pred['question_id']: pred for pred in our_predictions}
|
||||
split_problems = {idx: problems[idx] for idx in split_indices}
|
||||
|
||||
gpt4_predictions = json.load(open(args.gpt4_result))['outputs']
|
||||
|
||||
results = defaultdict(lambda: 0)
|
||||
|
||||
for prob_id, prob in split_problems.items():
|
||||
if prob_id not in our_predictions:
|
||||
continue
|
||||
if prob_id not in gpt4_predictions:
|
||||
continue
|
||||
our_pred = our_predictions[prob_id]['text']
|
||||
gpt4_pred = gpt4_predictions[prob_id]
|
||||
|
||||
pattern = re.compile(r'The answer is ([A-Z]).')
|
||||
our_res = pattern.findall(our_pred)
|
||||
if len(our_res) == 1:
|
||||
our_answer = our_res[0] # 'A', 'B', ...
|
||||
else:
|
||||
our_answer = "FAILED"
|
||||
gpt4_res = pattern.findall(gpt4_pred)
|
||||
if len(gpt4_res) == 1:
|
||||
gpt4_answer = gpt4_res[0] # 'A', 'B', ...
|
||||
else:
|
||||
gpt4_answer = "FAILED"
|
||||
|
||||
our_pred_idx = get_pred_idx(our_answer, prob['choices'], args.options)
|
||||
gpt4_pred_idx = get_pred_idx(gpt4_answer, prob['choices'], args.options)
|
||||
|
||||
if gpt4_answer == 'FAILED':
|
||||
results['gpt4_failed'] += 1
|
||||
# continue
|
||||
gpt4_pred_idx = our_pred_idx
|
||||
# if our_pred_idx != prob['answer']:
|
||||
# print(our_predictions[prob_id]['prompt'])
|
||||
# print('-----------------')
|
||||
# print(f'LECTURE: {prob["lecture"]}')
|
||||
# print(f'SOLUTION: {prob["solution"]}')
|
||||
# print('=====================')
|
||||
else:
|
||||
# continue
|
||||
pass
|
||||
# gpt4_pred_idx = our_pred_idx
|
||||
|
||||
if gpt4_pred_idx == prob['answer']:
|
||||
results['correct'] += 1
|
||||
else:
|
||||
results['incorrect'] += 1
|
||||
|
||||
|
||||
if gpt4_pred_idx == prob['answer'] or our_pred_idx == prob['answer']:
|
||||
results['correct_upperbound'] += 1
|
||||
|
||||
correct = results['correct']
|
||||
total = results['correct'] + results['incorrect']
|
||||
print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%')
|
||||
print(f'Total: {total}, Correct (upper): {results["correct_upperbound"]}, Accuracy: {results["correct_upperbound"] / total * 100:.2f}%')
|
||||
print(f'Total: {total}, GPT-4 NO-ANS (RANDOM): {results["gpt4_failed"]}, Percentage: {results["gpt4_failed"] / total * 100:.2f}%')
|
||||
|
||||
149
llava/eval/eval_science_qa_gpt4_requery.py
Normal file
@@ -0,0 +1,149 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import random
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--base-dir', type=str)
|
||||
parser.add_argument('--gpt4-result', type=str)
|
||||
parser.add_argument('--requery-result', type=str)
|
||||
parser.add_argument('--our-result', type=str)
|
||||
parser.add_argument('--output-result', type=str)
|
||||
parser.add_argument('--split', type=str, default='test')
|
||||
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def convert_caps(results):
|
||||
fakecaps = []
|
||||
for result in results:
|
||||
image_id = result['question_id']
|
||||
caption = result['text']
|
||||
fakecaps.append({"image_id": int(image_id), "caption": caption})
|
||||
return fakecaps
|
||||
|
||||
|
||||
def get_pred_idx(prediction, choices, options):
|
||||
"""
|
||||
Get the index (e.g. 2) from the prediction (e.g. 'C')
|
||||
"""
|
||||
if prediction in options[:len(choices)]:
|
||||
return options.index(prediction)
|
||||
else:
|
||||
return random.choice(range(len(choices)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
base_dir = args.base_dir
|
||||
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
|
||||
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
||||
our_predictions = [json.loads(line) for line in open(args.our_result)]
|
||||
our_predictions = {pred['question_id']: pred for pred in our_predictions}
|
||||
split_problems = {idx: problems[idx] for idx in split_indices}
|
||||
|
||||
requery_predictions = [json.loads(line) for line in open(args.requery_result)]
|
||||
requery_predictions = {pred['question_id']: pred for pred in requery_predictions}
|
||||
|
||||
gpt4_predictions = json.load(open(args.gpt4_result))['outputs']
|
||||
|
||||
results = defaultdict(lambda: 0)
|
||||
|
||||
sqa_results = {}
|
||||
sqa_results['acc'] = None
|
||||
sqa_results['correct'] = None
|
||||
sqa_results['count'] = None
|
||||
sqa_results['results'] = {}
|
||||
sqa_results['outputs'] = {}
|
||||
|
||||
for prob_id, prob in split_problems.items():
|
||||
if prob_id not in our_predictions:
|
||||
assert False
|
||||
if prob_id not in gpt4_predictions:
|
||||
assert False
|
||||
our_pred = our_predictions[prob_id]['text']
|
||||
gpt4_pred = gpt4_predictions[prob_id]
|
||||
if prob_id not in requery_predictions:
|
||||
results['missing_requery'] += 1
|
||||
requery_pred = "MISSING"
|
||||
else:
|
||||
requery_pred = requery_predictions[prob_id]['text']
|
||||
|
||||
pattern = re.compile(r'The answer is ([A-Z]).')
|
||||
our_res = pattern.findall(our_pred)
|
||||
if len(our_res) == 1:
|
||||
our_answer = our_res[0] # 'A', 'B', ...
|
||||
else:
|
||||
our_answer = "FAILED"
|
||||
|
||||
requery_res = pattern.findall(requery_pred)
|
||||
if len(requery_res) == 1:
|
||||
requery_answer = requery_res[0] # 'A', 'B', ...
|
||||
else:
|
||||
requery_answer = "FAILED"
|
||||
|
||||
gpt4_res = pattern.findall(gpt4_pred)
|
||||
if len(gpt4_res) == 1:
|
||||
gpt4_answer = gpt4_res[0] # 'A', 'B', ...
|
||||
else:
|
||||
gpt4_answer = "FAILED"
|
||||
|
||||
our_pred_idx = get_pred_idx(our_answer, prob['choices'], args.options)
|
||||
gpt4_pred_idx = get_pred_idx(gpt4_answer, prob['choices'], args.options)
|
||||
requery_pred_idx = get_pred_idx(requery_answer, prob['choices'], args.options)
|
||||
|
||||
results['total'] += 1
|
||||
|
||||
if gpt4_answer == 'FAILED':
|
||||
results['gpt4_failed'] += 1
|
||||
if gpt4_pred_idx == prob['answer']:
|
||||
results['gpt4_correct'] += 1
|
||||
if our_pred_idx == prob['answer']:
|
||||
results['gpt4_ourvisual_correct'] += 1
|
||||
elif gpt4_pred_idx == prob['answer']:
|
||||
results['gpt4_correct'] += 1
|
||||
results['gpt4_ourvisual_correct'] += 1
|
||||
|
||||
if our_pred_idx == prob['answer']:
|
||||
results['our_correct'] += 1
|
||||
|
||||
if requery_answer == 'FAILED':
|
||||
sqa_results['results'][prob_id] = our_pred_idx
|
||||
if our_pred_idx == prob['answer']:
|
||||
results['requery_correct'] += 1
|
||||
else:
|
||||
sqa_results['results'][prob_id] = requery_pred_idx
|
||||
if requery_pred_idx == prob['answer']:
|
||||
results['requery_correct'] += 1
|
||||
else:
|
||||
print(f"""
|
||||
Question ({args.options[prob['answer']]}): {our_predictions[prob_id]['prompt']}
|
||||
Our ({our_answer}): {our_pred}
|
||||
GPT-4 ({gpt4_answer}): {gpt4_pred}
|
||||
Requery ({requery_answer}): {requery_pred}
|
||||
print("=====================================")
|
||||
""")
|
||||
|
||||
if gpt4_pred_idx == prob['answer'] or our_pred_idx == prob['answer']:
|
||||
results['correct_upperbound'] += 1
|
||||
|
||||
total = results['total']
|
||||
print(f'Total: {total}, Our-Correct: {results["our_correct"]}, Accuracy: {results["our_correct"] / total * 100:.2f}%')
|
||||
print(f'Total: {total}, GPT-4-Correct: {results["gpt4_correct"]}, Accuracy: {results["gpt4_correct"] / total * 100:.2f}%')
|
||||
print(f'Total: {total}, GPT-4 NO-ANS (RANDOM): {results["gpt4_failed"]}, Percentage: {results["gpt4_failed"] / total * 100:.2f}%')
|
||||
print(f'Total: {total}, GPT-4-OursVisual-Correct: {results["gpt4_ourvisual_correct"]}, Accuracy: {results["gpt4_ourvisual_correct"] / total * 100:.2f}%')
|
||||
print(f'Total: {total}, Requery-Correct: {results["requery_correct"]}, Accuracy: {results["requery_correct"] / total * 100:.2f}%')
|
||||
print(f'Total: {total}, Correct upper: {results["correct_upperbound"]}, Accuracy: {results["correct_upperbound"] / total * 100:.2f}%')
|
||||
|
||||
sqa_results['acc'] = results["requery_correct"] / total * 100
|
||||
sqa_results['correct'] = results["requery_correct"]
|
||||
sqa_results['count'] = total
|
||||
|
||||
with open(args.output_result, 'w') as f:
|
||||
json.dump(sqa_results, f, indent=2)
|
||||
|
||||
65
llava/eval/eval_textvqa.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import os
|
||||
import argparse
|
||||
import json
|
||||
import re
|
||||
|
||||
from llava.eval.m4c_evaluator import TextVQAAccuracyEvaluator
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--annotation-file', type=str)
|
||||
parser.add_argument('--result-file', type=str)
|
||||
parser.add_argument('--result-dir', type=str)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def prompt_processor(prompt):
|
||||
if prompt.startswith('OCR tokens: '):
|
||||
pattern = r"Question: (.*?) Short answer:"
|
||||
match = re.search(pattern, prompt, re.DOTALL)
|
||||
question = match.group(1)
|
||||
elif 'Reference OCR token: ' in prompt and len(prompt.split('\n')) == 3:
|
||||
if prompt.startswith('Reference OCR token:'):
|
||||
question = prompt.split('\n')[1]
|
||||
else:
|
||||
question = prompt.split('\n')[0]
|
||||
elif len(prompt.split('\n')) == 2:
|
||||
question = prompt.split('\n')[0]
|
||||
else:
|
||||
assert False
|
||||
|
||||
return question.lower()
|
||||
|
||||
|
||||
def eval_single(annotation_file, result_file):
|
||||
experiment_name = os.path.splitext(os.path.basename(result_file))[0]
|
||||
print(experiment_name)
|
||||
annotations = json.load(open(annotation_file))['data']
|
||||
annotations = {(annotation['image_id'], annotation['question'].lower()): annotation for annotation in annotations}
|
||||
results = [json.loads(line) for line in open(result_file)]
|
||||
|
||||
pred_list = []
|
||||
for result in results:
|
||||
annotation = annotations[(result['question_id'], prompt_processor(result['prompt']))]
|
||||
pred_list.append({
|
||||
"pred_answer": result['text'],
|
||||
"gt_answers": annotation['answers'],
|
||||
})
|
||||
|
||||
evaluator = TextVQAAccuracyEvaluator()
|
||||
print('Samples: {}\nAccuracy: {:.2f}%\n'.format(len(pred_list), 100. * evaluator.eval_pred_list(pred_list)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
if args.result_file is not None:
|
||||
eval_single(args.annotation_file, args.result_file)
|
||||
|
||||
if args.result_dir is not None:
|
||||
for result_file in sorted(os.listdir(args.result_dir)):
|
||||
if not result_file.endswith('.jsonl'):
|
||||
print(f'Skipping {result_file}')
|
||||
continue
|
||||
eval_single(args.annotation_file, os.path.join(args.result_dir, result_file))
|
||||
111
llava/eval/generate_webpage_data_from_table.py
Normal file
@@ -0,0 +1,111 @@
|
||||
"""Generate json file for webpage."""
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
|
||||
# models = ['llama', 'alpaca', 'gpt35', 'bard']
|
||||
models = ['vicuna']
|
||||
|
||||
|
||||
def read_jsonl(path: str, key: str=None):
|
||||
data = []
|
||||
with open(os.path.expanduser(path)) as f:
|
||||
for line in f:
|
||||
if not line:
|
||||
continue
|
||||
data.append(json.loads(line))
|
||||
if key is not None:
|
||||
data.sort(key=lambda x: x[key])
|
||||
data = {item[key]: item for item in data}
|
||||
return data
|
||||
|
||||
|
||||
def trim_hanging_lines(s: str, n: int) -> str:
|
||||
s = s.strip()
|
||||
for _ in range(n):
|
||||
s = s.split('\n', 1)[1].strip()
|
||||
return s
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
questions = read_jsonl('table/question.jsonl', key='question_id')
|
||||
|
||||
# alpaca_answers = read_jsonl('table/answer/answer_alpaca-13b.jsonl', key='question_id')
|
||||
# bard_answers = read_jsonl('table/answer/answer_bard.jsonl', key='question_id')
|
||||
# gpt35_answers = read_jsonl('table/answer/answer_gpt35.jsonl', key='question_id')
|
||||
# llama_answers = read_jsonl('table/answer/answer_llama-13b.jsonl', key='question_id')
|
||||
vicuna_answers = read_jsonl('table/answer/answer_vicuna-13b.jsonl', key='question_id')
|
||||
ours_answers = read_jsonl('table/results/llama-13b-hf-alpaca.jsonl', key='question_id')
|
||||
|
||||
review_vicuna = read_jsonl('table/review/review_vicuna-13b_llama-13b-hf-alpaca.jsonl', key='question_id')
|
||||
# review_alpaca = read_jsonl('table/review/review_alpaca-13b_vicuna-13b.jsonl', key='question_id')
|
||||
# review_bard = read_jsonl('table/review/review_bard_vicuna-13b.jsonl', key='question_id')
|
||||
# review_gpt35 = read_jsonl('table/review/review_gpt35_vicuna-13b.jsonl', key='question_id')
|
||||
# review_llama = read_jsonl('table/review/review_llama-13b_vicuna-13b.jsonl', key='question_id')
|
||||
|
||||
records = []
|
||||
for qid in questions.keys():
|
||||
r = {
|
||||
'id': qid,
|
||||
'category': questions[qid]['category'],
|
||||
'question': questions[qid]['text'],
|
||||
'answers': {
|
||||
# 'alpaca': alpaca_answers[qid]['text'],
|
||||
# 'llama': llama_answers[qid]['text'],
|
||||
# 'bard': bard_answers[qid]['text'],
|
||||
# 'gpt35': gpt35_answers[qid]['text'],
|
||||
'vicuna': vicuna_answers[qid]['text'],
|
||||
'ours': ours_answers[qid]['text'],
|
||||
},
|
||||
'evaluations': {
|
||||
# 'alpaca': review_alpaca[qid]['text'],
|
||||
# 'llama': review_llama[qid]['text'],
|
||||
# 'bard': review_bard[qid]['text'],
|
||||
'vicuna': review_vicuna[qid]['content'],
|
||||
# 'gpt35': review_gpt35[qid]['text'],
|
||||
},
|
||||
'scores': {
|
||||
'vicuna': review_vicuna[qid]['tuple'],
|
||||
# 'alpaca': review_alpaca[qid]['score'],
|
||||
# 'llama': review_llama[qid]['score'],
|
||||
# 'bard': review_bard[qid]['score'],
|
||||
# 'gpt35': review_gpt35[qid]['score'],
|
||||
},
|
||||
}
|
||||
|
||||
# cleanup data
|
||||
cleaned_evals = {}
|
||||
for k, v in r['evaluations'].items():
|
||||
v = v.strip()
|
||||
lines = v.split('\n')
|
||||
# trim the first line if it's a pair of numbers
|
||||
if re.match(r'\d+[, ]+\d+', lines[0]):
|
||||
lines = lines[1:]
|
||||
v = '\n'.join(lines)
|
||||
cleaned_evals[k] = v.replace('Assistant 1', "**Assistant 1**").replace('Assistant 2', '**Assistant 2**')
|
||||
|
||||
r['evaluations'] = cleaned_evals
|
||||
records.append(r)
|
||||
|
||||
# Reorder the records, this is optional
|
||||
for r in records:
|
||||
if r['id'] <= 20:
|
||||
r['id'] += 60
|
||||
else:
|
||||
r['id'] -= 20
|
||||
for r in records:
|
||||
if r['id'] <= 50:
|
||||
r['id'] += 10
|
||||
elif 50 < r['id'] <= 60:
|
||||
r['id'] -= 50
|
||||
for r in records:
|
||||
if r['id'] == 7:
|
||||
r['id'] = 1
|
||||
elif r['id'] < 7:
|
||||
r['id'] += 1
|
||||
|
||||
records.sort(key=lambda x: x['id'])
|
||||
|
||||
# Write to file
|
||||
with open('webpage/data.json', 'w') as f:
|
||||
json.dump({'questions': records, 'models': models}, f, indent=2)
|
||||
334
llava/eval/m4c_evaluator.py
Normal file
@@ -0,0 +1,334 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
import re
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class EvalAIAnswerProcessor:
|
||||
"""
|
||||
Processes an answer similar to Eval AI
|
||||
copied from
|
||||
https://github.com/facebookresearch/mmf/blob/c46b3b3391275b4181567db80943473a89ab98ab/pythia/tasks/processors.py#L897
|
||||
"""
|
||||
|
||||
CONTRACTIONS = {
|
||||
"aint": "ain't",
|
||||
"arent": "aren't",
|
||||
"cant": "can't",
|
||||
"couldve": "could've",
|
||||
"couldnt": "couldn't",
|
||||
"couldn'tve": "couldn't've",
|
||||
"couldnt've": "couldn't've",
|
||||
"didnt": "didn't",
|
||||
"doesnt": "doesn't",
|
||||
"dont": "don't",
|
||||
"hadnt": "hadn't",
|
||||
"hadnt've": "hadn't've",
|
||||
"hadn'tve": "hadn't've",
|
||||
"hasnt": "hasn't",
|
||||
"havent": "haven't",
|
||||
"hed": "he'd",
|
||||
"hed've": "he'd've",
|
||||
"he'dve": "he'd've",
|
||||
"hes": "he's",
|
||||
"howd": "how'd",
|
||||
"howll": "how'll",
|
||||
"hows": "how's",
|
||||
"Id've": "I'd've",
|
||||
"I'dve": "I'd've",
|
||||
"Im": "I'm",
|
||||
"Ive": "I've",
|
||||
"isnt": "isn't",
|
||||
"itd": "it'd",
|
||||
"itd've": "it'd've",
|
||||
"it'dve": "it'd've",
|
||||
"itll": "it'll",
|
||||
"let's": "let's",
|
||||
"maam": "ma'am",
|
||||
"mightnt": "mightn't",
|
||||
"mightnt've": "mightn't've",
|
||||
"mightn'tve": "mightn't've",
|
||||
"mightve": "might've",
|
||||
"mustnt": "mustn't",
|
||||
"mustve": "must've",
|
||||
"neednt": "needn't",
|
||||
"notve": "not've",
|
||||
"oclock": "o'clock",
|
||||
"oughtnt": "oughtn't",
|
||||
"ow's'at": "'ow's'at",
|
||||
"'ows'at": "'ow's'at",
|
||||
"'ow'sat": "'ow's'at",
|
||||
"shant": "shan't",
|
||||
"shed've": "she'd've",
|
||||
"she'dve": "she'd've",
|
||||
"she's": "she's",
|
||||
"shouldve": "should've",
|
||||
"shouldnt": "shouldn't",
|
||||
"shouldnt've": "shouldn't've",
|
||||
"shouldn'tve": "shouldn't've",
|
||||
"somebody'd": "somebodyd",
|
||||
"somebodyd've": "somebody'd've",
|
||||
"somebody'dve": "somebody'd've",
|
||||
"somebodyll": "somebody'll",
|
||||
"somebodys": "somebody's",
|
||||
"someoned": "someone'd",
|
||||
"someoned've": "someone'd've",
|
||||
"someone'dve": "someone'd've",
|
||||
"someonell": "someone'll",
|
||||
"someones": "someone's",
|
||||
"somethingd": "something'd",
|
||||
"somethingd've": "something'd've",
|
||||
"something'dve": "something'd've",
|
||||
"somethingll": "something'll",
|
||||
"thats": "that's",
|
||||
"thered": "there'd",
|
||||
"thered've": "there'd've",
|
||||
"there'dve": "there'd've",
|
||||
"therere": "there're",
|
||||
"theres": "there's",
|
||||
"theyd": "they'd",
|
||||
"theyd've": "they'd've",
|
||||
"they'dve": "they'd've",
|
||||
"theyll": "they'll",
|
||||
"theyre": "they're",
|
||||
"theyve": "they've",
|
||||
"twas": "'twas",
|
||||
"wasnt": "wasn't",
|
||||
"wed've": "we'd've",
|
||||
"we'dve": "we'd've",
|
||||
"weve": "we've",
|
||||
"werent": "weren't",
|
||||
"whatll": "what'll",
|
||||
"whatre": "what're",
|
||||
"whats": "what's",
|
||||
"whatve": "what've",
|
||||
"whens": "when's",
|
||||
"whered": "where'd",
|
||||
"wheres": "where's",
|
||||
"whereve": "where've",
|
||||
"whod": "who'd",
|
||||
"whod've": "who'd've",
|
||||
"who'dve": "who'd've",
|
||||
"wholl": "who'll",
|
||||
"whos": "who's",
|
||||
"whove": "who've",
|
||||
"whyll": "why'll",
|
||||
"whyre": "why're",
|
||||
"whys": "why's",
|
||||
"wont": "won't",
|
||||
"wouldve": "would've",
|
||||
"wouldnt": "wouldn't",
|
||||
"wouldnt've": "wouldn't've",
|
||||
"wouldn'tve": "wouldn't've",
|
||||
"yall": "y'all",
|
||||
"yall'll": "y'all'll",
|
||||
"y'allll": "y'all'll",
|
||||
"yall'd've": "y'all'd've",
|
||||
"y'alld've": "y'all'd've",
|
||||
"y'all'dve": "y'all'd've",
|
||||
"youd": "you'd",
|
||||
"youd've": "you'd've",
|
||||
"you'dve": "you'd've",
|
||||
"youll": "you'll",
|
||||
"youre": "you're",
|
||||
"youve": "you've",
|
||||
}
|
||||
|
||||
NUMBER_MAP = {
|
||||
"none": "0",
|
||||
"zero": "0",
|
||||
"one": "1",
|
||||
"two": "2",
|
||||
"three": "3",
|
||||
"four": "4",
|
||||
"five": "5",
|
||||
"six": "6",
|
||||
"seven": "7",
|
||||
"eight": "8",
|
||||
"nine": "9",
|
||||
"ten": "10",
|
||||
}
|
||||
ARTICLES = ["a", "an", "the"]
|
||||
PERIOD_STRIP = re.compile(r"(?!<=\d)(\.)(?!\d)")
|
||||
COMMA_STRIP = re.compile(r"(?<=\d)(\,)+(?=\d)")
|
||||
PUNCTUATIONS = [
|
||||
";",
|
||||
r"/",
|
||||
"[",
|
||||
"]",
|
||||
'"',
|
||||
"{",
|
||||
"}",
|
||||
"(",
|
||||
")",
|
||||
"=",
|
||||
"+",
|
||||
"\\",
|
||||
"_",
|
||||
"-",
|
||||
">",
|
||||
"<",
|
||||
"@",
|
||||
"`",
|
||||
",",
|
||||
"?",
|
||||
"!",
|
||||
]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
def word_tokenize(self, word):
|
||||
word = word.lower()
|
||||
word = word.replace(",", "").replace("?", "").replace("'s", " 's")
|
||||
return word.strip()
|
||||
|
||||
def process_punctuation(self, in_text):
|
||||
out_text = in_text
|
||||
for p in self.PUNCTUATIONS:
|
||||
if (p + " " in in_text or " " + p in in_text) or (
|
||||
re.search(self.COMMA_STRIP, in_text) is not None
|
||||
):
|
||||
out_text = out_text.replace(p, "")
|
||||
else:
|
||||
out_text = out_text.replace(p, " ")
|
||||
out_text = self.PERIOD_STRIP.sub("", out_text, re.UNICODE)
|
||||
return out_text
|
||||
|
||||
def process_digit_article(self, in_text):
|
||||
out_text = []
|
||||
temp_text = in_text.lower().split()
|
||||
for word in temp_text:
|
||||
word = self.NUMBER_MAP.setdefault(word, word)
|
||||
if word not in self.ARTICLES:
|
||||
out_text.append(word)
|
||||
else:
|
||||
pass
|
||||
for word_id, word in enumerate(out_text):
|
||||
if word in self.CONTRACTIONS:
|
||||
out_text[word_id] = self.CONTRACTIONS[word]
|
||||
out_text = " ".join(out_text)
|
||||
return out_text
|
||||
|
||||
def __call__(self, item):
|
||||
item = self.word_tokenize(item)
|
||||
item = item.replace("\n", " ").replace("\t", " ").strip()
|
||||
item = self.process_punctuation(item)
|
||||
item = self.process_digit_article(item)
|
||||
return item
|
||||
|
||||
|
||||
class TextVQAAccuracyEvaluator:
|
||||
def __init__(self):
|
||||
self.answer_processor = EvalAIAnswerProcessor()
|
||||
|
||||
def _compute_answer_scores(self, raw_answers):
|
||||
"""
|
||||
compute the accuracy (soft score) of human answers
|
||||
"""
|
||||
answers = [self.answer_processor(a) for a in raw_answers]
|
||||
assert len(answers) == 10
|
||||
gt_answers = list(enumerate(answers))
|
||||
unique_answers = set(answers)
|
||||
unique_answer_scores = {}
|
||||
|
||||
for unique_answer in unique_answers:
|
||||
accs = []
|
||||
for gt_answer in gt_answers:
|
||||
other_answers = [item for item in gt_answers if item != gt_answer]
|
||||
matching_answers = [
|
||||
item for item in other_answers if item[1] == unique_answer
|
||||
]
|
||||
acc = min(1, float(len(matching_answers)) / 3)
|
||||
accs.append(acc)
|
||||
unique_answer_scores[unique_answer] = sum(accs) / len(accs)
|
||||
|
||||
return unique_answer_scores
|
||||
|
||||
def eval_pred_list(self, pred_list):
|
||||
pred_scores = []
|
||||
for entry in tqdm(pred_list):
|
||||
pred_answer = self.answer_processor(entry["pred_answer"])
|
||||
unique_answer_scores = self._compute_answer_scores(entry["gt_answers"])
|
||||
score = unique_answer_scores.get(pred_answer, 0.0)
|
||||
pred_scores.append(score)
|
||||
|
||||
accuracy = sum(pred_scores) / len(pred_scores)
|
||||
return accuracy
|
||||
|
||||
|
||||
class STVQAAccuracyEvaluator:
|
||||
def __init__(self):
|
||||
self.answer_processor = EvalAIAnswerProcessor()
|
||||
|
||||
def eval_pred_list(self, pred_list):
|
||||
pred_scores = []
|
||||
for entry in pred_list:
|
||||
pred_answer = self.answer_processor(entry["pred_answer"])
|
||||
gts = [self.answer_processor(a) for a in entry["gt_answers"]]
|
||||
score = 1.0 if pred_answer in gts else 0.0
|
||||
pred_scores.append(score)
|
||||
|
||||
accuracy = sum(pred_scores) / len(pred_scores)
|
||||
return accuracy
|
||||
|
||||
|
||||
class STVQAANLSEvaluator:
|
||||
def __init__(self):
|
||||
import editdistance # install with `pip install editdistance`
|
||||
|
||||
self.get_edit_distance = editdistance.eval
|
||||
|
||||
def get_anls(self, s1, s2):
|
||||
s1 = s1.lower().strip()
|
||||
s2 = s2.lower().strip()
|
||||
iou = 1 - self.get_edit_distance(s1, s2) / max(len(s1), len(s2))
|
||||
anls = iou if iou >= 0.5 else 0.0
|
||||
return anls
|
||||
|
||||
def eval_pred_list(self, pred_list):
|
||||
pred_scores = []
|
||||
for entry in pred_list:
|
||||
anls = max(
|
||||
self.get_anls(entry["pred_answer"], gt) for gt in entry["gt_answers"]
|
||||
)
|
||||
pred_scores.append(anls)
|
||||
|
||||
accuracy = sum(pred_scores) / len(pred_scores)
|
||||
return accuracy
|
||||
|
||||
|
||||
class TextCapsBleu4Evaluator:
|
||||
def __init__(self):
|
||||
# The following script requires Java 1.8.0 and pycocotools installed.
|
||||
# The pycocoevalcap can be installed with pip as
|
||||
# pip install git+https://github.com/ronghanghu/coco-caption.git@python23
|
||||
# Original pycocoevalcap code is at https://github.com/tylin/coco-caption
|
||||
# but has no python3 support yet.
|
||||
try:
|
||||
from pycocoevalcap.bleu.bleu import Bleu
|
||||
from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer
|
||||
except ModuleNotFoundError:
|
||||
print(
|
||||
"Please install pycocoevalcap module using "
|
||||
"pip install git+https://github.com/ronghanghu/coco-caption.git@python23" # noqa
|
||||
)
|
||||
raise
|
||||
|
||||
self.tokenizer = PTBTokenizer()
|
||||
self.scorer = Bleu(4)
|
||||
|
||||
def eval_pred_list(self, pred_list):
|
||||
# Create reference and hypotheses captions.
|
||||
gts = {}
|
||||
res = {}
|
||||
for idx, entry in enumerate(pred_list):
|
||||
gts[idx] = [{"caption": a} for a in entry["gt_answers"]]
|
||||
res[idx] = [{"caption": entry["pred_answer"]}]
|
||||
|
||||
gts = self.tokenizer.tokenize(gts)
|
||||
res = self.tokenizer.tokenize(res)
|
||||
score, _ = self.scorer.compute_score(gts, res)
|
||||
|
||||
bleu4 = score[3] # score is (Bleu-1, Bleu-2, Bleu-3, Bleu-4)
|
||||
return bleu4
|
||||
64
llava/eval/model_qa.py
Normal file
@@ -0,0 +1,64 @@
|
||||
import argparse
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
import shortuuid
|
||||
|
||||
from llava.conversation import default_conversation
|
||||
from llava.utils import disable_torch_init
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def eval_model(model_name, questions_file, answers_file):
|
||||
# Model
|
||||
disable_torch_init()
|
||||
model_name = os.path.expanduser(model_name)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_name,
|
||||
torch_dtype=torch.float16).cuda()
|
||||
|
||||
|
||||
ques_file = open(os.path.expanduser(questions_file), "r")
|
||||
ans_file = open(os.path.expanduser(answers_file), "w")
|
||||
for i, line in enumerate(tqdm(ques_file)):
|
||||
idx = json.loads(line)["question_id"]
|
||||
qs = json.loads(line)["text"]
|
||||
cat = json.loads(line)["category"]
|
||||
conv = default_conversation.copy()
|
||||
conv.append_message(conv.roles[0], qs)
|
||||
prompt = conv.get_prompt()
|
||||
inputs = tokenizer([prompt])
|
||||
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
do_sample=True,
|
||||
use_cache=True,
|
||||
temperature=0.7,
|
||||
max_new_tokens=1024,)
|
||||
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
||||
try:
|
||||
index = outputs.index(conv.sep, len(prompt))
|
||||
except ValueError:
|
||||
outputs += conv.sep
|
||||
index = outputs.index(conv.sep, len(prompt))
|
||||
|
||||
outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip()
|
||||
ans_id = shortuuid.uuid()
|
||||
ans_file.write(json.dumps({"question_id": idx,
|
||||
"text": outputs,
|
||||
"answer_id": ans_id,
|
||||
"model_id": model_name,
|
||||
"metadata": {}}) + "\n")
|
||||
ans_file.flush()
|
||||
ans_file.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
|
||||
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
||||
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
||||
args = parser.parse_args()
|
||||
|
||||
eval_model(args.model_name, args.question_file, args.answers_file)
|
||||
101
llava/eval/model_vqa.py
Normal file
@@ -0,0 +1,101 @@
|
||||
import argparse
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
import shortuuid
|
||||
|
||||
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
||||
from llava.conversation import conv_templates, SeparatorStyle
|
||||
from llava.model.builder import load_pretrained_model
|
||||
from llava.utils import disable_torch_init
|
||||
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
||||
|
||||
from PIL import Image
|
||||
import math
|
||||
|
||||
|
||||
def split_list(lst, n):
|
||||
"""Split a list into n (roughly) equal-sized chunks"""
|
||||
chunk_size = math.ceil(len(lst) / n) # integer division
|
||||
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
||||
|
||||
|
||||
def get_chunk(lst, n, k):
|
||||
chunks = split_list(lst, n)
|
||||
return chunks[k]
|
||||
|
||||
|
||||
def eval_model(args):
|
||||
# Model
|
||||
disable_torch_init()
|
||||
model_path = os.path.expanduser(args.model_path)
|
||||
model_name = get_model_name_from_path(model_path)
|
||||
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
||||
|
||||
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
|
||||
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
||||
answers_file = os.path.expanduser(args.answers_file)
|
||||
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
||||
ans_file = open(answers_file, "w")
|
||||
for line in tqdm(questions):
|
||||
idx = line["question_id"]
|
||||
image_file = line["image"]
|
||||
qs = line["text"]
|
||||
cur_prompt = qs
|
||||
if model.config.mm_use_im_start_end:
|
||||
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
||||
else:
|
||||
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
||||
|
||||
conv = conv_templates[args.conv_mode].copy()
|
||||
conv.append_message(conv.roles[0], qs)
|
||||
conv.append_message(conv.roles[1], None)
|
||||
prompt = conv.get_prompt()
|
||||
|
||||
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
||||
|
||||
image = Image.open(os.path.join(args.image_folder, image_file)).convert('RGB')
|
||||
image_tensor = process_images([image], image_processor, model.config)[0]
|
||||
|
||||
with torch.inference_mode():
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
images=image_tensor.unsqueeze(0).half().cuda(),
|
||||
image_sizes=[image.size],
|
||||
do_sample=True if args.temperature > 0 else False,
|
||||
temperature=args.temperature,
|
||||
top_p=args.top_p,
|
||||
num_beams=args.num_beams,
|
||||
# no_repeat_ngram_size=3,
|
||||
max_new_tokens=1024,
|
||||
use_cache=True)
|
||||
|
||||
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
||||
|
||||
ans_id = shortuuid.uuid()
|
||||
ans_file.write(json.dumps({"question_id": idx,
|
||||
"prompt": cur_prompt,
|
||||
"text": outputs,
|
||||
"answer_id": ans_id,
|
||||
"model_id": model_name,
|
||||
"metadata": {}}) + "\n")
|
||||
ans_file.flush()
|
||||
ans_file.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
||||
parser.add_argument("--model-base", type=str, default=None)
|
||||
parser.add_argument("--image-folder", type=str, default="")
|
||||
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
||||
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
||||
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
||||
parser.add_argument("--num-chunks", type=int, default=1)
|
||||
parser.add_argument("--chunk-idx", type=int, default=0)
|
||||
parser.add_argument("--temperature", type=float, default=0.2)
|
||||
parser.add_argument("--top_p", type=float, default=None)
|
||||
parser.add_argument("--num_beams", type=int, default=1)
|
||||
args = parser.parse_args()
|
||||
|
||||
eval_model(args)
|
||||
144
llava/eval/model_vqa_loader.py
Normal file
@@ -0,0 +1,144 @@
|
||||
import argparse
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
import shortuuid
|
||||
|
||||
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
||||
from llava.conversation import conv_templates, SeparatorStyle
|
||||
from llava.model.builder import load_pretrained_model
|
||||
from llava.utils import disable_torch_init
|
||||
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
|
||||
from PIL import Image
|
||||
import math
|
||||
|
||||
|
||||
def split_list(lst, n):
|
||||
"""Split a list into n (roughly) equal-sized chunks"""
|
||||
chunk_size = math.ceil(len(lst) / n) # integer division
|
||||
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
||||
|
||||
|
||||
def get_chunk(lst, n, k):
|
||||
chunks = split_list(lst, n)
|
||||
return chunks[k]
|
||||
|
||||
|
||||
# Custom dataset class
|
||||
class CustomDataset(Dataset):
|
||||
def __init__(self, questions, image_folder, tokenizer, image_processor, model_config):
|
||||
self.questions = questions
|
||||
self.image_folder = image_folder
|
||||
self.tokenizer = tokenizer
|
||||
self.image_processor = image_processor
|
||||
self.model_config = model_config
|
||||
|
||||
def __getitem__(self, index):
|
||||
line = self.questions[index]
|
||||
image_file = line["image"]
|
||||
qs = line["text"]
|
||||
if self.model_config.mm_use_im_start_end:
|
||||
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
||||
else:
|
||||
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
||||
|
||||
conv = conv_templates[args.conv_mode].copy()
|
||||
conv.append_message(conv.roles[0], qs)
|
||||
conv.append_message(conv.roles[1], None)
|
||||
prompt = conv.get_prompt()
|
||||
|
||||
image = Image.open(os.path.join(self.image_folder, image_file)).convert('RGB')
|
||||
image_tensor = process_images([image], self.image_processor, self.model_config)[0]
|
||||
|
||||
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
|
||||
|
||||
return input_ids, image_tensor, image.size
|
||||
|
||||
def __len__(self):
|
||||
return len(self.questions)
|
||||
|
||||
|
||||
def collate_fn(batch):
|
||||
input_ids, image_tensors, image_sizes = zip(*batch)
|
||||
input_ids = torch.stack(input_ids, dim=0)
|
||||
image_tensors = torch.stack(image_tensors, dim=0)
|
||||
return input_ids, image_tensors, image_sizes
|
||||
|
||||
|
||||
# DataLoader
|
||||
def create_data_loader(questions, image_folder, tokenizer, image_processor, model_config, batch_size=1, num_workers=4):
|
||||
assert batch_size == 1, "batch_size must be 1"
|
||||
dataset = CustomDataset(questions, image_folder, tokenizer, image_processor, model_config)
|
||||
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn)
|
||||
return data_loader
|
||||
|
||||
|
||||
def eval_model(args):
|
||||
# Model
|
||||
disable_torch_init()
|
||||
model_path = os.path.expanduser(args.model_path)
|
||||
model_name = get_model_name_from_path(model_path)
|
||||
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
||||
|
||||
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
|
||||
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
||||
answers_file = os.path.expanduser(args.answers_file)
|
||||
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
||||
ans_file = open(answers_file, "w")
|
||||
|
||||
if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
|
||||
args.conv_mode = args.conv_mode + '_mmtag'
|
||||
print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
|
||||
|
||||
data_loader = create_data_loader(questions, args.image_folder, tokenizer, image_processor, model.config)
|
||||
|
||||
for (input_ids, image_tensor, image_sizes), line in tqdm(zip(data_loader, questions), total=len(questions)):
|
||||
idx = line["question_id"]
|
||||
cur_prompt = line["text"]
|
||||
|
||||
input_ids = input_ids.to(device='cuda', non_blocking=True)
|
||||
|
||||
with torch.inference_mode():
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
|
||||
image_sizes=image_sizes,
|
||||
do_sample=True if args.temperature > 0 else False,
|
||||
temperature=args.temperature,
|
||||
top_p=args.top_p,
|
||||
num_beams=args.num_beams,
|
||||
max_new_tokens=args.max_new_tokens,
|
||||
use_cache=True)
|
||||
|
||||
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
||||
|
||||
ans_id = shortuuid.uuid()
|
||||
ans_file.write(json.dumps({"question_id": idx,
|
||||
"prompt": cur_prompt,
|
||||
"text": outputs,
|
||||
"answer_id": ans_id,
|
||||
"model_id": model_name,
|
||||
"metadata": {}}) + "\n")
|
||||
# ans_file.flush()
|
||||
ans_file.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
||||
parser.add_argument("--model-base", type=str, default=None)
|
||||
parser.add_argument("--image-folder", type=str, default="")
|
||||
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
||||
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
||||
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
||||
parser.add_argument("--num-chunks", type=int, default=1)
|
||||
parser.add_argument("--chunk-idx", type=int, default=0)
|
||||
parser.add_argument("--temperature", type=float, default=0.2)
|
||||
parser.add_argument("--top_p", type=float, default=None)
|
||||
parser.add_argument("--num_beams", type=int, default=1)
|
||||
parser.add_argument("--max_new_tokens", type=int, default=128)
|
||||
args = parser.parse_args()
|
||||
|
||||
eval_model(args)
|
||||
160
llava/eval/model_vqa_mmbench.py
Normal file
@@ -0,0 +1,160 @@
|
||||
import argparse
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
import pandas as pd
|
||||
from tqdm import tqdm
|
||||
import shortuuid
|
||||
|
||||
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
||||
from llava.conversation import conv_templates, SeparatorStyle
|
||||
from llava.model.builder import load_pretrained_model
|
||||
from llava.utils import disable_torch_init
|
||||
from llava.mm_utils import tokenizer_image_token, process_images, load_image_from_base64, get_model_name_from_path
|
||||
|
||||
from PIL import Image
|
||||
import math
|
||||
|
||||
|
||||
all_options = ['A', 'B', 'C', 'D']
|
||||
|
||||
|
||||
def split_list(lst, n):
|
||||
"""Split a list into n (roughly) equal-sized chunks"""
|
||||
chunk_size = math.ceil(len(lst) / n) # integer division
|
||||
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
||||
|
||||
|
||||
def get_chunk(lst, n, k):
|
||||
chunks = split_list(lst, n)
|
||||
return chunks[k]
|
||||
|
||||
|
||||
def is_none(value):
|
||||
if value is None:
|
||||
return True
|
||||
if type(value) is float and math.isnan(value):
|
||||
return True
|
||||
if type(value) is str and value.lower() == 'nan':
|
||||
return True
|
||||
if type(value) is str and value.lower() == 'none':
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_options(row, options):
|
||||
parsed_options = []
|
||||
for option in options:
|
||||
option_value = row[option]
|
||||
if is_none(option_value):
|
||||
break
|
||||
parsed_options.append(option_value)
|
||||
return parsed_options
|
||||
|
||||
|
||||
def eval_model(args):
|
||||
# Model
|
||||
disable_torch_init()
|
||||
model_path = os.path.expanduser(args.model_path)
|
||||
model_name = get_model_name_from_path(model_path)
|
||||
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
||||
|
||||
questions = pd.read_table(os.path.expanduser(args.question_file))
|
||||
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
||||
answers_file = os.path.expanduser(args.answers_file)
|
||||
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
||||
ans_file = open(answers_file, "w")
|
||||
|
||||
if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
|
||||
args.conv_mode = args.conv_mode + '_mmtag'
|
||||
print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
|
||||
|
||||
for index, row in tqdm(questions.iterrows(), total=len(questions)):
|
||||
options = get_options(row, all_options)
|
||||
cur_option_char = all_options[:len(options)]
|
||||
|
||||
if args.all_rounds:
|
||||
num_rounds = len(options)
|
||||
else:
|
||||
num_rounds = 1
|
||||
|
||||
for round_idx in range(num_rounds):
|
||||
idx = row['index']
|
||||
question = row['question']
|
||||
hint = row['hint']
|
||||
image = load_image_from_base64(row['image'])
|
||||
if not is_none(hint):
|
||||
question = hint + '\n' + question
|
||||
for option_char, option in zip(all_options[:len(options)], options):
|
||||
question = question + '\n' + option_char + '. ' + option
|
||||
qs = cur_prompt = question
|
||||
if model.config.mm_use_im_start_end:
|
||||
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
||||
else:
|
||||
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
||||
|
||||
if args.single_pred_prompt:
|
||||
if args.lang == 'cn':
|
||||
qs = qs + '\n' + "请直接回答选项字母。"
|
||||
else:
|
||||
qs = qs + '\n' + "Answer with the option's letter from the given choices directly."
|
||||
|
||||
conv = conv_templates[args.conv_mode].copy()
|
||||
conv.append_message(conv.roles[0], qs)
|
||||
conv.append_message(conv.roles[1], None)
|
||||
prompt = conv.get_prompt()
|
||||
|
||||
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
||||
|
||||
image_tensor = process_images([image], image_processor, model.config)[0]
|
||||
|
||||
with torch.inference_mode():
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
images=image_tensor.unsqueeze(0).half().cuda(),
|
||||
image_sizes=[image.size],
|
||||
do_sample=True if args.temperature > 0 else False,
|
||||
temperature=args.temperature,
|
||||
top_p=args.top_p,
|
||||
num_beams=args.num_beams,
|
||||
# no_repeat_ngram_size=3,
|
||||
max_new_tokens=1024,
|
||||
use_cache=True)
|
||||
|
||||
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
||||
|
||||
ans_id = shortuuid.uuid()
|
||||
ans_file.write(json.dumps({"question_id": idx,
|
||||
"round_id": round_idx,
|
||||
"prompt": cur_prompt,
|
||||
"text": outputs,
|
||||
"options": options,
|
||||
"option_char": cur_option_char,
|
||||
"answer_id": ans_id,
|
||||
"model_id": model_name,
|
||||
"metadata": {}}) + "\n")
|
||||
ans_file.flush()
|
||||
|
||||
# rotate options
|
||||
options = options[1:] + options[:1]
|
||||
cur_option_char = cur_option_char[1:] + cur_option_char[:1]
|
||||
ans_file.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
||||
parser.add_argument("--model-base", type=str, default=None)
|
||||
parser.add_argument("--image-folder", type=str, default="")
|
||||
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
||||
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
||||
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
||||
parser.add_argument("--num-chunks", type=int, default=1)
|
||||
parser.add_argument("--chunk-idx", type=int, default=0)
|
||||
parser.add_argument("--temperature", type=float, default=0.2)
|
||||
parser.add_argument("--top_p", type=float, default=None)
|
||||
parser.add_argument("--num_beams", type=int, default=1)
|
||||
parser.add_argument("--all-rounds", action="store_true")
|
||||
parser.add_argument("--single-pred-prompt", action="store_true")
|
||||
parser.add_argument("--lang", type=str, default="en")
|
||||
args = parser.parse_args()
|
||||
|
||||
eval_model(args)
|
||||
111
llava/eval/model_vqa_science.py
Normal file
@@ -0,0 +1,111 @@
|
||||
import argparse
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
import shortuuid
|
||||
|
||||
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
||||
from llava.conversation import conv_templates, SeparatorStyle
|
||||
from llava.model.builder import load_pretrained_model
|
||||
from llava.utils import disable_torch_init
|
||||
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
||||
|
||||
from PIL import Image
|
||||
import math
|
||||
|
||||
|
||||
def split_list(lst, n):
|
||||
"""Split a list into n (roughly) equal-sized chunks"""
|
||||
chunk_size = math.ceil(len(lst) / n) # integer division
|
||||
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
||||
|
||||
|
||||
def get_chunk(lst, n, k):
|
||||
chunks = split_list(lst, n)
|
||||
return chunks[k]
|
||||
|
||||
|
||||
def eval_model(args):
|
||||
# Model
|
||||
disable_torch_init()
|
||||
model_path = os.path.expanduser(args.model_path)
|
||||
model_name = get_model_name_from_path(model_path)
|
||||
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
||||
|
||||
questions = json.load(open(os.path.expanduser(args.question_file), "r"))
|
||||
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
||||
answers_file = os.path.expanduser(args.answers_file)
|
||||
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
||||
ans_file = open(answers_file, "w")
|
||||
for i, line in enumerate(tqdm(questions)):
|
||||
idx = line["id"]
|
||||
question = line['conversations'][0]
|
||||
qs = question['value'].replace('<image>', '').strip()
|
||||
cur_prompt = qs
|
||||
|
||||
if 'image' in line:
|
||||
image_file = line["image"]
|
||||
image = Image.open(os.path.join(args.image_folder, image_file))
|
||||
image_tensor = process_images([image], image_processor, model.config)[0]
|
||||
images = image_tensor.unsqueeze(0).half().cuda()
|
||||
image_sizes = [image.size]
|
||||
if getattr(model.config, 'mm_use_im_start_end', False):
|
||||
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
||||
else:
|
||||
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
||||
cur_prompt = '<image>' + '\n' + cur_prompt
|
||||
else:
|
||||
images = None
|
||||
image_sizes = None
|
||||
|
||||
if args.single_pred_prompt:
|
||||
qs = qs + '\n' + "Answer with the option's letter from the given choices directly."
|
||||
cur_prompt = cur_prompt + '\n' + "Answer with the option's letter from the given choices directly."
|
||||
|
||||
conv = conv_templates[args.conv_mode].copy()
|
||||
conv.append_message(conv.roles[0], qs)
|
||||
conv.append_message(conv.roles[1], None)
|
||||
prompt = conv.get_prompt()
|
||||
|
||||
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
||||
|
||||
with torch.inference_mode():
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
images=images,
|
||||
image_sizes=image_sizes,
|
||||
do_sample=True if args.temperature > 0 else False,
|
||||
temperature=args.temperature,
|
||||
max_new_tokens=1024,
|
||||
use_cache=True,
|
||||
)
|
||||
|
||||
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
||||
|
||||
ans_id = shortuuid.uuid()
|
||||
ans_file.write(json.dumps({"question_id": idx,
|
||||
"prompt": cur_prompt,
|
||||
"text": outputs,
|
||||
"answer_id": ans_id,
|
||||
"model_id": model_name,
|
||||
"metadata": {}}) + "\n")
|
||||
ans_file.flush()
|
||||
ans_file.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
||||
parser.add_argument("--model-base", type=str, default=None)
|
||||
parser.add_argument("--image-folder", type=str, default="")
|
||||
parser.add_argument("--question-file", type=str, default="tables/question.json")
|
||||
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
||||
parser.add_argument("--conv-mode", type=str, default="llava_v0")
|
||||
parser.add_argument("--num-chunks", type=int, default=1)
|
||||
parser.add_argument("--chunk-idx", type=int, default=0)
|
||||
parser.add_argument("--temperature", type=float, default=0.2)
|
||||
parser.add_argument("--answer-prompter", action="store_true")
|
||||
parser.add_argument("--single-pred-prompt", action="store_true")
|
||||
args = parser.parse_args()
|
||||
|
||||
eval_model(args)
|
||||
74
llava/eval/qa_baseline_gpt35.py
Normal file
@@ -0,0 +1,74 @@
|
||||
"""Generate answers with GPT-3.5"""
|
||||
# Note: you need to be using OpenAI Python v0.27.0 for the code below to work
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import concurrent.futures
|
||||
|
||||
import openai
|
||||
import tqdm
|
||||
import shortuuid
|
||||
|
||||
MODEL = 'gpt-3.5-turbo'
|
||||
MODEL_ID = 'gpt-3.5-turbo:20230327'
|
||||
|
||||
def get_answer(question_id: int, question: str, max_tokens: int):
|
||||
ans = {
|
||||
'answer_id': shortuuid.uuid(),
|
||||
'question_id': question_id,
|
||||
'model_id': MODEL_ID,
|
||||
}
|
||||
for _ in range(3):
|
||||
try:
|
||||
response = openai.ChatCompletion.create(
|
||||
model=MODEL,
|
||||
messages=[{
|
||||
'role': 'system',
|
||||
'content': 'You are a helpful assistant.'
|
||||
}, {
|
||||
'role': 'user',
|
||||
'content': question,
|
||||
}],
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
ans['text'] = response['choices'][0]['message']['content']
|
||||
return ans
|
||||
except Exception as e:
|
||||
print('[ERROR]', e)
|
||||
ans['text'] = '#ERROR#'
|
||||
time.sleep(1)
|
||||
return ans
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='ChatGPT answer generation.')
|
||||
parser.add_argument('-q', '--question')
|
||||
parser.add_argument('-o', '--output')
|
||||
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
||||
args = parser.parse_args()
|
||||
|
||||
questions_dict = {}
|
||||
with open(os.path.expanduser(args.question)) as f:
|
||||
for line in f:
|
||||
if not line:
|
||||
continue
|
||||
q = json.loads(line)
|
||||
questions_dict[q['question_id']] = q['text']
|
||||
|
||||
answers = []
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=32) as executor:
|
||||
futures = []
|
||||
for qid, question in questions_dict.items():
|
||||
future = executor.submit(get_answer, qid, question, args.max_tokens)
|
||||
futures.append(future)
|
||||
|
||||
for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
|
||||
answers.append(future.result())
|
||||
|
||||
answers.sort(key=lambda x: x['question_id'])
|
||||
|
||||
with open(os.path.expanduser(args.output), 'w') as f:
|
||||
table = [json.dumps(ans) for ans in answers]
|
||||
f.write('\n'.join(table))
|
||||
155
llava/eval/run_llava.py
Normal file
@@ -0,0 +1,155 @@
|
||||
import argparse
|
||||
import torch
|
||||
|
||||
from llava.constants import (
|
||||
IMAGE_TOKEN_INDEX,
|
||||
DEFAULT_IMAGE_TOKEN,
|
||||
DEFAULT_IM_START_TOKEN,
|
||||
DEFAULT_IM_END_TOKEN,
|
||||
IMAGE_PLACEHOLDER,
|
||||
)
|
||||
from llava.conversation import conv_templates, SeparatorStyle
|
||||
from llava.model.builder import load_pretrained_model
|
||||
from llava.utils import disable_torch_init
|
||||
from llava.mm_utils import (
|
||||
process_images,
|
||||
tokenizer_image_token,
|
||||
get_model_name_from_path,
|
||||
)
|
||||
|
||||
from PIL import Image
|
||||
|
||||
import requests
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
import re
|
||||
|
||||
|
||||
def image_parser(args):
|
||||
out = args.image_file.split(args.sep)
|
||||
return out
|
||||
|
||||
|
||||
def load_image(image_file):
|
||||
if image_file.startswith("http") or image_file.startswith("https"):
|
||||
response = requests.get(image_file)
|
||||
image = Image.open(BytesIO(response.content)).convert("RGB")
|
||||
else:
|
||||
image = Image.open(image_file).convert("RGB")
|
||||
return image
|
||||
|
||||
|
||||
def load_images(image_files):
|
||||
out = []
|
||||
for image_file in image_files:
|
||||
image = load_image(image_file)
|
||||
out.append(image)
|
||||
return out
|
||||
|
||||
|
||||
def eval_model(args):
|
||||
# Model
|
||||
disable_torch_init()
|
||||
|
||||
model_name = get_model_name_from_path(args.model_path)
|
||||
model_name= 'llava'
|
||||
|
||||
tokenizer, model, image_processor, context_len = load_pretrained_model(
|
||||
args.model_path, args.model_base, model_name
|
||||
)
|
||||
|
||||
qs = args.query
|
||||
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
|
||||
if IMAGE_PLACEHOLDER in qs:
|
||||
if model.config.mm_use_im_start_end:
|
||||
qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs)
|
||||
else:
|
||||
qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs)
|
||||
else:
|
||||
if model.config.mm_use_im_start_end:
|
||||
qs = image_token_se + "\n" + qs
|
||||
else:
|
||||
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
|
||||
|
||||
if "llama-2" in model_name.lower():
|
||||
conv_mode = "llava_llama_2"
|
||||
elif "mistral" in model_name.lower():
|
||||
conv_mode = "mistral_instruct"
|
||||
elif "v1.6-34b" in model_name.lower():
|
||||
conv_mode = "chatml_direct"
|
||||
elif "v1" in model_name.lower():
|
||||
conv_mode = "llava_v1"
|
||||
elif "mpt" in model_name.lower():
|
||||
conv_mode = "mpt"
|
||||
else:
|
||||
conv_mode = "llava_v0"
|
||||
|
||||
if args.conv_mode is not None and conv_mode != args.conv_mode:
|
||||
print(
|
||||
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
|
||||
conv_mode, args.conv_mode, args.conv_mode
|
||||
)
|
||||
)
|
||||
else:
|
||||
args.conv_mode = conv_mode
|
||||
|
||||
conv = conv_templates[args.conv_mode].copy()
|
||||
conv.append_message(conv.roles[0], qs)
|
||||
conv.append_message(conv.roles[1], None)
|
||||
prompt = conv.get_prompt()
|
||||
conv.tokenizer = tokenizer
|
||||
|
||||
image_files = image_parser(args)
|
||||
images = load_images(image_files)
|
||||
image_sizes = [x.size for x in images]
|
||||
images_tensor = process_images(
|
||||
images,
|
||||
image_processor,
|
||||
model.config
|
||||
).to(model.device, dtype=torch.float16)
|
||||
|
||||
input_ids = (
|
||||
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
||||
.unsqueeze(0)
|
||||
.cuda()
|
||||
)
|
||||
|
||||
with torch.inference_mode():
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
images=images_tensor,
|
||||
image_sizes=image_sizes,
|
||||
do_sample=True if args.temperature > 0 else False,
|
||||
temperature=args.temperature,
|
||||
top_p=args.top_p,
|
||||
num_beams=args.num_beams,
|
||||
max_new_tokens=args.max_new_tokens,
|
||||
use_cache=True,
|
||||
)
|
||||
|
||||
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
||||
print(outputs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-path", type=str, default="aimagelab/LLaVA_MORE-llama_3_1-8B-finetuning")
|
||||
parser.add_argument("--model-base", type=str, default=None)
|
||||
parser.add_argument("--image-file", type=str, default='https://farm2.staticflickr.com/1168/4723652147_ae14813f08_z.jpg')
|
||||
parser.add_argument("--query", type=str, default="Describe this image.")
|
||||
parser.add_argument("--conv-mode", type=str, default=None)
|
||||
parser.add_argument("--sep", type=str, default=",")
|
||||
parser.add_argument("--temperature", type=float, default=0.2)
|
||||
parser.add_argument("--top_p", type=float, default=None)
|
||||
parser.add_argument("--num_beams", type=int, default=1)
|
||||
parser.add_argument("--max_new_tokens", type=int, default=128)
|
||||
args = parser.parse_args()
|
||||
|
||||
# args.conv_mode= 'vicuna_v1'
|
||||
# args.conv_mode= 'llama_3'
|
||||
args.conv_mode= 'llama_3_1'
|
||||
|
||||
print(f"conversation mode: {args.conv_mode}")
|
||||
print(f"model name: {args.model_path}")
|
||||
|
||||
eval_model(args)
|
||||
60
llava/eval/summarize_gpt_review.py
Normal file
@@ -0,0 +1,60 @@
|
||||
import json
|
||||
import os
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
|
||||
import argparse
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
||||
parser.add_argument('-d', '--dir', default=None)
|
||||
parser.add_argument('-v', '--version', default=None)
|
||||
parser.add_argument('-s', '--select', nargs='*', default=None)
|
||||
parser.add_argument('-f', '--files', nargs='*', default=[])
|
||||
parser.add_argument('-i', '--ignore', nargs='*', default=[])
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
|
||||
if args.ignore is not None:
|
||||
args.ignore = [int(x) for x in args.ignore]
|
||||
|
||||
if len(args.files) > 0:
|
||||
review_files = args.files
|
||||
else:
|
||||
review_files = [x for x in os.listdir(args.dir) if x.endswith('.jsonl') and (x.startswith('gpt4_text') or x.startswith('reviews_') or x.startswith('review_') or 'review' in args.dir)]
|
||||
|
||||
for review_file in sorted(review_files):
|
||||
config = os.path.basename(review_file).replace('gpt4_text_', '').replace('.jsonl', '')
|
||||
if args.select is not None and any(x not in config for x in args.select):
|
||||
continue
|
||||
if '0613' in config:
|
||||
version = '0613'
|
||||
else:
|
||||
version = '0314'
|
||||
if args.version is not None and args.version != version:
|
||||
continue
|
||||
scores = defaultdict(list)
|
||||
print(config)
|
||||
with open(os.path.join(args.dir, review_file) if args.dir is not None else review_file) as f:
|
||||
for review_str in f:
|
||||
review = json.loads(review_str)
|
||||
if review['question_id'] in args.ignore:
|
||||
continue
|
||||
if 'category' in review:
|
||||
scores[review['category']].append(review['tuple'])
|
||||
scores['all'].append(review['tuple'])
|
||||
else:
|
||||
if 'tuple' in review:
|
||||
scores['all'].append(review['tuple'])
|
||||
else:
|
||||
scores['all'].append(review['score'])
|
||||
for k, v in sorted(scores.items()):
|
||||
stats = np.asarray(v).mean(0).tolist()
|
||||
stats = [round(x, 3) for x in stats]
|
||||
# print(k, stats, round(stats[1]/stats[0]*100, 1))
|
||||
print(k, round(stats[1]/stats[0]*100, 1), round(stats[0] * 10, 1), round(stats[1] * 10, 1))
|
||||
print('=================================')
|
||||
BIN
llava/eval/webpage/figures/alpaca.png
Normal file
|
After Width: | Height: | Size: 94 KiB |
BIN
llava/eval/webpage/figures/bard.jpg
Normal file
|
After Width: | Height: | Size: 15 KiB |
1
llava/eval/webpage/figures/chatgpt.svg
Normal file
@@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 2406 2406"><path d="M1 578.4C1 259.5 259.5 1 578.4 1h1249.1c319 0 577.5 258.5 577.5 577.4V2406H578.4C259.5 2406 1 2147.5 1 1828.6V578.4z" fill="#74aa9c"/><path d="M1107.3 299.1c-198 0-373.9 127.3-435.2 315.3C544.8 640.6 434.9 720.2 370.5 833c-99.3 171.4-76.6 386.9 56.4 533.8-41.1 123.1-27 257.7 38.6 369.2 98.7 172 297.3 260.2 491.6 219.2 86.1 97 209.8 152.3 339.6 151.8 198 0 373.9-127.3 435.3-315.3 127.5-26.3 237.2-105.9 301-218.5 99.9-171.4 77.2-386.9-55.8-533.9v-.6c41.1-123.1 27-257.8-38.6-369.8-98.7-171.4-297.3-259.6-491-218.6-86.6-96.8-210.5-151.8-340.3-151.2zm0 117.5-.6.6c79.7 0 156.3 27.5 217.6 78.4-2.5 1.2-7.4 4.3-11 6.1L952.8 709.3c-18.4 10.4-29.4 30-29.4 51.4V1248l-155.1-89.4V755.8c-.1-187.1 151.6-338.9 339-339.2zm434.2 141.9c121.6-.2 234 64.5 294.7 169.8 39.2 68.6 53.9 148.8 40.4 226.5-2.5-1.8-7.3-4.3-10.4-6.1l-360.4-208.2c-18.4-10.4-41-10.4-59.4 0L1024 984.2V805.4L1372.7 604c51.3-29.7 109.5-45.4 168.8-45.5zM650 743.5v427.9c0 21.4 11 40.4 29.4 51.4l421.7 243-155.7 90L597.2 1355c-162-93.8-217.4-300.9-123.8-462.8C513.1 823.6 575.5 771 650 743.5zm807.9 106 348.8 200.8c162.5 93.7 217.6 300.6 123.8 462.8l.6.6c-39.8 68.6-102.4 121.2-176.5 148.2v-428c0-21.4-11-41-29.4-51.4l-422.3-243.7 155-89.3zM1201.7 997l177.8 102.8v205.1l-177.8 102.8-177.8-102.8v-205.1L1201.7 997zm279.5 161.6 155.1 89.4v402.2c0 187.3-152 339.2-339 339.2v-.6c-79.1 0-156.3-27.6-217-78.4 2.5-1.2 8-4.3 11-6.1l360.4-207.5c18.4-10.4 30-30 29.4-51.4l.1-486.8zM1380 1421.9v178.8l-348.8 200.8c-162.5 93.1-369.6 38-463.4-123.7h.6c-39.8-68-54-148.8-40.5-226.5 2.5 1.8 7.4 4.3 10.4 6.1l360.4 208.2c18.4 10.4 41 10.4 59.4 0l421.9-243.7z" fill="white"/></svg>
|
||||
|
After Width: | Height: | Size: 1.7 KiB |
BIN
llava/eval/webpage/figures/llama.jpg
Normal file
|
After Width: | Height: | Size: 55 KiB |
@@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" height="48" viewBox="0 96 960 960" width="48"><path d="m762.846 947.614-124.77-124.769-88 88-30.306-30.692q-16.616-16.231-16.616-40.077 0-23.846 16.616-40.461L708 611.385q16.23-16.231 40.076-16.231t40.462 16.231l30.307 30.691-88 88 124.154 124.77q8.615 8.615 8.615 20.23 0 11.616-8.615 20.231l-51.692 52.307q-8.615 9-20.231 9-11.615 0-20.23-9Zm97.153-624.076L412.768 771.153l27.847 28.077q16.231 16.616 16.231 40.462 0 23.846-16.231 40.077l-30.691 30.691-88-88-124.77 124.769q-8.615 9-20.23 9-11.616 0-20.231-9l-52.307-52.307q-9-8.615-9-20.23 0-11.616 9-20.231l124.769-124.769-88-88L171.847 611q16.231-16.23 40.077-16.23 23.846 0 40.461 16.23l28.462 28.232 447.615-447.231h131.537v131.537ZM323.846 483.769l33.769-34.154 34.154-34.153-34.154 34.153-33.769 34.154Zm-31.999 31.999-191.846-192.23V192.001h131.537l191.461 191.846-31.23 31.615-179.077-178.077h-67.307v67.307l178.461 179.077-31.999 31.999Zm87.691 222.77 435.077-433.846v-67.307h-67.307L312.231 670.846l67.307 67.692Zm0 0L346.385 704l-34.154-33.154L346.385 704l33.153 34.538Z"/></svg>
|
||||
|
After Width: | Height: | Size: 1.1 KiB |
BIN
llava/eval/webpage/figures/vicuna.jpeg
Normal file
|
After Width: | Height: | Size: 53 KiB |
162
llava/eval/webpage/index.html
Normal file
@@ -0,0 +1,162 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<title>Who's GPT-4's favorite? Battles between State-of-the-Art Chatbots</title>
|
||||
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css">
|
||||
<link rel="stylesheet" href="https://fonts.googleapis.com/icon?family=Material+Icons">
|
||||
<link rel="stylesheet" href="styles.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">
|
||||
<a class="navbar-brand" href="#">🏔️ Vicuna Evaluation Examples</a>
|
||||
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNav" aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">
|
||||
<span class="navbar-toggler-icon"></span>
|
||||
</button>
|
||||
<div class="collapse navbar-collapse" id="navbarNav">
|
||||
<ul class="navbar-nav mr-auto">
|
||||
<li class="nav-item">
|
||||
<a class="nav-link" href="https://chat.lmsys.org/">Demo</a>
|
||||
</li>
|
||||
<li class="nav-item">
|
||||
<a class="nav-link" href="https://vicuna.lmsys.org">Blog</a>
|
||||
</li>
|
||||
<li class="nav-item">
|
||||
<a class="nav-link" href="https://github.com/lm-sys/FastChat">Github</a>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
</nav>
|
||||
|
||||
<div class="container mt-5">
|
||||
<h2 class="text-center mb-5">Who's GPT-4's favorite? Battles between State-of-the-Art Chatbots</h2>
|
||||
|
||||
<!-- Selection -->
|
||||
<div class="form-row">
|
||||
<div class="form-group col-md-2">
|
||||
<label for="category-select">Category</label>
|
||||
<select class="form-control" id="category-select"></select>
|
||||
</div>
|
||||
<div class="form-group col-md-8">
|
||||
<label for="question-select">Question</label>
|
||||
<select class="form-control" id="question-select"></select>
|
||||
</div>
|
||||
<div class="form-group col-md-2">
|
||||
<div class="col-md-2"><label> </label></div>
|
||||
<div class="btn-group" role="group" aria-label="Left and Right Controller">
|
||||
<button type="button" class="form-control btn btn-primary" id="prev-question"><i class="material-icons">keyboard_arrow_left</i></button>
|
||||
<button type="button" class="form-control btn btn-primary" id="next-question"><i class="material-icons">keyboard_arrow_right</i></button>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- "Battle" -->
|
||||
<div class="row mb-4" style="justify-content: center;">
|
||||
<div class="col" style="display: flex; justify-content: center; align-items: center;">
|
||||
<label class="adjustable-font-size" id="other-score-label">*/10</label>
|
||||
</div>
|
||||
<div class="col">
|
||||
<div class="vertical-flex-layout">
|
||||
<img class="shadow figure-img img-fluid" src="" alt="other logo" width="150" id="other-model-figure">
|
||||
</div>
|
||||
</div>
|
||||
<div class="col">
|
||||
<div class="vertical-flex-layout">
|
||||
<!-- from: https://fonts.google.com/icons?icon.query=battle&selected=Material+Symbols+Outlined:swords:FILL@0;wght@300;GRAD@0;opsz@48&icon.style=Outlined -->
|
||||
<img class="figure-img img-fluid" src="figures/swords_FILL0_wght300_GRAD0_opsz48.svg" width="60" height="60">
|
||||
</div>
|
||||
</div>
|
||||
<div class="col">
|
||||
<div class="vertical-flex-layout">
|
||||
<img class="shadow figure-img img-fluid" src="figures/vicuna.jpeg" alt="vicuna logo" width="150" id="our-model-figure">
|
||||
</div>
|
||||
</div>
|
||||
<div class="col" style="display: flex; justify-content: center; align-items: center;">
|
||||
<label class="adjustable-font-size" id="our-score-label">*/10</label>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Question Card -->
|
||||
<div class="card mb-4">
|
||||
<div class="card-body" id="selected-question"></div>
|
||||
</div>
|
||||
|
||||
<!-- Answer Cards -->
|
||||
<div class="row">
|
||||
<div class="col-md-6">
|
||||
<div class="card mb-4 expandable-card">
|
||||
<div class="card-header" style="padding-bottom: 0.2rem" id="other-model-header-bg">
|
||||
<div class="row">
|
||||
<div class="col-md-5" style="align-items: center; display: flex;">
|
||||
<label id="other-model-header">Assistant #1</label>
|
||||
</div>
|
||||
<div class="col-md-7">
|
||||
<select class="form-control" id="model-select" style="height: fit-content; margin-top: -0.3rem;"></select>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="card-body">
|
||||
<div class="card-text-container">
|
||||
<div class="card-text" id="other-model-answer"></div>
|
||||
</div>
|
||||
<div class="btn btn-primary expand-btn" style="display:flex;"></div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="col-md-6">
|
||||
<div class="card mb-4 expandable-card">
|
||||
<div class="card-header" id="our-model-header">
|
||||
Assistant #2 (Vicuna, our model)
|
||||
</div>
|
||||
<div class="card-body">
|
||||
<div class="card-text-container">
|
||||
<div class="card-text" id="our-model-answer"></div>
|
||||
</div>
|
||||
<div class="btn btn-primary expand-btn" style="display:flex;"></div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Evaluation -->
|
||||
<div class="card expandable-card">
|
||||
<div class="card-header" style="background-color: #c9c9f2;" id="evaluation-header">GPT-4 Evaluation</div>
|
||||
<div class="card-body">
|
||||
<div class="card-text-container">
|
||||
<div class="card-text" id="evaluation-result"></div>
|
||||
</div>
|
||||
<div class="btn btn-primary expand-btn" style="display:flex;"></div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="container-fluid bg-light py-2">
|
||||
<div class="text-center">
|
||||
<small class="text-muted">This website is co-authored with <a href="https://openai.com" target="_blank">GPT-4</a>.</small>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Marked.js -->
|
||||
<script src="https://cdn.jsdelivr.net/npm/marked@4.3.0/lib/marked.umd.min.js"></script>
|
||||
<!-- Bootstrap and Popper.js JavaScript dependencies -->
|
||||
<script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"></script>
|
||||
<script src="https://cdn.jsdelivr.net/npm/@popperjs/core@2.11.6/dist/umd/popper.min.js"></script>
|
||||
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/js/bootstrap.min.js"></script>
|
||||
|
||||
<script src="script.js"></script>
|
||||
<script>
|
||||
// Fetch the JSON file
|
||||
fetch('data.json')
|
||||
.then(response => response.json())
|
||||
.then(json_data => {
|
||||
// Populate the models and questions.
|
||||
populateModels(json_data.models);
|
||||
populateQuestions(json_data.questions);
|
||||
displayQuestion(currentQuestionIndex);
|
||||
}).catch(error => console.error(error));
|
||||
</script>
|
||||
</body>
|
||||
|
||||
</html>
|
||||
245
llava/eval/webpage/script.js
Normal file
@@ -0,0 +1,245 @@
|
||||
// Description: Script for the evaluation webpage.
|
||||
|
||||
let currentQuestionIndex = 1;
|
||||
|
||||
// Store the model name mapping for later use.
|
||||
modelNameMapping = {
|
||||
"gpt35": "ChatGPT-3.5",
|
||||
"gpt4": "GPT-4",
|
||||
"alpaca": "Alpaca-13b",
|
||||
"vicuna": "Vicuna-13b",
|
||||
"llama": "LLaMA-13b",
|
||||
"bard": "Bard",
|
||||
};
|
||||
|
||||
modelFigureMapping = {
|
||||
"vicuna": "figures/vicuna.jpeg",
|
||||
// Image from: https://commons.wikimedia.org/wiki/File:ChatGPT_logo.svg
|
||||
"gpt35": "figures/chatgpt.svg",
|
||||
// Image from: https://www.reddit.com/r/logodesign/comments/1128aat/google_ai_bard_logo_design/
|
||||
"bard": "figures/bard.jpg",
|
||||
// Image from: https://crfm.stanford.edu/2023/03/13/alpaca.html
|
||||
"alpaca": "figures/alpaca.png",
|
||||
// Image adapted from https://commons.wikimedia.org/wiki/File:Llama_on_Machu_Picchu.jpg
|
||||
"llama": "figures/llama.jpg",
|
||||
}
|
||||
|
||||
// Store the question data in a mapping for later use.
|
||||
questionMapping = {};
|
||||
// Store the question ids in a mapping for later use.
|
||||
categoryMapping = {};
|
||||
// Store the number of questions for later use.
|
||||
questionsCount = 0;
|
||||
|
||||
|
||||
function text2Markdown(text) {
|
||||
// Normalize the text for markdown rendering.
|
||||
text = text.trim().replaceAll('\n\n', '\n').replaceAll('\n', '\n\n');
|
||||
return marked.parse(text);
|
||||
}
|
||||
|
||||
function capitalizeFirstChar(str) {
|
||||
if (!str || str.length === 0) {
|
||||
return str;
|
||||
}
|
||||
return str.charAt(0).toUpperCase() + str.slice(1);
|
||||
}
|
||||
|
||||
function updateQuestionSelect(question_id) {
|
||||
const select = document.getElementById('question-select');
|
||||
// Clear the question select.
|
||||
select.innerHTML = '';
|
||||
// Populate the question select.
|
||||
category = questionMapping[question_id].category;
|
||||
categoryMapping[category].forEach(question_id => {
|
||||
const question = questionMapping[question_id];
|
||||
const option = document.createElement('option');
|
||||
option.value = question_id;
|
||||
option.textContent = 'Q' + question_id.toString() + ': ' + question.question;
|
||||
select.appendChild(option);
|
||||
});
|
||||
select.value = question_id;
|
||||
}
|
||||
|
||||
function updateModelSelect() {
|
||||
const select = document.getElementById('model-select');
|
||||
img_path = modelFigureMapping[select.value];
|
||||
document.getElementById('other-model-figure').src = img_path;
|
||||
}
|
||||
|
||||
function populateModels(models) {
|
||||
const select = document.getElementById('model-select');
|
||||
models.forEach(model => {
|
||||
const option = document.createElement('option');
|
||||
option.value = model;
|
||||
option.textContent = modelNameMapping[model];
|
||||
select.appendChild(option);
|
||||
});
|
||||
updateModelSelect();
|
||||
}
|
||||
|
||||
function populateQuestions(questions) {
|
||||
const category_select = document.getElementById('category-select');
|
||||
|
||||
questionsCount = questions.length;
|
||||
questions.forEach(question => {
|
||||
const option = document.createElement('option');
|
||||
// Store the question data in a mapping for later use.
|
||||
questionMapping[question.id] = {
|
||||
category: question.category,
|
||||
question: question.question,
|
||||
answers: question.answers,
|
||||
evaluations: question.evaluations,
|
||||
scores: question.scores,
|
||||
};
|
||||
// Store the question id in the category mapping.
|
||||
if (question.category in categoryMapping) {
|
||||
categoryMapping[question.category].push(question.id);
|
||||
} else {
|
||||
categoryMapping[question.category] = [question.id];
|
||||
const category_option = document.createElement('option');
|
||||
category_option.value = question.category;
|
||||
category_option.textContent = capitalizeFirstChar(question.category);
|
||||
category_select.appendChild(category_option);
|
||||
}
|
||||
});
|
||||
// Set the default category.
|
||||
updateQuestionSelect(currentQuestionIndex);
|
||||
}
|
||||
|
||||
function displayQuestion(index) {
|
||||
const question = questionMapping[index].question;
|
||||
document.getElementById('selected-question').innerHTML = text2Markdown('**Question:** ' + question);
|
||||
displayAnswers(index);
|
||||
}
|
||||
|
||||
function displayAnswers(index) {
|
||||
const question = questionMapping[index];
|
||||
const otherModel = document.getElementById('model-select').value;
|
||||
// render the answers with markdown
|
||||
document.getElementById('other-model-answer').innerHTML = text2Markdown(question.answers[otherModel]);
|
||||
document.getElementById('our-model-answer').innerHTML = text2Markdown(question.answers.vicuna);
|
||||
|
||||
// Display evaluation
|
||||
score = question.scores[otherModel];
|
||||
score_text = modelNameMapping[otherModel] + " " + score[0] + "/10, Vicuna-13b " + score[1] + "/10";
|
||||
document.getElementById('evaluation-header').textContent = "GPT-4 Evaluation" + " (Score: " + score_text + ")";
|
||||
document.getElementById('evaluation-result').innerHTML = text2Markdown(question.evaluations[otherModel]);
|
||||
|
||||
// Update model names
|
||||
let assistant1_title = "Assistant #1"; // (" + modelNameMapping[otherModel] + ")";
|
||||
let assistant2_title = "Assistant #2 (Vicuna-13b, our model)";
|
||||
// Update scores/labels.
|
||||
let assistant1_score_label = score[0].toString() + '/10';
|
||||
let assistant2_score_label = score[1].toString() + '/10';
|
||||
|
||||
const colorRed ='#fa9'; // '#eb978d';
|
||||
// const colorGreen = '#c9f2c9';
|
||||
const colorBlue = '#8ef'; // '#71dbf9';
|
||||
const colorYellow = '#fe7'; // '#fada57';
|
||||
let otherModelHeaderColor = '';
|
||||
let ourModelHeaderColor = '';
|
||||
// Update the winner.
|
||||
if (score[0] == score[1]) {
|
||||
assistant1_title = '🏆 ' + assistant1_title;
|
||||
assistant1_score_label = '🏆 ' + assistant1_score_label;
|
||||
assistant2_title = '🏆 ' + assistant2_title;
|
||||
assistant2_score_label = '🏆 ' + assistant2_score_label;
|
||||
otherModelHeaderColor = colorYellow;
|
||||
ourModelHeaderColor = colorYellow;
|
||||
} else if (score[0] > score[1]) {
|
||||
assistant1_title = '🏆 ' + assistant1_title;
|
||||
assistant1_score_label = '🏆 ' + assistant1_score_label;
|
||||
otherModelHeaderColor = colorBlue;
|
||||
ourModelHeaderColor = colorRed;
|
||||
} else if (score[0] < score[1]) {
|
||||
assistant2_title = '🏆 ' + assistant2_title;
|
||||
assistant2_score_label = '🏆 ' + assistant2_score_label;
|
||||
otherModelHeaderColor = colorRed;
|
||||
ourModelHeaderColor = colorBlue;
|
||||
}
|
||||
|
||||
document.getElementById('other-model-header-bg').style.backgroundColor = otherModelHeaderColor;
|
||||
document.getElementById('our-model-header').style.backgroundColor = ourModelHeaderColor;
|
||||
|
||||
document.getElementById('other-model-header').textContent = assistant1_title;
|
||||
document.getElementById('our-model-header').textContent = assistant2_title;
|
||||
|
||||
document.getElementById('other-score-label').textContent = assistant1_score_label;
|
||||
document.getElementById('our-score-label').textContent = assistant2_score_label;
|
||||
|
||||
// Update expand buttons visibility for both cards after displaying answers
|
||||
// Reset the expanded state and update expand buttons visibility for both cards after displaying answers
|
||||
document.querySelectorAll('.expandable-card').forEach(card => {
|
||||
card.classList.remove('expanded');
|
||||
updateExpandButtonVisibility(card);
|
||||
const expandBtn = card.querySelector('.expand-btn');
|
||||
expandBtn.innerHTML = '<i class="material-icons" style="pointer-events: none">keyboard_arrow_down</i> Show more'; // .textContent = 'Show more';
|
||||
});
|
||||
}
|
||||
|
||||
document.getElementById('question-select').addEventListener('change', e => {
|
||||
currentQuestionIndex = parseInt(e.target.value);
|
||||
displayQuestion(currentQuestionIndex);
|
||||
});
|
||||
|
||||
document.getElementById('category-select').addEventListener('change', e => {
|
||||
let currentCategory = e.target.value;
|
||||
const questionIds = categoryMapping[currentCategory];
|
||||
currentQuestionIndex = questionIds[0];
|
||||
updateQuestionSelect(currentQuestionIndex);
|
||||
displayQuestion(currentQuestionIndex);
|
||||
});
|
||||
|
||||
// Update expand buttons whenever the model is changed
|
||||
document.getElementById('model-select').addEventListener('change', () => {
|
||||
displayAnswers(currentQuestionIndex);
|
||||
document.querySelectorAll('.expandable-card').forEach(card => {
|
||||
updateExpandButtonVisibility(card);
|
||||
});
|
||||
updateModelSelect();
|
||||
});
|
||||
|
||||
function switchQuestionAndCategory() {
|
||||
document.getElementById('question-select').value = currentQuestionIndex;
|
||||
old_category = document.getElementById('category-select').value;
|
||||
new_category = questionMapping[currentQuestionIndex].category;
|
||||
if (old_category != new_category) {
|
||||
document.getElementById('category-select').value = new_category;
|
||||
updateQuestionSelect(currentQuestionIndex);
|
||||
}
|
||||
displayQuestion(currentQuestionIndex);
|
||||
}
|
||||
|
||||
document.getElementById('prev-question').addEventListener('click', () => {
|
||||
// Question index starts from 1.
|
||||
currentQuestionIndex = Math.max(1, currentQuestionIndex - 1);
|
||||
switchQuestionAndCategory();
|
||||
});
|
||||
|
||||
document.getElementById('next-question').addEventListener('click', () => {
|
||||
// Question index starts from 1.
|
||||
currentQuestionIndex = Math.min(questionsCount, currentQuestionIndex + 1);
|
||||
switchQuestionAndCategory();
|
||||
});
|
||||
|
||||
function updateExpandButtonVisibility(card) {
|
||||
const cardTextContainer = card.querySelector('.card-text-container');
|
||||
const expandBtn = card.querySelector('.expand-btn');
|
||||
if (cardTextContainer.scrollHeight > cardTextContainer.offsetHeight) {
|
||||
expandBtn.style.display = 'flex';
|
||||
} else {
|
||||
expandBtn.style.display = 'none';
|
||||
card.classList.add('expanded');
|
||||
}
|
||||
}
|
||||
|
||||
document.querySelectorAll('.expand-btn').forEach(btn => {
|
||||
btn.addEventListener('click', e => {
|
||||
const card = e.target.closest('.expandable-card');
|
||||
card.classList.toggle('expanded');
|
||||
const more = '<i class="material-icons" style="pointer-events: none">keyboard_arrow_down</i> Show more';
|
||||
const less = '<i class="material-icons" style="pointer-events: none">keyboard_arrow_up</i> Show less';
|
||||
e.target.innerHTML = card.classList.contains('expanded') ? less : more;
|
||||
});
|
||||
});
|
||||
105
llava/eval/webpage/styles.css
Normal file
@@ -0,0 +1,105 @@
|
||||
body {
|
||||
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
||||
background-color: #f8f9fa;
|
||||
}
|
||||
|
||||
.navbar-dark .navbar-nav .nav-link {
|
||||
color: #f1cf68;
|
||||
font-size: 1.1rem;
|
||||
padding: 0.5rem 0.6rem;
|
||||
}
|
||||
|
||||
.card-header {
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
.card {
|
||||
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
||||
transition: 0.3s;
|
||||
}
|
||||
|
||||
.card:hover {
|
||||
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
|
||||
}
|
||||
|
||||
button {
|
||||
transition: background-color 0.3s;
|
||||
}
|
||||
|
||||
button:hover {
|
||||
background-color: #007bff;
|
||||
}
|
||||
|
||||
@media (max-width: 767px) {
|
||||
.form-row .form-group {
|
||||
margin-bottom: 10px;
|
||||
}
|
||||
}
|
||||
|
||||
/* Extra styles */
|
||||
|
||||
.expandable-card .card-text-container {
|
||||
max-height: 200px;
|
||||
overflow-y: hidden;
|
||||
position: relative;
|
||||
}
|
||||
|
||||
.expandable-card.expanded .card-text-container {
|
||||
max-height: none;
|
||||
}
|
||||
|
||||
.expand-btn {
|
||||
position: relative;
|
||||
display: none;
|
||||
background-color: rgba(255, 255, 255, 0.8);
|
||||
color: #510c75;
|
||||
border-color: transparent;
|
||||
}
|
||||
|
||||
.expand-btn:hover {
|
||||
background-color: rgba(200, 200, 200, 0.8);
|
||||
text-decoration: none;
|
||||
border-color: transparent;
|
||||
color: #510c75;
|
||||
}
|
||||
|
||||
.expand-btn:focus {
|
||||
outline: none;
|
||||
text-decoration: none;
|
||||
}
|
||||
|
||||
.expandable-card:not(.expanded) .card-text-container:after {
|
||||
content: "";
|
||||
position: absolute;
|
||||
bottom: 0;
|
||||
left: 0;
|
||||
width: 100%;
|
||||
height: 90px;
|
||||
background: linear-gradient(rgba(255, 255, 255, 0.2), rgba(255, 255, 255, 1));
|
||||
}
|
||||
|
||||
.expandable-card:not(.expanded) .expand-btn {
|
||||
margin-top: -40px;
|
||||
}
|
||||
|
||||
.card-body {
|
||||
padding-bottom: 5px;
|
||||
}
|
||||
|
||||
.vertical-flex-layout {
|
||||
justify-content: center;
|
||||
align-items: center;
|
||||
height: 100%;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
gap: 5px;
|
||||
}
|
||||
|
||||
.figure-img {
|
||||
max-width: 100%;
|
||||
height: auto;
|
||||
}
|
||||
|
||||
.adjustable-font-size {
|
||||
font-size: calc(0.5rem + 2vw);
|
||||
}
|
||||
251
llava/mm_utils.py
Normal file
@@ -0,0 +1,251 @@
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
import base64
|
||||
import torch
|
||||
import math
|
||||
import ast
|
||||
|
||||
from transformers import StoppingCriteria
|
||||
from llava.constants import IMAGE_TOKEN_INDEX
|
||||
|
||||
def select_best_resolution(original_size, possible_resolutions):
|
||||
"""
|
||||
Selects the best resolution from a list of possible resolutions based on the original size.
|
||||
|
||||
Args:
|
||||
original_size (tuple): The original size of the image in the format (width, height).
|
||||
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
||||
|
||||
Returns:
|
||||
tuple: The best fit resolution in the format (width, height).
|
||||
"""
|
||||
original_width, original_height = original_size
|
||||
best_fit = None
|
||||
max_effective_resolution = 0
|
||||
min_wasted_resolution = float('inf')
|
||||
|
||||
for width, height in possible_resolutions:
|
||||
scale = min(width / original_width, height / original_height)
|
||||
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
||||
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
||||
wasted_resolution = (width * height) - effective_resolution
|
||||
|
||||
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
||||
max_effective_resolution = effective_resolution
|
||||
min_wasted_resolution = wasted_resolution
|
||||
best_fit = (width, height)
|
||||
|
||||
return best_fit
|
||||
|
||||
|
||||
def resize_and_pad_image(image, target_resolution):
|
||||
"""
|
||||
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
||||
|
||||
Args:
|
||||
image (PIL.Image.Image): The input image.
|
||||
target_resolution (tuple): The target resolution (width, height) of the image.
|
||||
|
||||
Returns:
|
||||
PIL.Image.Image: The resized and padded image.
|
||||
"""
|
||||
original_width, original_height = image.size
|
||||
target_width, target_height = target_resolution
|
||||
|
||||
scale_w = target_width / original_width
|
||||
scale_h = target_height / original_height
|
||||
|
||||
if scale_w < scale_h:
|
||||
new_width = target_width
|
||||
new_height = min(math.ceil(original_height * scale_w), target_height)
|
||||
else:
|
||||
new_height = target_height
|
||||
new_width = min(math.ceil(original_width * scale_h), target_width)
|
||||
|
||||
# Resize the image
|
||||
resized_image = image.resize((new_width, new_height))
|
||||
|
||||
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
|
||||
paste_x = (target_width - new_width) // 2
|
||||
paste_y = (target_height - new_height) // 2
|
||||
new_image.paste(resized_image, (paste_x, paste_y))
|
||||
|
||||
return new_image
|
||||
|
||||
|
||||
def divide_to_patches(image, patch_size):
|
||||
"""
|
||||
Divides an image into patches of a specified size.
|
||||
|
||||
Args:
|
||||
image (PIL.Image.Image): The input image.
|
||||
patch_size (int): The size of each patch.
|
||||
|
||||
Returns:
|
||||
list: A list of PIL.Image.Image objects representing the patches.
|
||||
"""
|
||||
patches = []
|
||||
width, height = image.size
|
||||
for i in range(0, height, patch_size):
|
||||
for j in range(0, width, patch_size):
|
||||
box = (j, i, j + patch_size, i + patch_size)
|
||||
patch = image.crop(box)
|
||||
patches.append(patch)
|
||||
|
||||
return patches
|
||||
|
||||
|
||||
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
||||
"""
|
||||
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
||||
|
||||
Args:
|
||||
image_size (tuple): The size of the input image in the format (width, height).
|
||||
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
||||
patch_size (int): The size of each image patch.
|
||||
|
||||
Returns:
|
||||
tuple: The shape of the image patch grid in the format (width, height).
|
||||
"""
|
||||
if type(grid_pinpoints) is list:
|
||||
possible_resolutions = grid_pinpoints
|
||||
else:
|
||||
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
||||
width, height = select_best_resolution(image_size, possible_resolutions)
|
||||
return width // patch_size, height // patch_size
|
||||
|
||||
|
||||
def process_anyres_image(image, processor, grid_pinpoints, siglip=False):
|
||||
"""
|
||||
Process an image with variable resolutions.
|
||||
|
||||
Args:
|
||||
image (PIL.Image.Image): The input image to be processed.
|
||||
processor: The image processor object.
|
||||
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: A tensor containing the processed image patches.
|
||||
"""
|
||||
if type(grid_pinpoints) is list:
|
||||
possible_resolutions = grid_pinpoints
|
||||
else:
|
||||
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
||||
best_resolution = select_best_resolution(image.size, possible_resolutions)
|
||||
image_padded = resize_and_pad_image(image, best_resolution)
|
||||
|
||||
if siglip:
|
||||
patches = divide_to_patches(image_padded, processor.size['height'])
|
||||
image_original_resize = image.resize((processor.size['height'], processor.size['width']))
|
||||
else:
|
||||
patches = divide_to_patches(image_padded, processor.crop_size['height'])
|
||||
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
|
||||
# print(f"Considering {len(patches)} patches.")
|
||||
|
||||
|
||||
image_patches = [image_original_resize] + patches
|
||||
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
|
||||
for image_patch in image_patches]
|
||||
return torch.stack(image_patches, dim=0)
|
||||
|
||||
|
||||
def load_image_from_base64(image):
|
||||
return Image.open(BytesIO(base64.b64decode(image)))
|
||||
|
||||
|
||||
def expand2square(pil_img, background_color):
|
||||
width, height = pil_img.size
|
||||
if width == height:
|
||||
return pil_img
|
||||
elif width > height:
|
||||
result = Image.new(pil_img.mode, (width, width), background_color)
|
||||
result.paste(pil_img, (0, (width - height) // 2))
|
||||
return result
|
||||
else:
|
||||
result = Image.new(pil_img.mode, (height, height), background_color)
|
||||
result.paste(pil_img, ((height - width) // 2, 0))
|
||||
return result
|
||||
|
||||
|
||||
def process_images(images, image_processor, model_cfg):
|
||||
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
||||
new_images = []
|
||||
if image_aspect_ratio == 'pad':
|
||||
for image in images:
|
||||
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
||||
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
||||
new_images.append(image)
|
||||
elif image_aspect_ratio == "anyres":
|
||||
for image in images:
|
||||
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
|
||||
new_images.append(image)
|
||||
else:
|
||||
return image_processor(images, return_tensors='pt')['pixel_values']
|
||||
if all(x.shape == new_images[0].shape for x in new_images):
|
||||
new_images = torch.stack(new_images, dim=0)
|
||||
return new_images
|
||||
|
||||
|
||||
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
||||
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
||||
|
||||
def insert_separator(X, sep):
|
||||
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
||||
|
||||
input_ids = []
|
||||
offset = 0
|
||||
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
||||
offset = 1
|
||||
input_ids.append(prompt_chunks[0][0])
|
||||
|
||||
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
||||
input_ids.extend(x[offset:])
|
||||
|
||||
if return_tensors is not None:
|
||||
if return_tensors == 'pt':
|
||||
return torch.tensor(input_ids, dtype=torch.long)
|
||||
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
||||
return input_ids
|
||||
|
||||
|
||||
def get_model_name_from_path(model_path):
|
||||
model_path = model_path.strip("/")
|
||||
model_paths = model_path.split("/")
|
||||
if model_paths[-1].startswith('checkpoint-'):
|
||||
return model_paths[-2] + "_" + model_paths[-1]
|
||||
else:
|
||||
return model_paths[-1]
|
||||
|
||||
class KeywordsStoppingCriteria(StoppingCriteria):
|
||||
def __init__(self, keywords, tokenizer, input_ids):
|
||||
self.keywords = keywords
|
||||
self.keyword_ids = []
|
||||
self.max_keyword_len = 0
|
||||
for keyword in keywords:
|
||||
cur_keyword_ids = tokenizer(keyword).input_ids
|
||||
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
||||
cur_keyword_ids = cur_keyword_ids[1:]
|
||||
if len(cur_keyword_ids) > self.max_keyword_len:
|
||||
self.max_keyword_len = len(cur_keyword_ids)
|
||||
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
||||
self.tokenizer = tokenizer
|
||||
self.start_len = input_ids.shape[1]
|
||||
|
||||
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
||||
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
|
||||
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
||||
for keyword_id in self.keyword_ids:
|
||||
truncated_output_ids = output_ids[0, -keyword_id.shape[0]:]
|
||||
if torch.equal(truncated_output_ids, keyword_id):
|
||||
return True
|
||||
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
||||
for keyword in self.keywords:
|
||||
if keyword in outputs:
|
||||
return True
|
||||
return False
|
||||
|
||||
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
||||
outputs = []
|
||||
for i in range(output_ids.shape[0]):
|
||||
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
|
||||
return all(outputs)
|
||||
6
llava/model/__init__.py
Normal file
@@ -0,0 +1,6 @@
|
||||
# try:
|
||||
from .language_model.llava_llama import LlavaLlamaForCausalLM, LlavaConfig
|
||||
from .language_model.llava_mpt import LlavaMptForCausalLM, LlavaMptConfig
|
||||
from .language_model.llava_mistral import LlavaMistralForCausalLM, LlavaMistralConfig
|
||||
# except:
|
||||
# pass
|
||||
48
llava/model/apply_delta.py
Normal file
@@ -0,0 +1,48 @@
|
||||
"""
|
||||
Usage:
|
||||
python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta
|
||||
"""
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from llava import LlavaLlamaForCausalLM
|
||||
|
||||
|
||||
def apply_delta(base_model_path, target_model_path, delta_path):
|
||||
print("Loading base model")
|
||||
base = AutoModelForCausalLM.from_pretrained(
|
||||
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
||||
|
||||
print("Loading delta")
|
||||
delta = LlavaLlamaForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
||||
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path)
|
||||
|
||||
print("Applying delta")
|
||||
for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"):
|
||||
if name not in base.state_dict():
|
||||
assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
|
||||
continue
|
||||
if param.data.shape == base.state_dict()[name].shape:
|
||||
param.data += base.state_dict()[name]
|
||||
else:
|
||||
assert name in ['model.embed_tokens.weight', 'lm_head.weight'], \
|
||||
f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
|
||||
bparam = base.state_dict()[name]
|
||||
param.data[:bparam.shape[0], :bparam.shape[1]] += bparam
|
||||
|
||||
print("Saving target model")
|
||||
delta.save_pretrained(target_model_path)
|
||||
delta_tokenizer.save_pretrained(target_model_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--base-model-path", type=str, required=True)
|
||||
parser.add_argument("--target-model-path", type=str, required=True)
|
||||
parser.add_argument("--delta-path", type=str, required=True)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
|
||||
210
llava/model/builder.py
Normal file
@@ -0,0 +1,210 @@
|
||||
# Copyright 2023 Haotian Liu
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import os
|
||||
import json
|
||||
import warnings
|
||||
import shutil
|
||||
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
|
||||
import torch
|
||||
from llava.model import *
|
||||
from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
||||
|
||||
|
||||
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda",
|
||||
use_flash_attn=False, mlp_path=None, **kwargs):
|
||||
kwargs = {"device_map": device_map, **kwargs}
|
||||
|
||||
if device != "cuda":
|
||||
kwargs['device_map'] = {"": device}
|
||||
|
||||
if load_8bit:
|
||||
kwargs['load_in_8bit'] = True
|
||||
elif load_4bit:
|
||||
kwargs['load_in_4bit'] = True
|
||||
kwargs['quantization_config'] = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=torch.float16,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_quant_type='nf4'
|
||||
)
|
||||
else:
|
||||
kwargs['torch_dtype'] = torch.float16
|
||||
|
||||
if use_flash_attn:
|
||||
kwargs['attn_implementation'] = 'flash_attention_2'
|
||||
|
||||
if 'llava' in model_name.lower():
|
||||
# Load LLaVA model
|
||||
if 'lora' in model_name.lower() and model_base is None:
|
||||
warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
|
||||
config_path = os.path.join(model_path, 'config.json')
|
||||
try:
|
||||
with open(config_path) as f:
|
||||
configuration= json.load(f)
|
||||
model_base = configuration['_name_or_path']
|
||||
except:
|
||||
raise ValueError('Cannot find the model name in the configuration file. Please provide the `model_base` argument.')
|
||||
|
||||
if 'lora' in model_name.lower() and model_base is not None:
|
||||
from llava.model.language_model.llava_llama import LlavaConfig
|
||||
lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
||||
print('Loading LLaVA from base model...')
|
||||
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
|
||||
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
||||
if model.lm_head.weight.shape[0] != token_num:
|
||||
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
||||
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
||||
|
||||
print('Loading additional LLaVA weights...')
|
||||
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
|
||||
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
|
||||
else:
|
||||
# this is probably from HF Hub
|
||||
from huggingface_hub import hf_hub_download
|
||||
def load_from_hf(repo_id, filename, subfolder=None):
|
||||
cache_file = hf_hub_download(
|
||||
repo_id=repo_id,
|
||||
filename=filename,
|
||||
subfolder=subfolder)
|
||||
return torch.load(cache_file, map_location='cpu')
|
||||
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
|
||||
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
|
||||
if any(k.startswith('model.model.') for k in non_lora_trainables):
|
||||
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
|
||||
model.load_state_dict(non_lora_trainables, strict=False)
|
||||
|
||||
from peft import PeftModel
|
||||
print('Loading LoRA weights...')
|
||||
model = PeftModel.from_pretrained(model, model_path)
|
||||
print('Merging LoRA weights...')
|
||||
model = model.merge_and_unload()
|
||||
print('Model is loaded...')
|
||||
elif model_base is not None:
|
||||
# this may be mm projector only
|
||||
print('Loading LLaVA from base model...')
|
||||
if 'mpt' in model_name.lower():
|
||||
if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
|
||||
shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py'))
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
|
||||
cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = LlavaMptForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
||||
cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
||||
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
|
||||
|
||||
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
|
||||
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
|
||||
model.load_state_dict(mm_projector_weights, strict=False)
|
||||
else:
|
||||
if 'mpt' in model_name.lower():
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
||||
model = LlavaMptForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
||||
elif 'mistral' in model_name.lower():
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
model = LlavaMistralForCausalLM.from_pretrained(
|
||||
model_path,
|
||||
low_cpu_mem_usage=True,
|
||||
**kwargs
|
||||
)
|
||||
else:
|
||||
# some old checkpoints may not have the siglip parameter in configuration file
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
||||
model = LlavaLlamaForCausalLM.from_pretrained(
|
||||
model_path,
|
||||
low_cpu_mem_usage=True,
|
||||
**kwargs
|
||||
)
|
||||
else:
|
||||
# Load language model
|
||||
if model_base is not None:
|
||||
# PEFT model
|
||||
from peft import PeftModel
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
|
||||
print(f"Loading LoRA weights from {model_path}")
|
||||
model = PeftModel.from_pretrained(model, model_path)
|
||||
print(f"Merging weights")
|
||||
model = model.merge_and_unload()
|
||||
print('Convert to FP16...')
|
||||
model.to(torch.float16)
|
||||
else:
|
||||
use_fast = False
|
||||
if 'mpt' in model_name.lower():
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
||||
|
||||
image_processor = None
|
||||
|
||||
if 'llava' in model_name.lower() or mlp_path is not None:
|
||||
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
||||
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
|
||||
if mm_use_im_patch_token:
|
||||
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||||
if mm_use_im_start_end:
|
||||
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# # RE-CONTROL THE IF STATEMENT select the correct class, considering also S2
|
||||
# if 'siglip' in model.config.mm_vision_tower and hasattr(model.config, 's2'):
|
||||
# # change the args for the new class
|
||||
# from llava.model.multimodal_encoder.builder import SigLIPVisionTowerS2
|
||||
# vision_tower = SigLIPVisionTowerS2('google/siglip-so400m-patch14-384', args=model.config)
|
||||
# model.model.vision_tower = vision_tower.vision_tower
|
||||
|
||||
# elif 'siglip' in model.config.mm_vision_tower:
|
||||
# from llava.model.multimodal_encoder.builder import SigLIPVisionTower
|
||||
# vision_tower= SigLIPVisionTower('google/siglip-so400m-patch14-384', args=model.config)
|
||||
# vision_tower.to("cuda", dtype=torch.float16)
|
||||
# model.model.vision_tower = vision_tower.vision_tower
|
||||
|
||||
# else:
|
||||
# if hasattr(model.config, 's2'): # and on work
|
||||
# from llava.model.multimodal_encoder.builder import CLIPVisionTowerS2
|
||||
# vision_tower= CLIPVisionTowerS2('google/siglip-so400m-patch14-384', args=model.config)
|
||||
# model.model.vision_tower = vision_tower.vision_tower
|
||||
# else:
|
||||
# vision_tower = model.get_vision_tower()
|
||||
vision_tower = model.get_vision_tower()
|
||||
|
||||
if not vision_tower.is_loaded:
|
||||
vision_tower.load_model(device_map=device_map)
|
||||
if device_map != 'auto':
|
||||
vision_tower.to(device=device_map, dtype=torch.float16)
|
||||
image_processor = vision_tower.image_processor
|
||||
|
||||
if hasattr(model.config, "max_sequence_length"):
|
||||
context_len = model.config.max_sequence_length
|
||||
else:
|
||||
context_len = 2048
|
||||
|
||||
if mlp_path is not None:
|
||||
print('Loading mm projector weights...')
|
||||
mm_projector_weights = torch.load(mlp_path)
|
||||
new_dict= {}
|
||||
new_keys= ['0.weight', '0.bias', '2.weight', '2.bias']
|
||||
for el, key in enumerate(new_keys):
|
||||
new_dict[key] = mm_projector_weights[list(mm_projector_weights.keys())[el]]
|
||||
|
||||
model.model.mm_projector.load_state_dict(new_dict)
|
||||
# model.model.mm_projector.to(device=device_map, dtype=torch.float16)
|
||||
|
||||
return tokenizer, model, image_processor, context_len
|
||||
29
llava/model/consolidate.py
Normal file
@@ -0,0 +1,29 @@
|
||||
"""
|
||||
Usage:
|
||||
python3 -m llava.model.consolidate --src ~/model_weights/llava-7b --dst ~/model_weights/llava-7b_consolidate
|
||||
"""
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from llava.model import *
|
||||
from llava.model.utils import auto_upgrade
|
||||
|
||||
|
||||
def consolidate_ckpt(src_path, dst_path):
|
||||
print("Loading model")
|
||||
auto_upgrade(src_path)
|
||||
src_model = AutoModelForCausalLM.from_pretrained(src_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
||||
src_tokenizer = AutoTokenizer.from_pretrained(src_path, use_fast=False)
|
||||
src_model.save_pretrained(dst_path)
|
||||
src_tokenizer.save_pretrained(dst_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--src", type=str, required=True)
|
||||
parser.add_argument("--dst", type=str, required=True)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
consolidate_ckpt(args.src, args.dst)
|
||||
166
llava/model/language_model/llava_llama.py
Normal file
@@ -0,0 +1,166 @@
|
||||
# Copyright 2023 Haotian Liu
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, \
|
||||
LlamaConfig, LlamaModel, LlamaForCausalLM
|
||||
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
from transformers.generation.utils import GenerateOutput
|
||||
|
||||
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
||||
|
||||
import sys
|
||||
import os
|
||||
sys.path.append(os.path.abspath("."))
|
||||
sys.path.append(os.path.abspath("../.."))
|
||||
import utils
|
||||
logger= utils.get_logger(__name__)
|
||||
|
||||
class LlavaConfig(LlamaConfig):
|
||||
model_type = "llava_llama"
|
||||
|
||||
|
||||
class LlavaLlamaModel(LlavaMetaModel, LlamaModel):
|
||||
config_class = LlavaConfig
|
||||
|
||||
def __init__(self, config: LlamaConfig):
|
||||
super(LlavaLlamaModel, self).__init__(config)
|
||||
|
||||
|
||||
class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM):
|
||||
config_class = LlavaConfig
|
||||
|
||||
def __init__(self, config):
|
||||
super(LlamaForCausalLM, self).__init__(config)
|
||||
self.model = LlavaLlamaModel(config)
|
||||
self.pretraining_tp = config.pretraining_tp
|
||||
self.vocab_size = config.vocab_size
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_model(self):
|
||||
return self.model
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
images: Optional[torch.FloatTensor] = None,
|
||||
image_sizes: Optional[List[List[int]]] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position=None # warning: this is required for inference and last versions of transformers
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
# if self.cache_position: self.cache_position = None
|
||||
if inputs_embeds is None:
|
||||
(
|
||||
input_ids,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
past_key_values,
|
||||
inputs_embeds,
|
||||
labels
|
||||
) = self.prepare_inputs_labels_for_multimodal(
|
||||
input_ids,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
past_key_values,
|
||||
labels,
|
||||
images,
|
||||
image_sizes
|
||||
)
|
||||
|
||||
return super().forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
labels=labels,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def generate(
|
||||
self,
|
||||
inputs: Optional[torch.Tensor] = None,
|
||||
images: Optional[torch.Tensor] = None,
|
||||
image_sizes: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> Union[GenerateOutput, torch.LongTensor]:
|
||||
kwargs.pop("cache_position", None)
|
||||
position_ids = kwargs.pop("position_ids", None)
|
||||
attention_mask = kwargs.pop("attention_mask", None)
|
||||
if "inputs_embeds" in kwargs:
|
||||
raise NotImplementedError("`inputs_embeds` is not supported")
|
||||
|
||||
if images is not None:
|
||||
(
|
||||
inputs,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
_,
|
||||
inputs_embeds,
|
||||
_
|
||||
) = self.prepare_inputs_labels_for_multimodal(
|
||||
inputs,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
None,
|
||||
None,
|
||||
images,
|
||||
image_sizes=image_sizes
|
||||
)
|
||||
else:
|
||||
inputs_embeds = self.get_model().embed_tokens(inputs)
|
||||
|
||||
return super().generate(
|
||||
position_ids=position_ids,
|
||||
attention_mask=attention_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
||||
inputs_embeds=None, **kwargs):
|
||||
images = kwargs.pop("images", None)
|
||||
image_sizes = kwargs.pop("image_sizes", None)
|
||||
inputs = super().prepare_inputs_for_generation(
|
||||
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
||||
)
|
||||
if images is not None:
|
||||
inputs['images'] = images
|
||||
if image_sizes is not None:
|
||||
inputs['image_sizes'] = image_sizes
|
||||
return inputs
|
||||
|
||||
AutoConfig.register("llava_llama", LlavaConfig)
|
||||
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|
||||
158
llava/model/language_model/llava_mistral.py
Normal file
@@ -0,0 +1,158 @@
|
||||
# Copyright 2023 Haotian Liu
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, \
|
||||
MistralConfig, MistralModel, MistralForCausalLM
|
||||
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
from transformers.generation.utils import GenerateOutput
|
||||
|
||||
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
||||
|
||||
|
||||
class LlavaMistralConfig(MistralConfig):
|
||||
model_type = "llava_mistral"
|
||||
|
||||
|
||||
class LlavaMistralModel(LlavaMetaModel, MistralModel):
|
||||
config_class = LlavaMistralConfig
|
||||
|
||||
def __init__(self, config: MistralConfig):
|
||||
super(LlavaMistralModel, self).__init__(config)
|
||||
|
||||
|
||||
class LlavaMistralForCausalLM(MistralForCausalLM, LlavaMetaForCausalLM):
|
||||
config_class = LlavaMistralConfig
|
||||
|
||||
def __init__(self, config):
|
||||
super(MistralForCausalLM, self).__init__(config)
|
||||
self.model = LlavaMistralModel(config)
|
||||
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_model(self):
|
||||
return self.model
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
images: Optional[torch.FloatTensor] = None,
|
||||
image_sizes: Optional[List[List[int]]] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
|
||||
if inputs_embeds is None:
|
||||
(
|
||||
input_ids,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
past_key_values,
|
||||
inputs_embeds,
|
||||
labels
|
||||
) = self.prepare_inputs_labels_for_multimodal(
|
||||
input_ids,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
past_key_values,
|
||||
labels,
|
||||
images,
|
||||
image_sizes
|
||||
)
|
||||
|
||||
return super().forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
labels=labels,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def generate(
|
||||
self,
|
||||
inputs: Optional[torch.Tensor] = None,
|
||||
images: Optional[torch.Tensor] = None,
|
||||
image_sizes: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> Union[GenerateOutput, torch.LongTensor]:
|
||||
position_ids = kwargs.pop("position_ids", None)
|
||||
attention_mask = kwargs.pop("attention_mask", None)
|
||||
if "inputs_embeds" in kwargs:
|
||||
raise NotImplementedError("`inputs_embeds` is not supported")
|
||||
|
||||
if images is not None:
|
||||
(
|
||||
inputs,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
_,
|
||||
inputs_embeds,
|
||||
_
|
||||
) = self.prepare_inputs_labels_for_multimodal(
|
||||
inputs,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
None,
|
||||
None,
|
||||
images,
|
||||
image_sizes=image_sizes
|
||||
)
|
||||
else:
|
||||
inputs_embeds = self.get_model().embed_tokens(inputs)
|
||||
|
||||
return super().generate(
|
||||
position_ids=position_ids,
|
||||
attention_mask=attention_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
||||
inputs_embeds=None, **kwargs):
|
||||
images = kwargs.pop("images", None)
|
||||
image_sizes = kwargs.pop("image_sizes", None)
|
||||
inputs = super().prepare_inputs_for_generation(
|
||||
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
||||
)
|
||||
if images is not None:
|
||||
inputs['images'] = images
|
||||
if image_sizes is not None:
|
||||
inputs['image_sizes'] = image_sizes
|
||||
return inputs
|
||||
|
||||
AutoConfig.register("llava_mistral", LlavaMistralConfig)
|
||||
AutoModelForCausalLM.register(LlavaMistralConfig, LlavaMistralForCausalLM)
|
||||
97
llava/model/language_model/llava_mpt.py
Normal file
@@ -0,0 +1,97 @@
|
||||
# Copyright 2023 Haotian Liu
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, \
|
||||
MptConfig, MptForCausalLM, MptModel
|
||||
from llava.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
||||
|
||||
|
||||
class LlavaMptConfig(MptConfig):
|
||||
model_type = "llava_mpt"
|
||||
|
||||
|
||||
class LlavaMptModel(LlavaMetaModel, MptModel):
|
||||
config_class = LlavaMptConfig
|
||||
|
||||
def __init__(self, config: MptConfig):
|
||||
config.hidden_size = config.d_model
|
||||
super(LlavaMptModel, self).__init__(config)
|
||||
|
||||
def embed_tokens(self, x):
|
||||
return self.wte(x)
|
||||
|
||||
|
||||
class LlavaMptForCausalLM(MptForCausalLM, LlavaMetaForCausalLM):
|
||||
config_class = LlavaMptConfig
|
||||
supports_gradient_checkpointing = True
|
||||
|
||||
def __init__(self, config):
|
||||
super(MptForCausalLM, self).__init__(config)
|
||||
|
||||
self.transformer = LlavaMptModel(config)
|
||||
self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_model(self):
|
||||
return self.transformer
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if isinstance(module, LlavaMptModel):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
images=None):
|
||||
|
||||
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
|
||||
|
||||
return super().forward(
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
labels=labels,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
||||
images = kwargs.pop("images", None)
|
||||
_inputs = super().prepare_inputs_for_generation(
|
||||
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
||||
)
|
||||
_inputs['images'] = images
|
||||
return _inputs
|
||||
|
||||
|
||||
AutoConfig.register("llava_mpt", LlavaMptConfig)
|
||||
AutoModelForCausalLM.register(LlavaMptConfig, LlavaMptForCausalLM)
|
||||
387
llava/model/llava_arch.py
Normal file
@@ -0,0 +1,387 @@
|
||||
# Copyright 2023 Haotian Liu
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .multimodal_encoder.builder import build_vision_tower
|
||||
from .multimodal_projector.builder import build_vision_projector
|
||||
|
||||
from llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
||||
|
||||
from llava.mm_utils import get_anyres_image_grid_shape
|
||||
|
||||
|
||||
class LlavaMetaModel:
|
||||
|
||||
def __init__(self, config):
|
||||
super(LlavaMetaModel, self).__init__(config)
|
||||
|
||||
if hasattr(config, "mm_vision_tower"):
|
||||
self.vision_tower = build_vision_tower(config, delay_load=True)
|
||||
self.mm_projector = build_vision_projector(config)
|
||||
|
||||
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
|
||||
self.image_newline = nn.Parameter(
|
||||
torch.empty(config.hidden_size, dtype=self.dtype)
|
||||
)
|
||||
|
||||
def get_vision_tower(self):
|
||||
vision_tower = getattr(self, 'vision_tower', None)
|
||||
if type(vision_tower) is list:
|
||||
vision_tower = vision_tower[0]
|
||||
return vision_tower
|
||||
|
||||
def initialize_vision_modules(self, model_args, fsdp=None):
|
||||
vision_tower = model_args.vision_tower
|
||||
mm_vision_select_layer = model_args.mm_vision_select_layer
|
||||
mm_vision_select_feature = model_args.mm_vision_select_feature
|
||||
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
||||
mm_patch_merge_type = model_args.mm_patch_merge_type
|
||||
|
||||
self.config.mm_vision_tower = vision_tower
|
||||
|
||||
if self.get_vision_tower() is None:
|
||||
vision_tower = build_vision_tower(model_args)
|
||||
|
||||
if fsdp is not None and len(fsdp) > 0:
|
||||
self.vision_tower = [vision_tower]
|
||||
else:
|
||||
self.vision_tower = vision_tower
|
||||
else:
|
||||
if fsdp is not None and len(fsdp) > 0:
|
||||
vision_tower = self.vision_tower[0]
|
||||
else:
|
||||
vision_tower = self.vision_tower
|
||||
vision_tower.load_model()
|
||||
|
||||
self.config.use_mm_proj = True
|
||||
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
|
||||
self.config.mm_vision_select_layer = mm_vision_select_layer
|
||||
self.config.mm_vision_select_feature = mm_vision_select_feature
|
||||
self.config.mm_patch_merge_type = mm_patch_merge_type
|
||||
|
||||
if model_args.siglip and not model_args.s2:
|
||||
self.config.mm_hidden_size = vision_tower.config.hidden_size
|
||||
else:
|
||||
self.config.mm_hidden_size = vision_tower.hidden_size
|
||||
|
||||
if getattr(self, 'mm_projector', None) is None:
|
||||
self.mm_projector = build_vision_projector(self.config)
|
||||
|
||||
if 'unpad' in mm_patch_merge_type:
|
||||
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
|
||||
self.image_newline = nn.Parameter(
|
||||
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
|
||||
)
|
||||
else:
|
||||
# In case it is frozen by LoRA
|
||||
for p in self.mm_projector.parameters():
|
||||
p.requires_grad = True
|
||||
|
||||
if pretrain_mm_mlp_adapter is not None:
|
||||
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
||||
def get_w(weights, keyword):
|
||||
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
||||
|
||||
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
|
||||
|
||||
|
||||
def unpad_image(tensor, original_size):
|
||||
"""
|
||||
Unpads a PyTorch tensor of a padded and resized image.
|
||||
|
||||
Args:
|
||||
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
|
||||
original_size (tuple): The original size of PIL image (width, height).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The unpadded image tensor.
|
||||
"""
|
||||
original_width, original_height = original_size
|
||||
current_height, current_width = tensor.shape[1:]
|
||||
|
||||
original_aspect_ratio = original_width / original_height
|
||||
current_aspect_ratio = current_width / current_height
|
||||
|
||||
if original_aspect_ratio > current_aspect_ratio:
|
||||
scale_factor = current_width / original_width
|
||||
new_height = int(original_height * scale_factor)
|
||||
padding = (current_height - new_height) // 2
|
||||
unpadded_tensor = tensor[:, padding:current_height - padding, :]
|
||||
else:
|
||||
scale_factor = current_height / original_height
|
||||
new_width = int(original_width * scale_factor)
|
||||
padding = (current_width - new_width) // 2
|
||||
unpadded_tensor = tensor[:, :, padding:current_width - padding]
|
||||
|
||||
return unpadded_tensor
|
||||
|
||||
|
||||
class LlavaMetaForCausalLM(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def get_model(self):
|
||||
pass
|
||||
|
||||
def get_vision_tower(self):
|
||||
return self.get_model().get_vision_tower()
|
||||
|
||||
def encode_images(self, images):
|
||||
image_features = self.get_model().get_vision_tower()(images) # batch, 576 / 729, vision_model hidden_size
|
||||
image_features = self.get_model().mm_projector(image_features)
|
||||
return image_features
|
||||
|
||||
def prepare_inputs_labels_for_multimodal(
|
||||
self, input_ids, position_ids, attention_mask, past_key_values, labels,
|
||||
images, image_sizes=None
|
||||
):
|
||||
vision_tower = self.get_vision_tower()
|
||||
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
||||
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
||||
|
||||
# enter in this if from llava 1.6
|
||||
if type(images) is list or images.ndim == 5:
|
||||
if type(images) is list:
|
||||
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
|
||||
concat_images = torch.cat([image for image in images], dim=0)
|
||||
image_features = self.encode_images(concat_images)
|
||||
split_sizes = [image.shape[0] for image in images]
|
||||
image_features = torch.split(image_features, split_sizes, dim=0)
|
||||
mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
|
||||
image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square')
|
||||
if mm_patch_merge_type == 'flat':
|
||||
image_features = [x.flatten(0, 1) for x in image_features]
|
||||
elif mm_patch_merge_type.startswith('spatial'):
|
||||
new_image_features = []
|
||||
for image_idx, image_feature in enumerate(image_features):
|
||||
if image_feature.shape[0] > 1:
|
||||
tmp_image_shape = images[image_idx].shape
|
||||
base_image_feature = image_feature[0]
|
||||
image_feature = image_feature[1:]
|
||||
if hasattr(self.get_vision_tower(), 'num_patches_per_side'):
|
||||
height = width = self.get_vision_tower().num_patches_per_side
|
||||
else:
|
||||
height = width = self.get_vision_tower().config.image_size // self.get_vision_tower().config.patch_size
|
||||
|
||||
assert height * width == base_image_feature.shape[0]
|
||||
if image_aspect_ratio == 'anyres':
|
||||
num_patch_width, num_patch_height = get_anyres_image_grid_shape((images[image_idx].shape[-1],
|
||||
images[image_idx].shape[-2]),
|
||||
self.config.image_grid_pinpoints,
|
||||
self.get_vision_tower().config.image_size)
|
||||
# num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
|
||||
if num_patch_height + num_patch_width != tmp_image_shape[0]:
|
||||
image_feature = image_feature.view(num_patch_height+1, num_patch_width, height, width, -1)
|
||||
else:
|
||||
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
if 'unpad' in mm_patch_merge_type:
|
||||
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
||||
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
||||
image_feature= unpad_image(image_feature, (images[image_idx].shape[-1], images[image_idx].shape[-2]))
|
||||
# image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
||||
# here the first dimension should be 4096
|
||||
image_feature = torch.cat(( # 6144, 24, 24
|
||||
image_feature,
|
||||
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
|
||||
), dim=-1)
|
||||
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
||||
else:
|
||||
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
|
||||
image_feature = image_feature.flatten(0, 3)
|
||||
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
||||
else:
|
||||
image_feature = image_feature[0]
|
||||
if 'unpad' in mm_patch_merge_type:
|
||||
image_feature = torch.cat((
|
||||
image_feature,
|
||||
self.model.image_newline[None].to(image_feature.device)
|
||||
), dim=0)
|
||||
new_image_features.append(image_feature)
|
||||
image_features = new_image_features
|
||||
else:
|
||||
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
|
||||
else:
|
||||
image_features = self.encode_images(images)
|
||||
|
||||
# TODO: image start / end is not implemented here to support pretraining.
|
||||
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
||||
raise NotImplementedError
|
||||
|
||||
# Let's just add dummy tensors if they do not exist,
|
||||
# it is a headache to deal with None all the time.
|
||||
# But it is not ideal, and if you have a better idea,
|
||||
# please open an issue / submit a PR, thanks.
|
||||
_labels = labels
|
||||
_position_ids = position_ids
|
||||
_attention_mask = attention_mask
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
||||
else:
|
||||
attention_mask = attention_mask.bool()
|
||||
if position_ids is None:
|
||||
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
||||
if labels is None:
|
||||
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
||||
|
||||
# remove the padding using attention_mask -- FIXME
|
||||
_input_ids = input_ids
|
||||
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
||||
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
||||
|
||||
new_input_embeds = []
|
||||
new_labels = []
|
||||
cur_image_idx = 0
|
||||
for batch_idx, cur_input_ids in enumerate(input_ids):
|
||||
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
||||
if num_images == 0:
|
||||
cur_image_features = image_features[cur_image_idx]
|
||||
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
||||
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
||||
new_input_embeds.append(cur_input_embeds)
|
||||
new_labels.append(labels[batch_idx])
|
||||
cur_image_idx += 1
|
||||
continue
|
||||
|
||||
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
||||
cur_input_ids_noim = []
|
||||
cur_labels = labels[batch_idx]
|
||||
cur_labels_noim = []
|
||||
for i in range(len(image_token_indices) - 1):
|
||||
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
||||
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
||||
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
||||
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
|
||||
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
||||
cur_new_input_embeds = []
|
||||
cur_new_labels = []
|
||||
|
||||
for i in range(num_images + 1):
|
||||
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
||||
cur_new_labels.append(cur_labels_noim[i])
|
||||
if i < num_images:
|
||||
cur_image_features = image_features[cur_image_idx]
|
||||
cur_image_idx += 1
|
||||
cur_new_input_embeds.append(cur_image_features)
|
||||
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
||||
|
||||
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
|
||||
|
||||
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
||||
cur_new_labels = torch.cat(cur_new_labels)
|
||||
|
||||
new_input_embeds.append(cur_new_input_embeds)
|
||||
new_labels.append(cur_new_labels)
|
||||
|
||||
# Truncate sequences to max length as image embeddings can make the sequence longer
|
||||
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
||||
if tokenizer_model_max_length is not None:
|
||||
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
||||
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
||||
|
||||
# Combine them
|
||||
max_len = max(x.shape[0] for x in new_input_embeds)
|
||||
batch_size = len(new_input_embeds)
|
||||
|
||||
new_input_embeds_padded = []
|
||||
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
||||
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
||||
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
||||
|
||||
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
||||
cur_len = cur_new_embed.shape[0]
|
||||
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
||||
new_input_embeds_padded.append(torch.cat((
|
||||
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
||||
cur_new_embed
|
||||
), dim=0))
|
||||
if cur_len > 0:
|
||||
new_labels_padded[i, -cur_len:] = cur_new_labels
|
||||
attention_mask[i, -cur_len:] = True
|
||||
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
||||
else:
|
||||
new_input_embeds_padded.append(torch.cat((
|
||||
cur_new_embed,
|
||||
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
||||
), dim=0))
|
||||
if cur_len > 0:
|
||||
new_labels_padded[i, :cur_len] = cur_new_labels
|
||||
attention_mask[i, :cur_len] = True
|
||||
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
||||
|
||||
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
||||
|
||||
if _labels is None:
|
||||
new_labels = None
|
||||
else:
|
||||
new_labels = new_labels_padded
|
||||
|
||||
if _attention_mask is None:
|
||||
attention_mask = None
|
||||
else:
|
||||
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
||||
|
||||
if _position_ids is None:
|
||||
position_ids = None
|
||||
|
||||
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
||||
|
||||
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
||||
if model_args.mm_use_im_patch_token:
|
||||
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||||
self.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
if model_args.mm_use_im_start_end:
|
||||
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||||
self.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
if num_new_tokens > 0:
|
||||
input_embeddings = self.get_input_embeddings().weight.data
|
||||
output_embeddings = self.get_output_embeddings().weight.data
|
||||
|
||||
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
||||
dim=0, keepdim=True)
|
||||
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
||||
dim=0, keepdim=True)
|
||||
|
||||
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
||||
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
||||
|
||||
if model_args.tune_mm_mlp_adapter:
|
||||
for p in self.get_input_embeddings().parameters():
|
||||
p.requires_grad = True
|
||||
for p in self.get_output_embeddings().parameters():
|
||||
p.requires_grad = False
|
||||
|
||||
if model_args.pretrain_mm_mlp_adapter:
|
||||
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
||||
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
||||
assert num_new_tokens == 2
|
||||
if input_embeddings.shape == embed_tokens_weight.shape:
|
||||
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
||||
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
||||
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
||||
else:
|
||||
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
||||
elif model_args.mm_use_im_patch_token:
|
||||
if model_args.tune_mm_mlp_adapter:
|
||||
for p in self.get_input_embeddings().parameters():
|
||||
p.requires_grad = False
|
||||
for p in self.get_output_embeddings().parameters():
|
||||
p.requires_grad = False
|
||||
52
llava/model/make_delta.py
Normal file
@@ -0,0 +1,52 @@
|
||||
"""
|
||||
Usage:
|
||||
python3 -m llava.model.make_delta --base ~/model_weights/llama-7b --target ~/model_weights/llava-7b --delta ~/model_weights/llava-7b-delta --hub-repo-id liuhaotian/llava-7b-delta
|
||||
"""
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from llava.model.utils import auto_upgrade
|
||||
|
||||
|
||||
def make_delta(base_model_path, target_model_path, delta_path, hub_repo_id):
|
||||
print("Loading base model")
|
||||
base = AutoModelForCausalLM.from_pretrained(
|
||||
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
||||
|
||||
print("Loading target model")
|
||||
auto_upgrade(target_model_path)
|
||||
target = AutoModelForCausalLM.from_pretrained(target_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
||||
|
||||
print("Calculating delta")
|
||||
for name, param in tqdm(target.state_dict().items(), desc="Calculating delta"):
|
||||
if name not in base.state_dict():
|
||||
assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
|
||||
continue
|
||||
if param.data.shape == base.state_dict()[name].shape:
|
||||
param.data -= base.state_dict()[name]
|
||||
else:
|
||||
assert name in ['model.embed_tokens.weight', 'lm_head.weight'], f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
|
||||
bparam = base.state_dict()[name]
|
||||
param.data[:bparam.shape[0], :bparam.shape[1]] -= bparam
|
||||
|
||||
print("Saving delta")
|
||||
if hub_repo_id:
|
||||
kwargs = {"push_to_hub": True, "repo_id": hub_repo_id}
|
||||
else:
|
||||
kwargs = {}
|
||||
target.save_pretrained(delta_path, **kwargs)
|
||||
target_tokenizer = AutoTokenizer.from_pretrained(target_model_path)
|
||||
target_tokenizer.save_pretrained(delta_path, **kwargs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--base-model-path", type=str, required=True)
|
||||
parser.add_argument("--target-model-path", type=str, required=True)
|
||||
parser.add_argument("--delta-path", type=str, required=True)
|
||||
parser.add_argument("--hub-repo-id", type=str, default=None)
|
||||
args = parser.parse_args()
|
||||
|
||||
make_delta(args.base_model_path, args.target_model_path, args.delta_path, args.hub_repo_id)
|
||||
21
llava/model/multimodal_encoder/builder.py
Normal file
@@ -0,0 +1,21 @@
|
||||
import os
|
||||
from .clip_encoder import CLIPVisionTower, CLIPVisionTowerS2, SigLIPVisionTower, SigLIPVisionTowerS2
|
||||
|
||||
|
||||
def build_vision_tower(vision_tower_cfg, **kwargs):
|
||||
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
|
||||
is_absolute_path_exists = os.path.exists(vision_tower)
|
||||
use_s2 = getattr(vision_tower_cfg, 's2', False)
|
||||
use_siglip = getattr(vision_tower_cfg, 'siglip', False)
|
||||
|
||||
if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion") or vision_tower.startswith("timm") or vision_tower.startswith("google") or "ShareGPT4V" in vision_tower:
|
||||
if use_s2 and use_siglip:
|
||||
return SigLIPVisionTowerS2(vision_tower, args=vision_tower_cfg, **kwargs)
|
||||
if use_s2:
|
||||
return CLIPVisionTowerS2(vision_tower, args=vision_tower_cfg, **kwargs)
|
||||
if use_siglip:
|
||||
return SigLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
||||
else:
|
||||
return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
||||
|
||||
raise ValueError(f'Unknown vision tower: {vision_tower}')
|
||||
305
llava/model/multimodal_encoder/clip_encoder.py
Normal file
@@ -0,0 +1,305 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
|
||||
from transformers import AutoProcessor, AutoModel
|
||||
from transformers import SiglipImageProcessor, SiglipVisionModel
|
||||
#from open_clip import create_model_from_pretrained, get_tokenizer # works on open-clip-torch>=2.23.0, timm>=0.9.8
|
||||
|
||||
class SigLIPVisionTower(nn.Module):
|
||||
def __init__(self, vision_tower, args, delay_load=False):
|
||||
super().__init__()
|
||||
|
||||
self.is_loaded = False
|
||||
|
||||
self.vision_tower_name = vision_tower
|
||||
self.select_layer = args.mm_vision_select_layer
|
||||
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
|
||||
|
||||
if not delay_load:
|
||||
self.load_model()
|
||||
elif getattr(args, 'unfreeze_mm_vision_tower', False):
|
||||
self.load_model()
|
||||
else:
|
||||
#model, _ = create_model_from_pretrained('hf-hub:timm/ViT-SO400M-14-SigLIP-384')
|
||||
model = SiglipVisionModel.from_pretrained(self.vision_tower_name)
|
||||
self.cfg_only = model.config
|
||||
|
||||
def load_model(self, device_map=None):
|
||||
if self.is_loaded:
|
||||
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
|
||||
return
|
||||
|
||||
# model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-SO400M-14-SigLIP-384')
|
||||
# self.image_processor = preprocess
|
||||
# self.vision_tower = model.to(device_map['device'])
|
||||
|
||||
# self.image_processor = AutoProcessor.from_pretrained(self.vision_tower_name)
|
||||
# self.vision_tower= AutoModel.from_pretrained(self.vision_tower_name, device_map=device_map)
|
||||
|
||||
self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name)
|
||||
self.vision_tower= SiglipVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
|
||||
|
||||
self.vision_tower.requires_grad_(False)
|
||||
self.is_loaded = True
|
||||
|
||||
def feature_select(self, image_forward_outs):
|
||||
image_features = image_forward_outs.hidden_states[self.select_layer] # len 25, each is (batch, 577, 1024) - (batch, 729, 1152)
|
||||
if self.select_feature == 'patch':
|
||||
image_features = image_features[:, :] # not remove the first token --> (batch, 576, 1024) - (batch, 729, 1152)
|
||||
elif self.select_feature == 'cls_patch':
|
||||
image_features = image_features
|
||||
else:
|
||||
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
||||
return image_features
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, images): # images tensor of shape (batch, 3, 336, 336)
|
||||
if type(images) is list:
|
||||
image_features = []
|
||||
for image in images:
|
||||
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
||||
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
||||
image_features.append(image_feature)
|
||||
else:
|
||||
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
||||
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
||||
|
||||
return image_features
|
||||
|
||||
@property
|
||||
def dummy_feature(self):
|
||||
return torch.zeros(1, self.config.vision_config.hidden_size, device=self.device, dtype=self.dtype) # V
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self.vision_tower.dtype # torch.float16 V
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self.vision_tower.device # device(type='cuda', index=0) V
|
||||
|
||||
@property
|
||||
def config(self):
|
||||
if self.is_loaded:
|
||||
return self.vision_tower.config # CLIPVisionConfig - SiglipConfig V
|
||||
else:
|
||||
return self.cfg_only
|
||||
|
||||
@property
|
||||
def hidden_size(self):
|
||||
return self.config.vision_config.hidden_size # 1152 V
|
||||
|
||||
@property
|
||||
def num_patches_per_side(self):
|
||||
return self.config.vision_config.image_size // self.config.vision_config.patch_size # (348 // 14) = 27 V
|
||||
|
||||
@property
|
||||
def num_patches(self):
|
||||
return (self.config.vision_config.image_size // self.config.vision_config.patch_size) ** 2 # 729 V
|
||||
|
||||
|
||||
class CustomSiglipImageProcessor(SiglipImageProcessor):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.crop_size = {'width': 0, 'height': 0}
|
||||
self.crop_size['height'] = self.crop_size['width'] = self.size['height']
|
||||
|
||||
class SigLIPVisionTowerS2(SigLIPVisionTower):
|
||||
def __init__(self, vision_tower, args, delay_load=False):
|
||||
#super().__init__(vision_tower, args, delay_load)
|
||||
self.s2_scales = getattr(args, 's2_scales', '336,672,1008')
|
||||
self.s2_scales = list(map(int, self.s2_scales.split(',')))
|
||||
self.s2_scales.sort()
|
||||
self.s2_split_size = self.s2_scales[0]
|
||||
self.s2_image_size = self.s2_scales[-1]
|
||||
|
||||
super().__init__(vision_tower, args, delay_load)
|
||||
try:
|
||||
from s2wrapper import forward as multiscale_forward
|
||||
except ImportError:
|
||||
raise ImportError('Package s2wrapper not found! Please install by running: \npip install git+https://github.com/bfshi/scaling_on_scales.git')
|
||||
self.multiscale_forward = multiscale_forward
|
||||
|
||||
# change resize/crop size in preprocessing to the largest image size in s2_scale
|
||||
# if not delay_load or getattr(args, 'unfreeze_mm_vision_tower', False):
|
||||
# self.image_processor.size['shortest_edge'] = self.s2_image_size
|
||||
# self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size
|
||||
|
||||
def load_model(self, device_map=None):
|
||||
if self.is_loaded:
|
||||
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
|
||||
return
|
||||
|
||||
self.image_processor = CustomSiglipImageProcessor.from_pretrained(self.vision_tower_name)
|
||||
self.vision_tower= SiglipVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
|
||||
self.vision_tower.requires_grad_(False)
|
||||
|
||||
#self.image_processor.size['shortest_edge'] = self.s2_image_size
|
||||
self.image_processor.size['height'] = self.image_processor.size['width'] = self.s2_image_size
|
||||
self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size
|
||||
self.is_loaded = True
|
||||
|
||||
@torch.no_grad()
|
||||
def forward_feature(self, images):
|
||||
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
||||
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
||||
return image_features
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, images):
|
||||
if type(images) is list:
|
||||
image_features = []
|
||||
for image in images:
|
||||
image_feature = self.multiscale_forward(self.forward_feature, image.unsqueeze(0), img_sizes=self.s2_scales, max_split_size=self.s2_split_size)
|
||||
image_features.append(image_feature)
|
||||
else:
|
||||
image_features = self.multiscale_forward(self.forward_feature, images, img_sizes=self.s2_scales, max_split_size=self.s2_split_size)
|
||||
|
||||
return image_features
|
||||
|
||||
@property
|
||||
def hidden_size(self):
|
||||
return self.config.hidden_size * len(self.s2_scales)
|
||||
|
||||
|
||||
class CLIPVisionTower(nn.Module):
|
||||
def __init__(self, vision_tower, args, delay_load=False):
|
||||
super().__init__()
|
||||
|
||||
self.is_loaded = False
|
||||
|
||||
self.vision_tower_name = vision_tower
|
||||
self.select_layer = args.mm_vision_select_layer
|
||||
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
|
||||
|
||||
if not delay_load:
|
||||
self.load_model()
|
||||
elif getattr(args, 'unfreeze_mm_vision_tower', False):
|
||||
self.load_model()
|
||||
else:
|
||||
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
|
||||
|
||||
def load_model(self, device_map=None):
|
||||
if self.is_loaded:
|
||||
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
|
||||
return
|
||||
|
||||
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
|
||||
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
|
||||
self.vision_tower.requires_grad_(False)
|
||||
|
||||
self.is_loaded = True
|
||||
|
||||
def feature_select(self, image_forward_outs):
|
||||
image_features = image_forward_outs.hidden_states[self.select_layer] # len 25, each is (batch, 577, 1024)
|
||||
if self.select_feature == 'patch':
|
||||
image_features = image_features[:, 1:] # remove the CLS token --> (batch, 576, 1024)
|
||||
elif self.select_feature == 'cls_patch':
|
||||
image_features = image_features
|
||||
else:
|
||||
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
||||
return image_features
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, images): # images tensor of shape (batch, 3, 336, 336)
|
||||
if type(images) is list:
|
||||
image_features = []
|
||||
for image in images:
|
||||
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
||||
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
||||
image_features.append(image_feature)
|
||||
else:
|
||||
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
||||
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
||||
|
||||
return image_features
|
||||
|
||||
@property
|
||||
def dummy_feature(self):
|
||||
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self.vision_tower.dtype # torch.float16
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self.vision_tower.device # device(type='cuda', index=0)
|
||||
|
||||
@property
|
||||
def config(self):
|
||||
if self.is_loaded:
|
||||
return self.vision_tower.config # CLIPVisionConfig
|
||||
else:
|
||||
return self.cfg_only
|
||||
|
||||
@property
|
||||
def hidden_size(self):
|
||||
return self.config.hidden_size # 1024
|
||||
|
||||
@property
|
||||
def num_patches_per_side(self):
|
||||
return self.config.image_size // self.config.patch_size # (336 // 14) = 24
|
||||
|
||||
@property
|
||||
def num_patches(self):
|
||||
return (self.config.image_size // self.config.patch_size) ** 2 # 576
|
||||
|
||||
|
||||
class CLIPVisionTowerS2(CLIPVisionTower):
|
||||
def __init__(self, vision_tower, args, delay_load=False):
|
||||
#super().__init__(vision_tower, args, delay_load)
|
||||
self.s2_scales = getattr(args, 's2_scales', '336,672,1008')
|
||||
self.s2_scales = list(map(int, self.s2_scales.split(',')))
|
||||
self.s2_scales.sort()
|
||||
self.s2_split_size = self.s2_scales[0]
|
||||
self.s2_image_size = self.s2_scales[-1]
|
||||
|
||||
super().__init__(vision_tower, args, delay_load)
|
||||
try:
|
||||
from s2wrapper import forward as multiscale_forward
|
||||
except ImportError:
|
||||
raise ImportError('Package s2wrapper not found! Please install by running: \npip install git+https://github.com/bfshi/scaling_on_scales.git')
|
||||
self.multiscale_forward = multiscale_forward
|
||||
|
||||
# change resize/crop size in preprocessing to the largest image size in s2_scale
|
||||
# if not delay_load or getattr(args, 'unfreeze_mm_vision_tower', False):
|
||||
# self.image_processor.size['shortest_edge'] = self.s2_image_size
|
||||
# self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size
|
||||
|
||||
def load_model(self, device_map=None):
|
||||
if self.is_loaded:
|
||||
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
|
||||
return
|
||||
|
||||
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
|
||||
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
|
||||
self.vision_tower.requires_grad_(False)
|
||||
|
||||
self.image_processor.size['shortest_edge'] = self.s2_image_size
|
||||
self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size
|
||||
|
||||
self.is_loaded = True
|
||||
|
||||
@torch.no_grad()
|
||||
def forward_feature(self, images):
|
||||
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
||||
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
||||
return image_features
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, images):
|
||||
if type(images) is list:
|
||||
image_features = []
|
||||
for image in images:
|
||||
image_feature = self.multiscale_forward(self.forward_feature, image.unsqueeze(0), img_sizes=self.s2_scales, max_split_size=self.s2_split_size)
|
||||
image_features.append(image_feature)
|
||||
else:
|
||||
image_features = self.multiscale_forward(self.forward_feature, images, img_sizes=self.s2_scales, max_split_size=self.s2_split_size)
|
||||
|
||||
return image_features
|
||||
|
||||
@property
|
||||
def hidden_size(self):
|
||||
return self.config.hidden_size * len(self.s2_scales)
|
||||
51
llava/model/multimodal_projector/builder.py
Normal file
@@ -0,0 +1,51 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import re
|
||||
|
||||
|
||||
class IdentityMap(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x, *args, **kwargs):
|
||||
return x
|
||||
|
||||
@property
|
||||
def config(self):
|
||||
return {"mm_projector_type": 'identity'}
|
||||
|
||||
|
||||
class SimpleResBlock(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super().__init__()
|
||||
self.pre_norm = nn.LayerNorm(channels)
|
||||
|
||||
self.proj = nn.Sequential(
|
||||
nn.Linear(channels, channels),
|
||||
nn.GELU(),
|
||||
nn.Linear(channels, channels)
|
||||
)
|
||||
def forward(self, x):
|
||||
x = self.pre_norm(x)
|
||||
return x + self.proj(x)
|
||||
|
||||
|
||||
def build_vision_projector(config, delay_load=False, **kwargs):
|
||||
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
||||
|
||||
if projector_type == 'linear':
|
||||
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
||||
|
||||
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
||||
if mlp_gelu_match:
|
||||
mlp_depth = int(mlp_gelu_match.group(1))
|
||||
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
||||
for _ in range(1, mlp_depth):
|
||||
modules.append(nn.GELU())
|
||||
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
||||
return nn.Sequential(*modules)
|
||||
|
||||
if projector_type == 'identity':
|
||||
return IdentityMap()
|
||||
|
||||
raise ValueError(f'Unknown projector type: {projector_type}')
|
||||
20
llava/model/utils.py
Normal file
@@ -0,0 +1,20 @@
|
||||
from transformers import AutoConfig
|
||||
|
||||
|
||||
def auto_upgrade(config):
|
||||
cfg = AutoConfig.from_pretrained(config)
|
||||
if 'llava' in config and 'llava' not in cfg.model_type:
|
||||
assert cfg.model_type == 'llama'
|
||||
print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.")
|
||||
print("You must upgrade the checkpoint to the new code base (this can be done automatically).")
|
||||
confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
|
||||
if confirm.lower() in ["y", "yes"]:
|
||||
print("Upgrading checkpoint...")
|
||||
assert len(cfg.architectures) == 1
|
||||
setattr(cfg.__class__, "model_type", "llava")
|
||||
cfg.architectures[0] = 'LlavaLlamaForCausalLM'
|
||||
cfg.save_pretrained(config)
|
||||
print("Checkpoint upgraded.")
|
||||
else:
|
||||
print("Checkpoint upgrade aborted.")
|
||||
exit(1)
|
||||
0
llava/serve/__init__.py
Normal file
126
llava/serve/cli.py
Normal file
@@ -0,0 +1,126 @@
|
||||
import argparse
|
||||
import torch
|
||||
|
||||
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
||||
from llava.conversation import conv_templates, SeparatorStyle
|
||||
from llava.model.builder import load_pretrained_model
|
||||
from llava.utils import disable_torch_init
|
||||
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path
|
||||
|
||||
from PIL import Image
|
||||
|
||||
import requests
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
from transformers import TextStreamer
|
||||
|
||||
|
||||
def load_image(image_file):
|
||||
if image_file.startswith('http://') or image_file.startswith('https://'):
|
||||
response = requests.get(image_file)
|
||||
image = Image.open(BytesIO(response.content)).convert('RGB')
|
||||
else:
|
||||
image = Image.open(image_file).convert('RGB')
|
||||
return image
|
||||
|
||||
|
||||
def main(args):
|
||||
# Model
|
||||
disable_torch_init()
|
||||
|
||||
model_name = get_model_name_from_path(args.model_path)
|
||||
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
|
||||
|
||||
if "llama-2" in model_name.lower():
|
||||
conv_mode = "llava_llama_2"
|
||||
elif "mistral" in model_name.lower():
|
||||
conv_mode = "mistral_instruct"
|
||||
elif "v1.6-34b" in model_name.lower():
|
||||
conv_mode = "chatml_direct"
|
||||
elif "v1" in model_name.lower():
|
||||
conv_mode = "llava_v1"
|
||||
elif "mpt" in model_name.lower():
|
||||
conv_mode = "mpt"
|
||||
else:
|
||||
conv_mode = "llava_v0"
|
||||
|
||||
if args.conv_mode is not None and conv_mode != args.conv_mode:
|
||||
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
|
||||
else:
|
||||
args.conv_mode = conv_mode
|
||||
|
||||
conv = conv_templates[args.conv_mode].copy()
|
||||
if "mpt" in model_name.lower():
|
||||
roles = ('user', 'assistant')
|
||||
else:
|
||||
roles = conv.roles
|
||||
|
||||
image = load_image(args.image_file)
|
||||
image_size = image.size
|
||||
# Similar operation in model_worker.py
|
||||
image_tensor = process_images([image], image_processor, model.config)
|
||||
if type(image_tensor) is list:
|
||||
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
|
||||
else:
|
||||
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
|
||||
|
||||
while True:
|
||||
try:
|
||||
inp = input(f"{roles[0]}: ")
|
||||
except EOFError:
|
||||
inp = ""
|
||||
if not inp:
|
||||
print("exit...")
|
||||
break
|
||||
|
||||
print(f"{roles[1]}: ", end="")
|
||||
|
||||
if image is not None:
|
||||
# first message
|
||||
if model.config.mm_use_im_start_end:
|
||||
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
|
||||
else:
|
||||
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
|
||||
image = None
|
||||
|
||||
conv.append_message(conv.roles[0], inp)
|
||||
conv.append_message(conv.roles[1], None)
|
||||
prompt = conv.get_prompt()
|
||||
|
||||
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
|
||||
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
||||
keywords = [stop_str]
|
||||
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||||
|
||||
with torch.inference_mode():
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
images=image_tensor,
|
||||
image_sizes=[image_size],
|
||||
do_sample=True if args.temperature > 0 else False,
|
||||
temperature=args.temperature,
|
||||
max_new_tokens=args.max_new_tokens,
|
||||
streamer=streamer,
|
||||
use_cache=True)
|
||||
|
||||
outputs = tokenizer.decode(output_ids[0]).strip()
|
||||
conv.messages[-1][-1] = outputs
|
||||
|
||||
if args.debug:
|
||||
print("\n", {"prompt": prompt, "outputs": outputs}, "\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
||||
parser.add_argument("--model-base", type=str, default=None)
|
||||
parser.add_argument("--image-file", type=str, required=True)
|
||||
parser.add_argument("--device", type=str, default="cuda")
|
||||
parser.add_argument("--conv-mode", type=str, default=None)
|
||||
parser.add_argument("--temperature", type=float, default=0.2)
|
||||
parser.add_argument("--max-new-tokens", type=int, default=512)
|
||||
parser.add_argument("--load-8bit", action="store_true")
|
||||
parser.add_argument("--load-4bit", action="store_true")
|
||||
parser.add_argument("--debug", action="store_true")
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
298
llava/serve/controller.py
Normal file
@@ -0,0 +1,298 @@
|
||||
"""
|
||||
A controller manages distributed workers.
|
||||
It sends worker addresses to clients.
|
||||
"""
|
||||
import argparse
|
||||
import asyncio
|
||||
import dataclasses
|
||||
from enum import Enum, auto
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
from typing import List, Union
|
||||
import threading
|
||||
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
import numpy as np
|
||||
import requests
|
||||
import uvicorn
|
||||
|
||||
from llava.constants import CONTROLLER_HEART_BEAT_EXPIRATION
|
||||
from llava.utils import build_logger, server_error_msg
|
||||
|
||||
|
||||
logger = build_logger("controller", "controller.log")
|
||||
|
||||
|
||||
class DispatchMethod(Enum):
|
||||
LOTTERY = auto()
|
||||
SHORTEST_QUEUE = auto()
|
||||
|
||||
@classmethod
|
||||
def from_str(cls, name):
|
||||
if name == "lottery":
|
||||
return cls.LOTTERY
|
||||
elif name == "shortest_queue":
|
||||
return cls.SHORTEST_QUEUE
|
||||
else:
|
||||
raise ValueError(f"Invalid dispatch method")
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class WorkerInfo:
|
||||
model_names: List[str]
|
||||
speed: int
|
||||
queue_length: int
|
||||
check_heart_beat: bool
|
||||
last_heart_beat: str
|
||||
|
||||
|
||||
def heart_beat_controller(controller):
|
||||
while True:
|
||||
time.sleep(CONTROLLER_HEART_BEAT_EXPIRATION)
|
||||
controller.remove_stable_workers_by_expiration()
|
||||
|
||||
|
||||
class Controller:
|
||||
def __init__(self, dispatch_method: str):
|
||||
# Dict[str -> WorkerInfo]
|
||||
self.worker_info = {}
|
||||
self.dispatch_method = DispatchMethod.from_str(dispatch_method)
|
||||
|
||||
self.heart_beat_thread = threading.Thread(
|
||||
target=heart_beat_controller, args=(self,), daemon=True)
|
||||
self.heart_beat_thread.start()
|
||||
|
||||
logger.info("Init controller")
|
||||
|
||||
def register_worker(self, worker_name: str, check_heart_beat: bool,
|
||||
worker_status: dict):
|
||||
if worker_name not in self.worker_info:
|
||||
logger.info(f"Register a new worker: {worker_name}")
|
||||
else:
|
||||
logger.info(f"Register an existing worker: {worker_name}")
|
||||
|
||||
if not worker_status:
|
||||
worker_status = self.get_worker_status(worker_name)
|
||||
if not worker_status:
|
||||
return False
|
||||
|
||||
self.worker_info[worker_name] = WorkerInfo(
|
||||
worker_status["model_names"], worker_status["speed"], worker_status["queue_length"],
|
||||
check_heart_beat, time.time())
|
||||
|
||||
logger.info(f"Register done: {worker_name}, {worker_status}")
|
||||
return True
|
||||
|
||||
def get_worker_status(self, worker_name: str):
|
||||
try:
|
||||
r = requests.post(worker_name + "/worker_get_status", timeout=5)
|
||||
except requests.exceptions.RequestException as e:
|
||||
logger.error(f"Get status fails: {worker_name}, {e}")
|
||||
return None
|
||||
|
||||
if r.status_code != 200:
|
||||
logger.error(f"Get status fails: {worker_name}, {r}")
|
||||
return None
|
||||
|
||||
return r.json()
|
||||
|
||||
def remove_worker(self, worker_name: str):
|
||||
del self.worker_info[worker_name]
|
||||
|
||||
def refresh_all_workers(self):
|
||||
old_info = dict(self.worker_info)
|
||||
self.worker_info = {}
|
||||
|
||||
for w_name, w_info in old_info.items():
|
||||
if not self.register_worker(w_name, w_info.check_heart_beat, None):
|
||||
logger.info(f"Remove stale worker: {w_name}")
|
||||
|
||||
def list_models(self):
|
||||
model_names = set()
|
||||
|
||||
for w_name, w_info in self.worker_info.items():
|
||||
model_names.update(w_info.model_names)
|
||||
|
||||
return list(model_names)
|
||||
|
||||
def get_worker_address(self, model_name: str):
|
||||
if self.dispatch_method == DispatchMethod.LOTTERY:
|
||||
worker_names = []
|
||||
worker_speeds = []
|
||||
for w_name, w_info in self.worker_info.items():
|
||||
if model_name in w_info.model_names:
|
||||
worker_names.append(w_name)
|
||||
worker_speeds.append(w_info.speed)
|
||||
worker_speeds = np.array(worker_speeds, dtype=np.float32)
|
||||
norm = np.sum(worker_speeds)
|
||||
if norm < 1e-4:
|
||||
return ""
|
||||
worker_speeds = worker_speeds / norm
|
||||
if True: # Directly return address
|
||||
pt = np.random.choice(np.arange(len(worker_names)),
|
||||
p=worker_speeds)
|
||||
worker_name = worker_names[pt]
|
||||
return worker_name
|
||||
|
||||
# Check status before returning
|
||||
while True:
|
||||
pt = np.random.choice(np.arange(len(worker_names)),
|
||||
p=worker_speeds)
|
||||
worker_name = worker_names[pt]
|
||||
|
||||
if self.get_worker_status(worker_name):
|
||||
break
|
||||
else:
|
||||
self.remove_worker(worker_name)
|
||||
worker_speeds[pt] = 0
|
||||
norm = np.sum(worker_speeds)
|
||||
if norm < 1e-4:
|
||||
return ""
|
||||
worker_speeds = worker_speeds / norm
|
||||
continue
|
||||
return worker_name
|
||||
elif self.dispatch_method == DispatchMethod.SHORTEST_QUEUE:
|
||||
worker_names = []
|
||||
worker_qlen = []
|
||||
for w_name, w_info in self.worker_info.items():
|
||||
if model_name in w_info.model_names:
|
||||
worker_names.append(w_name)
|
||||
worker_qlen.append(w_info.queue_length / w_info.speed)
|
||||
if len(worker_names) == 0:
|
||||
return ""
|
||||
min_index = np.argmin(worker_qlen)
|
||||
w_name = worker_names[min_index]
|
||||
self.worker_info[w_name].queue_length += 1
|
||||
logger.info(f"names: {worker_names}, queue_lens: {worker_qlen}, ret: {w_name}")
|
||||
return w_name
|
||||
else:
|
||||
raise ValueError(f"Invalid dispatch method: {self.dispatch_method}")
|
||||
|
||||
def receive_heart_beat(self, worker_name: str, queue_length: int):
|
||||
if worker_name not in self.worker_info:
|
||||
logger.info(f"Receive unknown heart beat. {worker_name}")
|
||||
return False
|
||||
|
||||
self.worker_info[worker_name].queue_length = queue_length
|
||||
self.worker_info[worker_name].last_heart_beat = time.time()
|
||||
logger.info(f"Receive heart beat. {worker_name}")
|
||||
return True
|
||||
|
||||
def remove_stable_workers_by_expiration(self):
|
||||
expire = time.time() - CONTROLLER_HEART_BEAT_EXPIRATION
|
||||
to_delete = []
|
||||
for worker_name, w_info in self.worker_info.items():
|
||||
if w_info.check_heart_beat and w_info.last_heart_beat < expire:
|
||||
to_delete.append(worker_name)
|
||||
|
||||
for worker_name in to_delete:
|
||||
self.remove_worker(worker_name)
|
||||
|
||||
def worker_api_generate_stream(self, params):
|
||||
worker_addr = self.get_worker_address(params["model"])
|
||||
if not worker_addr:
|
||||
logger.info(f"no worker: {params['model']}")
|
||||
ret = {
|
||||
"text": server_error_msg,
|
||||
"error_code": 2,
|
||||
}
|
||||
yield json.dumps(ret).encode() + b"\0"
|
||||
|
||||
try:
|
||||
response = requests.post(worker_addr + "/worker_generate_stream",
|
||||
json=params, stream=True, timeout=5)
|
||||
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
||||
if chunk:
|
||||
yield chunk + b"\0"
|
||||
except requests.exceptions.RequestException as e:
|
||||
logger.info(f"worker timeout: {worker_addr}")
|
||||
ret = {
|
||||
"text": server_error_msg,
|
||||
"error_code": 3,
|
||||
}
|
||||
yield json.dumps(ret).encode() + b"\0"
|
||||
|
||||
|
||||
# Let the controller act as a worker to achieve hierarchical
|
||||
# management. This can be used to connect isolated sub networks.
|
||||
def worker_api_get_status(self):
|
||||
model_names = set()
|
||||
speed = 0
|
||||
queue_length = 0
|
||||
|
||||
for w_name in self.worker_info:
|
||||
worker_status = self.get_worker_status(w_name)
|
||||
if worker_status is not None:
|
||||
model_names.update(worker_status["model_names"])
|
||||
speed += worker_status["speed"]
|
||||
queue_length += worker_status["queue_length"]
|
||||
|
||||
return {
|
||||
"model_names": list(model_names),
|
||||
"speed": speed,
|
||||
"queue_length": queue_length,
|
||||
}
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
@app.post("/register_worker")
|
||||
async def register_worker(request: Request):
|
||||
data = await request.json()
|
||||
controller.register_worker(
|
||||
data["worker_name"], data["check_heart_beat"],
|
||||
data.get("worker_status", None))
|
||||
|
||||
|
||||
@app.post("/refresh_all_workers")
|
||||
async def refresh_all_workers():
|
||||
models = controller.refresh_all_workers()
|
||||
|
||||
|
||||
@app.post("/list_models")
|
||||
async def list_models():
|
||||
models = controller.list_models()
|
||||
return {"models": models}
|
||||
|
||||
|
||||
@app.post("/get_worker_address")
|
||||
async def get_worker_address(request: Request):
|
||||
data = await request.json()
|
||||
addr = controller.get_worker_address(data["model"])
|
||||
return {"address": addr}
|
||||
|
||||
|
||||
@app.post("/receive_heart_beat")
|
||||
async def receive_heart_beat(request: Request):
|
||||
data = await request.json()
|
||||
exist = controller.receive_heart_beat(
|
||||
data["worker_name"], data["queue_length"])
|
||||
return {"exist": exist}
|
||||
|
||||
|
||||
@app.post("/worker_generate_stream")
|
||||
async def worker_api_generate_stream(request: Request):
|
||||
params = await request.json()
|
||||
generator = controller.worker_api_generate_stream(params)
|
||||
return StreamingResponse(generator)
|
||||
|
||||
|
||||
@app.post("/worker_get_status")
|
||||
async def worker_api_get_status(request: Request):
|
||||
return controller.worker_api_get_status()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=21001)
|
||||
parser.add_argument("--dispatch-method", type=str, choices=[
|
||||
"lottery", "shortest_queue"], default="shortest_queue")
|
||||
args = parser.parse_args()
|
||||
logger.info(f"args: {args}")
|
||||
|
||||
controller = Controller(args.dispatch_method)
|
||||
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|
||||
BIN
llava/serve/examples/extreme_ironing.jpg
Normal file
|
After Width: | Height: | Size: 61 KiB |
BIN
llava/serve/examples/waterview.jpg
Normal file
|
After Width: | Height: | Size: 93 KiB |
479
llava/serve/gradio_web_server.py
Normal file
@@ -0,0 +1,479 @@
|
||||
import argparse
|
||||
import datetime
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
|
||||
import gradio as gr
|
||||
import requests
|
||||
|
||||
from llava.conversation import (default_conversation, conv_templates,
|
||||
SeparatorStyle)
|
||||
from llava.constants import LOGDIR
|
||||
from llava.utils import (build_logger, server_error_msg,
|
||||
violates_moderation, moderation_msg)
|
||||
import hashlib
|
||||
|
||||
|
||||
logger = build_logger("gradio_web_server", "gradio_web_server.log")
|
||||
|
||||
headers = {"User-Agent": "LLaVA Client"}
|
||||
|
||||
no_change_btn = gr.Button()
|
||||
enable_btn = gr.Button(interactive=True)
|
||||
disable_btn = gr.Button(interactive=False)
|
||||
|
||||
priority = {
|
||||
"vicuna-13b": "aaaaaaa",
|
||||
"koala-13b": "aaaaaab",
|
||||
}
|
||||
|
||||
|
||||
def get_conv_log_filename():
|
||||
t = datetime.datetime.now()
|
||||
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
|
||||
return name
|
||||
|
||||
|
||||
def get_model_list():
|
||||
ret = requests.post(args.controller_url + "/refresh_all_workers")
|
||||
assert ret.status_code == 200
|
||||
ret = requests.post(args.controller_url + "/list_models")
|
||||
models = ret.json()["models"]
|
||||
models.sort(key=lambda x: priority.get(x, x))
|
||||
logger.info(f"Models: {models}")
|
||||
return models
|
||||
|
||||
|
||||
get_window_url_params = """
|
||||
function() {
|
||||
const params = new URLSearchParams(window.location.search);
|
||||
url_params = Object.fromEntries(params);
|
||||
console.log(url_params);
|
||||
return url_params;
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
def load_demo(url_params, request: gr.Request):
|
||||
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
|
||||
|
||||
dropdown_update = gr.Dropdown(visible=True)
|
||||
if "model" in url_params:
|
||||
model = url_params["model"]
|
||||
if model in models:
|
||||
dropdown_update = gr.Dropdown(value=model, visible=True)
|
||||
|
||||
state = default_conversation.copy()
|
||||
return state, dropdown_update
|
||||
|
||||
|
||||
def load_demo_refresh_model_list(request: gr.Request):
|
||||
logger.info(f"load_demo. ip: {request.client.host}")
|
||||
models = get_model_list()
|
||||
state = default_conversation.copy()
|
||||
dropdown_update = gr.Dropdown(
|
||||
choices=models,
|
||||
value=models[0] if len(models) > 0 else ""
|
||||
)
|
||||
return state, dropdown_update
|
||||
|
||||
|
||||
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
|
||||
with open(get_conv_log_filename(), "a") as fout:
|
||||
data = {
|
||||
"tstamp": round(time.time(), 4),
|
||||
"type": vote_type,
|
||||
"model": model_selector,
|
||||
"state": state.dict(),
|
||||
"ip": request.client.host,
|
||||
}
|
||||
fout.write(json.dumps(data) + "\n")
|
||||
|
||||
|
||||
def upvote_last_response(state, model_selector, request: gr.Request):
|
||||
logger.info(f"upvote. ip: {request.client.host}")
|
||||
vote_last_response(state, "upvote", model_selector, request)
|
||||
return ("",) + (disable_btn,) * 3
|
||||
|
||||
|
||||
def downvote_last_response(state, model_selector, request: gr.Request):
|
||||
logger.info(f"downvote. ip: {request.client.host}")
|
||||
vote_last_response(state, "downvote", model_selector, request)
|
||||
return ("",) + (disable_btn,) * 3
|
||||
|
||||
|
||||
def flag_last_response(state, model_selector, request: gr.Request):
|
||||
logger.info(f"flag. ip: {request.client.host}")
|
||||
vote_last_response(state, "flag", model_selector, request)
|
||||
return ("",) + (disable_btn,) * 3
|
||||
|
||||
|
||||
def regenerate(state, image_process_mode, request: gr.Request):
|
||||
logger.info(f"regenerate. ip: {request.client.host}")
|
||||
state.messages[-1][-1] = None
|
||||
prev_human_msg = state.messages[-2]
|
||||
if type(prev_human_msg[1]) in (tuple, list):
|
||||
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
|
||||
state.skip_next = False
|
||||
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
|
||||
|
||||
|
||||
def clear_history(request: gr.Request):
|
||||
logger.info(f"clear_history. ip: {request.client.host}")
|
||||
state = default_conversation.copy()
|
||||
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
|
||||
|
||||
|
||||
def add_text(state, text, image, image_process_mode, request: gr.Request):
|
||||
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
|
||||
if len(text) <= 0 and image is None:
|
||||
state.skip_next = True
|
||||
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
|
||||
if args.moderate:
|
||||
flagged = violates_moderation(text)
|
||||
if flagged:
|
||||
state.skip_next = True
|
||||
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (
|
||||
no_change_btn,) * 5
|
||||
|
||||
text = text[:1536] # Hard cut-off
|
||||
if image is not None:
|
||||
text = text[:1200] # Hard cut-off for images
|
||||
if '<image>' not in text:
|
||||
# text = '<Image><image></Image>' + text
|
||||
text = text + '\n<image>'
|
||||
text = (text, image, image_process_mode)
|
||||
state = default_conversation.copy()
|
||||
state.append_message(state.roles[0], text)
|
||||
state.append_message(state.roles[1], None)
|
||||
state.skip_next = False
|
||||
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
|
||||
|
||||
|
||||
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
|
||||
logger.info(f"http_bot. ip: {request.client.host}")
|
||||
start_tstamp = time.time()
|
||||
model_name = model_selector
|
||||
|
||||
if state.skip_next:
|
||||
# This generate call is skipped due to invalid inputs
|
||||
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
|
||||
return
|
||||
|
||||
if len(state.messages) == state.offset + 2:
|
||||
# First round of conversation
|
||||
if "llava" in model_name.lower():
|
||||
if 'llama-2' in model_name.lower():
|
||||
template_name = "llava_llama_2"
|
||||
elif "mistral" in model_name.lower() or "mixtral" in model_name.lower():
|
||||
if 'orca' in model_name.lower():
|
||||
template_name = "mistral_orca"
|
||||
elif 'hermes' in model_name.lower():
|
||||
template_name = "chatml_direct"
|
||||
else:
|
||||
template_name = "mistral_instruct"
|
||||
elif 'llava-v1.6-34b' in model_name.lower():
|
||||
template_name = "chatml_direct"
|
||||
elif "v1" in model_name.lower():
|
||||
if 'mmtag' in model_name.lower():
|
||||
template_name = "v1_mmtag"
|
||||
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
|
||||
template_name = "v1_mmtag"
|
||||
else:
|
||||
template_name = "llava_v1"
|
||||
elif "mpt" in model_name.lower():
|
||||
template_name = "mpt"
|
||||
else:
|
||||
if 'mmtag' in model_name.lower():
|
||||
template_name = "v0_mmtag"
|
||||
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
|
||||
template_name = "v0_mmtag"
|
||||
else:
|
||||
template_name = "llava_v0"
|
||||
elif "mpt" in model_name:
|
||||
template_name = "mpt_text"
|
||||
elif "llama-2" in model_name:
|
||||
template_name = "llama_2"
|
||||
else:
|
||||
template_name = "vicuna_v1"
|
||||
new_state = conv_templates[template_name].copy()
|
||||
new_state.append_message(new_state.roles[0], state.messages[-2][1])
|
||||
new_state.append_message(new_state.roles[1], None)
|
||||
state = new_state
|
||||
|
||||
# Query worker address
|
||||
controller_url = args.controller_url
|
||||
ret = requests.post(controller_url + "/get_worker_address",
|
||||
json={"model": model_name})
|
||||
worker_addr = ret.json()["address"]
|
||||
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
|
||||
|
||||
# No available worker
|
||||
if worker_addr == "":
|
||||
state.messages[-1][-1] = server_error_msg
|
||||
yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
||||
return
|
||||
|
||||
# Construct prompt
|
||||
prompt = state.get_prompt()
|
||||
|
||||
all_images = state.get_images(return_pil=True)
|
||||
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
|
||||
for image, hash in zip(all_images, all_image_hash):
|
||||
t = datetime.datetime.now()
|
||||
filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
|
||||
if not os.path.isfile(filename):
|
||||
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
||||
image.save(filename)
|
||||
|
||||
# Make requests
|
||||
pload = {
|
||||
"model": model_name,
|
||||
"prompt": prompt,
|
||||
"temperature": float(temperature),
|
||||
"top_p": float(top_p),
|
||||
"max_new_tokens": min(int(max_new_tokens), 1536),
|
||||
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
|
||||
"images": f'List of {len(state.get_images())} images: {all_image_hash}',
|
||||
}
|
||||
logger.info(f"==== request ====\n{pload}")
|
||||
|
||||
pload['images'] = state.get_images()
|
||||
|
||||
state.messages[-1][-1] = "▌"
|
||||
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
||||
|
||||
try:
|
||||
# Stream output
|
||||
response = requests.post(worker_addr + "/worker_generate_stream",
|
||||
headers=headers, json=pload, stream=True, timeout=10)
|
||||
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode())
|
||||
if data["error_code"] == 0:
|
||||
output = data["text"][len(prompt):].strip()
|
||||
state.messages[-1][-1] = output + "▌"
|
||||
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
||||
else:
|
||||
output = data["text"] + f" (error_code: {data['error_code']})"
|
||||
state.messages[-1][-1] = output
|
||||
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
||||
return
|
||||
time.sleep(0.03)
|
||||
except requests.exceptions.RequestException as e:
|
||||
state.messages[-1][-1] = server_error_msg
|
||||
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
||||
return
|
||||
|
||||
state.messages[-1][-1] = state.messages[-1][-1][:-1]
|
||||
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
|
||||
|
||||
finish_tstamp = time.time()
|
||||
logger.info(f"{output}")
|
||||
|
||||
with open(get_conv_log_filename(), "a") as fout:
|
||||
data = {
|
||||
"tstamp": round(finish_tstamp, 4),
|
||||
"type": "chat",
|
||||
"model": model_name,
|
||||
"start": round(start_tstamp, 4),
|
||||
"finish": round(finish_tstamp, 4),
|
||||
"state": state.dict(),
|
||||
"images": all_image_hash,
|
||||
"ip": request.client.host,
|
||||
}
|
||||
fout.write(json.dumps(data) + "\n")
|
||||
|
||||
title_markdown = ("""
|
||||
# 🌋 LLaVA: Large Language and Vision Assistant
|
||||
[[Project Page](https://llava-vl.github.io)] [[Code](https://github.com/haotian-liu/LLaVA)] [[Model](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)] | 📚 [[LLaVA](https://arxiv.org/abs/2304.08485)] [[LLaVA-v1.5](https://arxiv.org/abs/2310.03744)] [[LLaVA-v1.6](https://llava-vl.github.io/blog/2024-01-30-llava-1-6/)]
|
||||
""")
|
||||
|
||||
tos_markdown = ("""
|
||||
### Terms of use
|
||||
By using this service, users are required to agree to the following terms:
|
||||
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
|
||||
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
|
||||
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
|
||||
""")
|
||||
|
||||
|
||||
learn_more_markdown = ("""
|
||||
### License
|
||||
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
|
||||
""")
|
||||
|
||||
block_css = """
|
||||
|
||||
#buttons button {
|
||||
min-width: min(120px,100%);
|
||||
}
|
||||
|
||||
"""
|
||||
|
||||
def build_demo(embed_mode, cur_dir=None, concurrency_count=10):
|
||||
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
|
||||
with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo:
|
||||
state = gr.State()
|
||||
|
||||
if not embed_mode:
|
||||
gr.Markdown(title_markdown)
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=3):
|
||||
with gr.Row(elem_id="model_selector_row"):
|
||||
model_selector = gr.Dropdown(
|
||||
choices=models,
|
||||
value=models[0] if len(models) > 0 else "",
|
||||
interactive=True,
|
||||
show_label=False,
|
||||
container=False)
|
||||
|
||||
imagebox = gr.Image(type="pil")
|
||||
image_process_mode = gr.Radio(
|
||||
["Crop", "Resize", "Pad", "Default"],
|
||||
value="Default",
|
||||
label="Preprocess for non-square image", visible=False)
|
||||
|
||||
if cur_dir is None:
|
||||
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
gr.Examples(examples=[
|
||||
[f"{cur_dir}/examples/extreme_ironing.jpg", "What is unusual about this image?"],
|
||||
[f"{cur_dir}/examples/waterview.jpg", "What are the things I should be cautious about when I visit here?"],
|
||||
], inputs=[imagebox, textbox])
|
||||
|
||||
with gr.Accordion("Parameters", open=False) as parameter_row:
|
||||
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
|
||||
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
|
||||
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
|
||||
|
||||
with gr.Column(scale=8):
|
||||
chatbot = gr.Chatbot(
|
||||
elem_id="chatbot",
|
||||
label="LLaVA Chatbot",
|
||||
height=650,
|
||||
layout="panel",
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column(scale=8):
|
||||
textbox.render()
|
||||
with gr.Column(scale=1, min_width=50):
|
||||
submit_btn = gr.Button(value="Send", variant="primary")
|
||||
with gr.Row(elem_id="buttons") as button_row:
|
||||
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
|
||||
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
|
||||
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
|
||||
#stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
|
||||
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
|
||||
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
|
||||
|
||||
if not embed_mode:
|
||||
gr.Markdown(tos_markdown)
|
||||
gr.Markdown(learn_more_markdown)
|
||||
url_params = gr.JSON(visible=False)
|
||||
|
||||
# Register listeners
|
||||
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
|
||||
upvote_btn.click(
|
||||
upvote_last_response,
|
||||
[state, model_selector],
|
||||
[textbox, upvote_btn, downvote_btn, flag_btn]
|
||||
)
|
||||
downvote_btn.click(
|
||||
downvote_last_response,
|
||||
[state, model_selector],
|
||||
[textbox, upvote_btn, downvote_btn, flag_btn]
|
||||
)
|
||||
flag_btn.click(
|
||||
flag_last_response,
|
||||
[state, model_selector],
|
||||
[textbox, upvote_btn, downvote_btn, flag_btn]
|
||||
)
|
||||
|
||||
regenerate_btn.click(
|
||||
regenerate,
|
||||
[state, image_process_mode],
|
||||
[state, chatbot, textbox, imagebox] + btn_list
|
||||
).then(
|
||||
http_bot,
|
||||
[state, model_selector, temperature, top_p, max_output_tokens],
|
||||
[state, chatbot] + btn_list,
|
||||
concurrency_limit=concurrency_count
|
||||
)
|
||||
|
||||
clear_btn.click(
|
||||
clear_history,
|
||||
None,
|
||||
[state, chatbot, textbox, imagebox] + btn_list,
|
||||
queue=False
|
||||
)
|
||||
|
||||
textbox.submit(
|
||||
add_text,
|
||||
[state, textbox, imagebox, image_process_mode],
|
||||
[state, chatbot, textbox, imagebox] + btn_list,
|
||||
queue=False
|
||||
).then(
|
||||
http_bot,
|
||||
[state, model_selector, temperature, top_p, max_output_tokens],
|
||||
[state, chatbot] + btn_list,
|
||||
concurrency_limit=concurrency_count
|
||||
)
|
||||
|
||||
submit_btn.click(
|
||||
add_text,
|
||||
[state, textbox, imagebox, image_process_mode],
|
||||
[state, chatbot, textbox, imagebox] + btn_list
|
||||
).then(
|
||||
http_bot,
|
||||
[state, model_selector, temperature, top_p, max_output_tokens],
|
||||
[state, chatbot] + btn_list,
|
||||
concurrency_limit=concurrency_count
|
||||
)
|
||||
|
||||
if args.model_list_mode == "once":
|
||||
demo.load(
|
||||
load_demo,
|
||||
[url_params],
|
||||
[state, model_selector],
|
||||
js=get_window_url_params
|
||||
)
|
||||
elif args.model_list_mode == "reload":
|
||||
demo.load(
|
||||
load_demo_refresh_model_list,
|
||||
None,
|
||||
[state, model_selector],
|
||||
queue=False
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
|
||||
|
||||
return demo
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="0.0.0.0")
|
||||
parser.add_argument("--port", type=int)
|
||||
parser.add_argument("--controller-url", type=str, default="http://localhost:21001")
|
||||
parser.add_argument("--concurrency-count", type=int, default=16)
|
||||
parser.add_argument("--model-list-mode", type=str, default="once",
|
||||
choices=["once", "reload"])
|
||||
parser.add_argument("--share", action="store_true")
|
||||
parser.add_argument("--moderate", action="store_true")
|
||||
parser.add_argument("--embed", action="store_true")
|
||||
args = parser.parse_args()
|
||||
logger.info(f"args: {args}")
|
||||
|
||||
models = get_model_list()
|
||||
|
||||
logger.info(args)
|
||||
demo = build_demo(args.embed, concurrency_count=args.concurrency_count)
|
||||
demo.queue(
|
||||
api_open=False
|
||||
).launch(
|
||||
server_name=args.host,
|
||||
server_port=args.port,
|
||||
share=args.share
|
||||
)
|
||||
288
llava/serve/model_worker.py
Normal file
@@ -0,0 +1,288 @@
|
||||
"""
|
||||
A model worker executes the model.
|
||||
"""
|
||||
import argparse
|
||||
import asyncio
|
||||
import json
|
||||
import time
|
||||
import threading
|
||||
import uuid
|
||||
|
||||
from fastapi import FastAPI, Request, BackgroundTasks
|
||||
from fastapi.responses import StreamingResponse
|
||||
import requests
|
||||
import torch
|
||||
import uvicorn
|
||||
from functools import partial
|
||||
|
||||
from llava.constants import WORKER_HEART_BEAT_INTERVAL
|
||||
from llava.utils import (build_logger, server_error_msg,
|
||||
pretty_print_semaphore)
|
||||
from llava.model.builder import load_pretrained_model
|
||||
from llava.mm_utils import process_images, load_image_from_base64, tokenizer_image_token
|
||||
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
||||
from transformers import TextIteratorStreamer
|
||||
from threading import Thread
|
||||
|
||||
|
||||
GB = 1 << 30
|
||||
|
||||
worker_id = str(uuid.uuid4())[:6]
|
||||
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
|
||||
global_counter = 0
|
||||
|
||||
model_semaphore = None
|
||||
|
||||
|
||||
def heart_beat_worker(controller):
|
||||
|
||||
while True:
|
||||
time.sleep(WORKER_HEART_BEAT_INTERVAL)
|
||||
controller.send_heart_beat()
|
||||
|
||||
|
||||
class ModelWorker:
|
||||
def __init__(self, controller_addr, worker_addr,
|
||||
worker_id, no_register,
|
||||
model_path, model_base, model_name,
|
||||
load_8bit, load_4bit, device, use_flash_attn=False):
|
||||
self.controller_addr = controller_addr
|
||||
self.worker_addr = worker_addr
|
||||
self.worker_id = worker_id
|
||||
if model_path.endswith("/"):
|
||||
model_path = model_path[:-1]
|
||||
if model_name is None:
|
||||
model_paths = model_path.split("/")
|
||||
if model_paths[-1].startswith('checkpoint-'):
|
||||
self.model_name = model_paths[-2] + "_" + model_paths[-1]
|
||||
else:
|
||||
self.model_name = model_paths[-1]
|
||||
else:
|
||||
self.model_name = model_name
|
||||
|
||||
self.device = device
|
||||
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
|
||||
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(
|
||||
model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device, use_flash_attn=use_flash_attn)
|
||||
self.is_multimodal = 'llava' in self.model_name.lower()
|
||||
|
||||
if not no_register:
|
||||
self.register_to_controller()
|
||||
self.heart_beat_thread = threading.Thread(
|
||||
target=heart_beat_worker, args=(self,), daemon=True)
|
||||
self.heart_beat_thread.start()
|
||||
|
||||
def register_to_controller(self):
|
||||
logger.info("Register to controller")
|
||||
|
||||
url = self.controller_addr + "/register_worker"
|
||||
data = {
|
||||
"worker_name": self.worker_addr,
|
||||
"check_heart_beat": True,
|
||||
"worker_status": self.get_status()
|
||||
}
|
||||
r = requests.post(url, json=data)
|
||||
assert r.status_code == 200
|
||||
|
||||
def send_heart_beat(self):
|
||||
logger.info(f"Send heart beat. Models: {[self.model_name]}. "
|
||||
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
|
||||
f"global_counter: {global_counter}")
|
||||
|
||||
url = self.controller_addr + "/receive_heart_beat"
|
||||
|
||||
while True:
|
||||
try:
|
||||
ret = requests.post(url, json={
|
||||
"worker_name": self.worker_addr,
|
||||
"queue_length": self.get_queue_length()}, timeout=5)
|
||||
exist = ret.json()["exist"]
|
||||
break
|
||||
except requests.exceptions.RequestException as e:
|
||||
logger.error(f"heart beat error: {e}")
|
||||
time.sleep(5)
|
||||
|
||||
if not exist:
|
||||
self.register_to_controller()
|
||||
|
||||
def get_queue_length(self):
|
||||
if model_semaphore is None:
|
||||
return 0
|
||||
else:
|
||||
return args.limit_model_concurrency - model_semaphore._value + (len(
|
||||
model_semaphore._waiters) if model_semaphore._waiters is not None else 0)
|
||||
|
||||
def get_status(self):
|
||||
return {
|
||||
"model_names": [self.model_name],
|
||||
"speed": 1,
|
||||
"queue_length": self.get_queue_length(),
|
||||
}
|
||||
|
||||
@torch.inference_mode()
|
||||
def generate_stream(self, params):
|
||||
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor
|
||||
|
||||
prompt = params["prompt"]
|
||||
ori_prompt = prompt
|
||||
images = params.get("images", None)
|
||||
num_image_tokens = 0
|
||||
if images is not None and len(images) > 0 and self.is_multimodal:
|
||||
if len(images) > 0:
|
||||
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
|
||||
raise ValueError("Number of images does not match number of <image> tokens in prompt")
|
||||
|
||||
images = [load_image_from_base64(image) for image in images]
|
||||
image_sizes = [image.size for image in images]
|
||||
images = process_images(images, image_processor, model.config)
|
||||
|
||||
if type(images) is list:
|
||||
images = [image.to(self.model.device, dtype=torch.float16) for image in images]
|
||||
else:
|
||||
images = images.to(self.model.device, dtype=torch.float16)
|
||||
|
||||
replace_token = DEFAULT_IMAGE_TOKEN
|
||||
if getattr(self.model.config, 'mm_use_im_start_end', False):
|
||||
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
|
||||
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
||||
|
||||
num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches
|
||||
else:
|
||||
images = None
|
||||
image_sizes = None
|
||||
image_args = {"images": images, "image_sizes": image_sizes}
|
||||
else:
|
||||
images = None
|
||||
image_args = {}
|
||||
|
||||
temperature = float(params.get("temperature", 1.0))
|
||||
top_p = float(params.get("top_p", 1.0))
|
||||
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
|
||||
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
|
||||
stop_str = params.get("stop", None)
|
||||
do_sample = True if temperature > 0.001 else False
|
||||
|
||||
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
|
||||
keywords = [stop_str]
|
||||
# stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
||||
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
|
||||
|
||||
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
|
||||
|
||||
if max_new_tokens < 1:
|
||||
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
|
||||
return
|
||||
|
||||
thread = Thread(target=model.generate, kwargs=dict(
|
||||
inputs=input_ids,
|
||||
do_sample=do_sample,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
max_new_tokens=max_new_tokens,
|
||||
streamer=streamer,
|
||||
use_cache=True,
|
||||
**image_args
|
||||
))
|
||||
thread.start()
|
||||
|
||||
generated_text = ori_prompt
|
||||
for new_text in streamer:
|
||||
generated_text += new_text
|
||||
if generated_text.endswith(stop_str):
|
||||
generated_text = generated_text[:-len(stop_str)]
|
||||
yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0"
|
||||
|
||||
def generate_stream_gate(self, params):
|
||||
try:
|
||||
for x in self.generate_stream(params):
|
||||
yield x
|
||||
except ValueError as e:
|
||||
print("Caught ValueError:", e)
|
||||
ret = {
|
||||
"text": server_error_msg,
|
||||
"error_code": 1,
|
||||
}
|
||||
yield json.dumps(ret).encode() + b"\0"
|
||||
except torch.cuda.CudaError as e:
|
||||
print("Caught torch.cuda.CudaError:", e)
|
||||
ret = {
|
||||
"text": server_error_msg,
|
||||
"error_code": 1,
|
||||
}
|
||||
yield json.dumps(ret).encode() + b"\0"
|
||||
except Exception as e:
|
||||
print("Caught Unknown Error", e)
|
||||
ret = {
|
||||
"text": server_error_msg,
|
||||
"error_code": 1,
|
||||
}
|
||||
yield json.dumps(ret).encode() + b"\0"
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
def release_model_semaphore(fn=None):
|
||||
model_semaphore.release()
|
||||
if fn is not None:
|
||||
fn()
|
||||
|
||||
|
||||
@app.post("/worker_generate_stream")
|
||||
async def generate_stream(request: Request):
|
||||
global model_semaphore, global_counter
|
||||
global_counter += 1
|
||||
params = await request.json()
|
||||
|
||||
if model_semaphore is None:
|
||||
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
|
||||
await model_semaphore.acquire()
|
||||
worker.send_heart_beat()
|
||||
generator = worker.generate_stream_gate(params)
|
||||
background_tasks = BackgroundTasks()
|
||||
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat))
|
||||
return StreamingResponse(generator, background=background_tasks)
|
||||
|
||||
|
||||
@app.post("/worker_get_status")
|
||||
async def get_status(request: Request):
|
||||
return worker.get_status()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=21002)
|
||||
parser.add_argument("--worker-address", type=str,
|
||||
default="http://localhost:21002")
|
||||
parser.add_argument("--controller-address", type=str,
|
||||
default="http://localhost:21001")
|
||||
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
||||
parser.add_argument("--model-base", type=str, default=None)
|
||||
parser.add_argument("--model-name", type=str)
|
||||
parser.add_argument("--device", type=str, default="cuda")
|
||||
parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
|
||||
parser.add_argument("--limit-model-concurrency", type=int, default=5)
|
||||
parser.add_argument("--stream-interval", type=int, default=1)
|
||||
parser.add_argument("--no-register", action="store_true")
|
||||
parser.add_argument("--load-8bit", action="store_true")
|
||||
parser.add_argument("--load-4bit", action="store_true")
|
||||
parser.add_argument("--use-flash-attn", action="store_true")
|
||||
args = parser.parse_args()
|
||||
logger.info(f"args: {args}")
|
||||
|
||||
if args.multi_modal:
|
||||
logger.warning("Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
|
||||
|
||||
worker = ModelWorker(args.controller_address,
|
||||
args.worker_address,
|
||||
worker_id,
|
||||
args.no_register,
|
||||
args.model_path,
|
||||
args.model_base,
|
||||
args.model_name,
|
||||
args.load_8bit,
|
||||
args.load_4bit,
|
||||
args.device,
|
||||
use_flash_attn=args.use_flash_attn)
|
||||
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|
||||
26
llava/serve/register_worker.py
Normal file
@@ -0,0 +1,26 @@
|
||||
"""
|
||||
Manually register workers.
|
||||
|
||||
Usage:
|
||||
python3 -m fastchat.serve.register_worker --controller http://localhost:21001 --worker-name http://localhost:21002
|
||||
"""
|
||||
|
||||
import argparse
|
||||
|
||||
import requests
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--controller-address", type=str)
|
||||
parser.add_argument("--worker-name", type=str)
|
||||
parser.add_argument("--check-heart-beat", action="store_true")
|
||||
args = parser.parse_args()
|
||||
|
||||
url = args.controller_address + "/register_worker"
|
||||
data = {
|
||||
"worker_name": args.worker_name,
|
||||
"check_heart_beat": args.check_heart_beat,
|
||||
"worker_status": None,
|
||||
}
|
||||
r = requests.post(url, json=data)
|
||||
assert r.status_code == 200
|
||||
244
llava/serve/sglang_worker.py
Normal file
@@ -0,0 +1,244 @@
|
||||
"""
|
||||
A model worker executes the model.
|
||||
"""
|
||||
import argparse
|
||||
import asyncio
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import json
|
||||
import time
|
||||
import threading
|
||||
import uuid
|
||||
|
||||
from fastapi import FastAPI, Request, BackgroundTasks
|
||||
from fastapi.responses import StreamingResponse
|
||||
import requests
|
||||
import re
|
||||
import uvicorn
|
||||
from functools import partial
|
||||
|
||||
from llava.constants import WORKER_HEART_BEAT_INTERVAL
|
||||
from llava.utils import (build_logger, server_error_msg,
|
||||
pretty_print_semaphore)
|
||||
from llava.mm_utils import process_images, load_image_from_base64, tokenizer_image_token, expand2square
|
||||
from llava.constants import DEFAULT_IMAGE_TOKEN
|
||||
|
||||
import sglang as sgl
|
||||
from sglang.backend.runtime_endpoint import RuntimeEndpoint
|
||||
|
||||
|
||||
GB = 1 << 30
|
||||
|
||||
worker_id = str(uuid.uuid4())[:6]
|
||||
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
|
||||
global_counter = 0
|
||||
|
||||
model_semaphore = None
|
||||
|
||||
|
||||
def heart_beat_worker(controller):
|
||||
while True:
|
||||
time.sleep(WORKER_HEART_BEAT_INTERVAL)
|
||||
controller.send_heart_beat()
|
||||
|
||||
|
||||
@sgl.function
|
||||
def pipeline(s, prompt, max_tokens):
|
||||
for p in prompt:
|
||||
if type(p) is str:
|
||||
s += p
|
||||
else:
|
||||
s += sgl.image(p)
|
||||
s += sgl.gen("response", max_tokens=max_tokens)
|
||||
|
||||
|
||||
class ModelWorker:
|
||||
def __init__(self, controller_addr, worker_addr, sgl_endpoint,
|
||||
worker_id, no_register, model_name):
|
||||
self.controller_addr = controller_addr
|
||||
self.worker_addr = worker_addr
|
||||
self.worker_id = worker_id
|
||||
|
||||
# Select backend
|
||||
backend = RuntimeEndpoint(sgl_endpoint)
|
||||
sgl.set_default_backend(backend)
|
||||
model_path = backend.model_info["model_path"]
|
||||
|
||||
if model_path.endswith("/"):
|
||||
model_path = model_path[:-1]
|
||||
if model_name is None:
|
||||
model_paths = model_path.split("/")
|
||||
if model_paths[-1].startswith('checkpoint-'):
|
||||
self.model_name = model_paths[-2] + "_" + model_paths[-1]
|
||||
else:
|
||||
self.model_name = model_paths[-1]
|
||||
else:
|
||||
self.model_name = model_name
|
||||
|
||||
logger.info(f"Loading the SGLANG model {self.model_name} on worker {worker_id} ...")
|
||||
|
||||
if not no_register:
|
||||
self.register_to_controller()
|
||||
self.heart_beat_thread = threading.Thread(
|
||||
target=heart_beat_worker, args=(self,), daemon=True)
|
||||
self.heart_beat_thread.start()
|
||||
|
||||
def register_to_controller(self):
|
||||
logger.info("Register to controller")
|
||||
|
||||
url = self.controller_addr + "/register_worker"
|
||||
data = {
|
||||
"worker_name": self.worker_addr,
|
||||
"check_heart_beat": True,
|
||||
"worker_status": self.get_status()
|
||||
}
|
||||
r = requests.post(url, json=data)
|
||||
assert r.status_code == 200
|
||||
|
||||
def send_heart_beat(self):
|
||||
logger.info(f"Send heart beat. Models: {[self.model_name]}. "
|
||||
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
|
||||
f"global_counter: {global_counter}")
|
||||
|
||||
url = self.controller_addr + "/receive_heart_beat"
|
||||
|
||||
while True:
|
||||
try:
|
||||
ret = requests.post(url, json={
|
||||
"worker_name": self.worker_addr,
|
||||
"queue_length": self.get_queue_length()}, timeout=5)
|
||||
exist = ret.json()["exist"]
|
||||
break
|
||||
except requests.exceptions.RequestException as e:
|
||||
logger.error(f"heart beat error: {e}")
|
||||
time.sleep(5)
|
||||
|
||||
if not exist:
|
||||
self.register_to_controller()
|
||||
|
||||
def get_queue_length(self):
|
||||
if model_semaphore is None:
|
||||
return 0
|
||||
else:
|
||||
return args.limit_model_concurrency - model_semaphore._value + (len(
|
||||
model_semaphore._waiters) if model_semaphore._waiters is not None else 0)
|
||||
|
||||
def get_status(self):
|
||||
return {
|
||||
"model_names": [self.model_name],
|
||||
"speed": 1,
|
||||
"queue_length": self.get_queue_length(),
|
||||
}
|
||||
|
||||
async def generate_stream(self, params):
|
||||
ori_prompt = prompt = params["prompt"]
|
||||
images = params.get("images", None)
|
||||
if images is not None and len(images) > 0:
|
||||
if len(images) > 0:
|
||||
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
|
||||
raise ValueError("Number of images does not match number of <image> tokens in prompt")
|
||||
|
||||
images = [load_image_from_base64(image) for image in images]
|
||||
|
||||
# FIXME: for image-start/end token
|
||||
# replace_token = DEFAULT_IMAGE_TOKEN
|
||||
# if getattr(self.model.config, 'mm_use_im_start_end', False):
|
||||
# replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
|
||||
# prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
||||
prompt = prompt.replace(' ' + DEFAULT_IMAGE_TOKEN + '\n', DEFAULT_IMAGE_TOKEN)
|
||||
prompt_split = prompt.split(DEFAULT_IMAGE_TOKEN)
|
||||
prompt = []
|
||||
for i in range(len(prompt_split)):
|
||||
prompt.append(prompt_split[i])
|
||||
if i < len(images):
|
||||
prompt.append(images[i])
|
||||
else:
|
||||
prompt = [prompt]
|
||||
|
||||
temperature = float(params.get("temperature", 1.0))
|
||||
top_p = float(params.get("top_p", 1.0))
|
||||
# max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
|
||||
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
|
||||
stop_str = params.get("stop", None)
|
||||
stop_str = [stop_str] if stop_str is not None else None
|
||||
|
||||
print({'prompt': prompt, 'max_new_tokens': max_new_tokens, 'temperature': temperature, 'top_p': top_p})
|
||||
state = pipeline.run(prompt, max_new_tokens, temperature=temperature, top_p=top_p, stream=True)
|
||||
|
||||
generated_text = ori_prompt
|
||||
async for text_outputs in state.text_async_iter(var_name="response"):
|
||||
generated_text += text_outputs
|
||||
yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0"
|
||||
|
||||
async def generate_stream_gate(self, params):
|
||||
try:
|
||||
async for x in self.generate_stream(params):
|
||||
yield x
|
||||
except ValueError as e:
|
||||
print("Caught ValueError:", e)
|
||||
ret = {
|
||||
"text": server_error_msg,
|
||||
"error_code": 1,
|
||||
}
|
||||
yield json.dumps(ret).encode() + b"\0"
|
||||
except Exception as e:
|
||||
print("Caught Unknown Error", e)
|
||||
ret = {
|
||||
"text": server_error_msg,
|
||||
"error_code": 1,
|
||||
}
|
||||
yield json.dumps(ret).encode() + b"\0"
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
def release_model_semaphore(fn=None):
|
||||
model_semaphore.release()
|
||||
if fn is not None:
|
||||
fn()
|
||||
|
||||
|
||||
@app.post("/worker_generate_stream")
|
||||
async def generate_stream(request: Request):
|
||||
global model_semaphore, global_counter
|
||||
global_counter += 1
|
||||
params = await request.json()
|
||||
|
||||
if model_semaphore is None:
|
||||
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
|
||||
await model_semaphore.acquire()
|
||||
worker.send_heart_beat()
|
||||
generator = worker.generate_stream_gate(params)
|
||||
background_tasks = BackgroundTasks()
|
||||
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat))
|
||||
return StreamingResponse(generator, background=background_tasks)
|
||||
|
||||
|
||||
@app.post("/worker_get_status")
|
||||
async def get_status(request: Request):
|
||||
return worker.get_status()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=21002)
|
||||
parser.add_argument("--worker-address", type=str,
|
||||
default="http://localhost:21002")
|
||||
parser.add_argument("--controller-address", type=str,
|
||||
default="http://localhost:21001")
|
||||
parser.add_argument("--model-name", type=str)
|
||||
parser.add_argument("--sgl-endpoint", type=str)
|
||||
parser.add_argument("--limit-model-concurrency", type=int, default=5)
|
||||
parser.add_argument("--stream-interval", type=int, default=1)
|
||||
parser.add_argument("--no-register", action="store_true")
|
||||
args = parser.parse_args()
|
||||
logger.info(f"args: {args}")
|
||||
|
||||
worker = ModelWorker(args.controller_address,
|
||||
args.worker_address,
|
||||
args.sgl_endpoint,
|
||||
worker_id,
|
||||
args.no_register,
|
||||
args.model_name)
|
||||
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|
||||
62
llava/serve/test_message.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import argparse
|
||||
import json
|
||||
|
||||
import requests
|
||||
|
||||
from llava.conversation import default_conversation
|
||||
|
||||
|
||||
def main():
|
||||
if args.worker_address:
|
||||
worker_addr = args.worker_address
|
||||
else:
|
||||
controller_addr = args.controller_address
|
||||
ret = requests.post(controller_addr + "/refresh_all_workers")
|
||||
ret = requests.post(controller_addr + "/list_models")
|
||||
models = ret.json()["models"]
|
||||
models.sort()
|
||||
print(f"Models: {models}")
|
||||
|
||||
ret = requests.post(controller_addr + "/get_worker_address",
|
||||
json={"model": args.model_name})
|
||||
worker_addr = ret.json()["address"]
|
||||
print(f"worker_addr: {worker_addr}")
|
||||
|
||||
if worker_addr == "":
|
||||
return
|
||||
|
||||
conv = default_conversation.copy()
|
||||
conv.append_message(conv.roles[0], args.message)
|
||||
prompt = conv.get_prompt()
|
||||
|
||||
headers = {"User-Agent": "LLaVA Client"}
|
||||
pload = {
|
||||
"model": args.model_name,
|
||||
"prompt": prompt,
|
||||
"max_new_tokens": args.max_new_tokens,
|
||||
"temperature": 0.7,
|
||||
"stop": conv.sep,
|
||||
}
|
||||
response = requests.post(worker_addr + "/worker_generate_stream", headers=headers,
|
||||
json=pload, stream=True)
|
||||
|
||||
print(prompt.replace(conv.sep, "\n"), end="")
|
||||
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode("utf-8"))
|
||||
output = data["text"].split(conv.sep)[-1]
|
||||
print(output, end="\r")
|
||||
print("")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--controller-address", type=str, default="http://localhost:21001")
|
||||
parser.add_argument("--worker-address", type=str)
|
||||
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
|
||||
parser.add_argument("--max-new-tokens", type=int, default=32)
|
||||
parser.add_argument("--message", type=str, default=
|
||||
"Tell me a story with more than 1000 words.")
|
||||
args = parser.parse_args()
|
||||
|
||||
main()
|
||||
115
llava/train/llama_flash_attn_monkey_patch.py
Normal file
@@ -0,0 +1,115 @@
|
||||
from typing import Optional, Tuple
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
|
||||
import transformers
|
||||
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
|
||||
|
||||
try:
|
||||
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
|
||||
except ImportError:
|
||||
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
||||
from flash_attn.bert_padding import unpad_input, pad_input
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
if output_attentions:
|
||||
warnings.warn(
|
||||
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
|
||||
)
|
||||
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = (
|
||||
self.q_proj(hidden_states)
|
||||
.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
key_states = (
|
||||
self.k_proj(hidden_states)
|
||||
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
value_states = (
|
||||
self.v_proj(hidden_states)
|
||||
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
||||
.transpose(1, 2)
|
||||
) # shape: (b, num_heads, s, head_dim)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(
|
||||
query_states, key_states, cos, sin, position_ids
|
||||
)
|
||||
|
||||
if past_key_value is not None:
|
||||
# reuse k, v
|
||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
|
||||
past_key_value = (key_states, value_states) if use_cache else None
|
||||
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
# Transform the data into the format required by flash attention
|
||||
qkv = torch.stack([query_states, key_states, value_states], dim=2)
|
||||
qkv = qkv.transpose(1, 3) # shape: [b, s, 3, num_heads, head_dim]
|
||||
key_padding_mask = attention_mask
|
||||
|
||||
if key_padding_mask is None:
|
||||
qkv = qkv.reshape(-1, 3, self.num_heads, self.head_dim)
|
||||
cu_q_lens = torch.arange(
|
||||
0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device
|
||||
)
|
||||
max_s = q_len
|
||||
output = flash_attn_unpadded_qkvpacked_func(
|
||||
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
||||
)
|
||||
output = output.view(bsz, q_len, -1)
|
||||
else:
|
||||
qkv = qkv.reshape(bsz, q_len, -1)
|
||||
qkv, indices, cu_q_lens, max_s = unpad_input(qkv, key_padding_mask)
|
||||
qkv = qkv.view(-1, 3, self.num_heads, self.head_dim)
|
||||
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
||||
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
||||
)
|
||||
output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim)
|
||||
output = pad_input(output_unpad, indices, bsz, q_len)
|
||||
|
||||
return self.o_proj(output), None, past_key_value
|
||||
|
||||
|
||||
# Disable the transformation of the attention mask in LlamaModel as the flash attention
|
||||
# requires the attention mask to be the same as the key_padding_mask
|
||||
def _prepare_decoder_attention_mask(
|
||||
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
||||
):
|
||||
# [bsz, seq_len]
|
||||
return attention_mask
|
||||
|
||||
|
||||
def replace_llama_attn_with_flash_attn():
|
||||
cuda_major, cuda_minor = torch.cuda.get_device_capability()
|
||||
if cuda_major < 8:
|
||||
warnings.warn(
|
||||
"Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward."
|
||||
"ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
|
||||
)
|
||||
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
|
||||
_prepare_decoder_attention_mask
|
||||
)
|
||||
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
|
||||
129
llava/train/llama_xformers_attn_monkey_patch.py
Normal file
@@ -0,0 +1,129 @@
|
||||
"""
|
||||
Directly copied the code from https://raw.githubusercontent.com/oobabooga/text-generation-webui/main/modules/llama_attn_hijack.py and made some adjustments
|
||||
"""
|
||||
|
||||
import logging
|
||||
import math
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import transformers.models.llama.modeling_llama
|
||||
from torch import nn
|
||||
|
||||
try:
|
||||
import xformers.ops
|
||||
except ImportError:
|
||||
logging.error("xformers not found! Please install it before trying to use it.")
|
||||
|
||||
|
||||
def replace_llama_attn_with_xformers_attn():
|
||||
transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
|
||||
|
||||
|
||||
def xformers_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
# pylint: disable=duplicate-code
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = (
|
||||
self.q_proj(hidden_states)
|
||||
.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
key_states = (
|
||||
self.k_proj(hidden_states)
|
||||
.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
value_states = (
|
||||
self.v_proj(hidden_states)
|
||||
.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
(
|
||||
query_states,
|
||||
key_states,
|
||||
) = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(
|
||||
query_states, key_states, cos, sin, position_ids
|
||||
)
|
||||
# [bsz, nh, t, hd]
|
||||
|
||||
if past_key_value is not None:
|
||||
# reuse k, v, self_attention
|
||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
|
||||
past_key_value = (key_states, value_states) if use_cache else None
|
||||
|
||||
# We only apply xformers optimizations if we don't need to output the whole attention matrix
|
||||
if not output_attentions:
|
||||
query_states = query_states.transpose(1, 2)
|
||||
key_states = key_states.transpose(1, 2)
|
||||
value_states = value_states.transpose(1, 2)
|
||||
|
||||
# This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
|
||||
# We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
|
||||
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
|
||||
# input and output should be of form (bsz, q_len, num_heads, head_dim)
|
||||
attn_output = xformers.ops.memory_efficient_attention(
|
||||
query_states, key_states, value_states, attn_bias=None
|
||||
)
|
||||
else:
|
||||
# input and output should be of form (bsz, q_len, num_heads, head_dim)
|
||||
attn_output = xformers.ops.memory_efficient_attention(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_bias=xformers.ops.LowerTriangularMask(),
|
||||
)
|
||||
attn_weights = None
|
||||
else:
|
||||
attn_weights = torch.matmul(
|
||||
query_states, key_states.transpose(2, 3)
|
||||
) / math.sqrt(self.head_dim)
|
||||
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
raise ValueError(
|
||||
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
||||
f" {attn_weights.size()}"
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||
raise ValueError(
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights + attention_mask
|
||||
attn_weights = torch.max(
|
||||
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
|
||||
)
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(
|
||||
attn_weights, dim=-1, dtype=torch.float32
|
||||
).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
raise ValueError(
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||||
f" {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
attn_output = self.o_proj(attn_output)
|
||||
return attn_output, attn_weights, past_key_value
|
||||
255
llava/train/llava_trainer.py
Normal file
@@ -0,0 +1,255 @@
|
||||
import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from torch.utils.data import Sampler
|
||||
|
||||
from transformers import Trainer
|
||||
from transformers.trainer import (
|
||||
is_sagemaker_mp_enabled,
|
||||
get_parameter_names,
|
||||
has_length,
|
||||
ALL_LAYERNORM_LAYERS,
|
||||
logger,
|
||||
)
|
||||
from typing import List, Optional
|
||||
|
||||
|
||||
def maybe_zero_3(param, ignore_status=False, name=None):
|
||||
from deepspeed import zero
|
||||
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
|
||||
if hasattr(param, "ds_id"):
|
||||
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
|
||||
if not ignore_status:
|
||||
print(name, 'no ignore status')
|
||||
with zero.GatheredParameters([param]):
|
||||
param = param.data.detach().cpu().clone()
|
||||
else:
|
||||
param = param.detach().cpu().clone()
|
||||
return param
|
||||
|
||||
|
||||
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
|
||||
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
|
||||
to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()}
|
||||
return to_return
|
||||
|
||||
|
||||
def split_to_even_chunks(indices, lengths, num_chunks):
|
||||
"""
|
||||
Split a list of indices into `chunks` chunks of roughly equal lengths.
|
||||
"""
|
||||
|
||||
if len(indices) % num_chunks != 0:
|
||||
return [indices[i::num_chunks] for i in range(num_chunks)]
|
||||
|
||||
num_indices_per_chunk = len(indices) // num_chunks
|
||||
|
||||
chunks = [[] for _ in range(num_chunks)]
|
||||
chunks_lengths = [0 for _ in range(num_chunks)]
|
||||
for index in indices:
|
||||
shortest_chunk = chunks_lengths.index(min(chunks_lengths))
|
||||
chunks[shortest_chunk].append(index)
|
||||
chunks_lengths[shortest_chunk] += lengths[index]
|
||||
if len(chunks[shortest_chunk]) == num_indices_per_chunk:
|
||||
chunks_lengths[shortest_chunk] = float("inf")
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
def get_modality_length_grouped_indices(lengths, batch_size, world_size, generator=None):
|
||||
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
|
||||
assert all(l != 0 for l in lengths), "Should not have zero length."
|
||||
if all(l > 0 for l in lengths) or all(l < 0 for l in lengths):
|
||||
# all samples are in the same modality
|
||||
return get_length_grouped_indices(lengths, batch_size, world_size, generator=generator)
|
||||
mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0])
|
||||
lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0])
|
||||
|
||||
mm_shuffle = [mm_indices[i] for i in get_length_grouped_indices(mm_lengths, batch_size, world_size, generator=None)]
|
||||
lang_shuffle = [lang_indices[i] for i in get_length_grouped_indices(lang_lengths, batch_size, world_size, generator=None)]
|
||||
megabatch_size = world_size * batch_size
|
||||
mm_megabatches = [mm_shuffle[i : i + megabatch_size] for i in range(0, len(mm_shuffle), megabatch_size)]
|
||||
lang_megabatches = [lang_shuffle[i : i + megabatch_size] for i in range(0, len(lang_shuffle), megabatch_size)]
|
||||
|
||||
last_mm = mm_megabatches[-1]
|
||||
last_lang = lang_megabatches[-1]
|
||||
additional_batch = last_mm + last_lang
|
||||
megabatches = mm_megabatches[:-1] + lang_megabatches[:-1]
|
||||
megabatch_indices = torch.randperm(len(megabatches), generator=generator)
|
||||
megabatches = [megabatches[i] for i in megabatch_indices]
|
||||
|
||||
if len(additional_batch) > 0:
|
||||
megabatches.append(sorted(additional_batch))
|
||||
|
||||
return [i for megabatch in megabatches for i in megabatch]
|
||||
|
||||
|
||||
def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True):
|
||||
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
|
||||
indices = torch.randperm(len(lengths), generator=generator)
|
||||
megabatch_size = world_size * batch_size
|
||||
megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
|
||||
megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches]
|
||||
megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches]
|
||||
|
||||
return [i for megabatch in megabatches for batch in megabatch for i in batch]
|
||||
|
||||
|
||||
class LengthGroupedSampler(Sampler):
|
||||
r"""
|
||||
Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
|
||||
keeping a bit of randomness.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
batch_size: int,
|
||||
world_size: int,
|
||||
lengths: Optional[List[int]] = None,
|
||||
generator=None,
|
||||
group_by_modality: bool = False,
|
||||
):
|
||||
if lengths is None:
|
||||
raise ValueError("Lengths must be provided.")
|
||||
|
||||
self.batch_size = batch_size
|
||||
self.world_size = world_size
|
||||
self.lengths = lengths
|
||||
self.generator = generator
|
||||
self.group_by_modality = group_by_modality
|
||||
|
||||
def __len__(self):
|
||||
return len(self.lengths)
|
||||
|
||||
def __iter__(self):
|
||||
if self.group_by_modality:
|
||||
indices = get_modality_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
|
||||
else:
|
||||
indices = get_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
|
||||
return iter(indices)
|
||||
|
||||
|
||||
class LLaVATrainer(Trainer):
|
||||
|
||||
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
|
||||
if self.train_dataset is None or not has_length(self.train_dataset):
|
||||
return None
|
||||
|
||||
if self.args.group_by_modality_length:
|
||||
lengths = self.train_dataset.modality_lengths
|
||||
return LengthGroupedSampler(
|
||||
self.args.train_batch_size,
|
||||
world_size=self.args.world_size * self.args.gradient_accumulation_steps,
|
||||
lengths=lengths,
|
||||
group_by_modality=True,
|
||||
)
|
||||
else:
|
||||
return super()._get_train_sampler()
|
||||
|
||||
def create_optimizer(self):
|
||||
"""
|
||||
Setup the optimizer.
|
||||
|
||||
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
|
||||
Trainer's init through `optimizers`, or subclass and override this method in a subclass.
|
||||
"""
|
||||
if is_sagemaker_mp_enabled():
|
||||
return super().create_optimizer()
|
||||
|
||||
opt_model = self.model
|
||||
|
||||
if self.optimizer is None:
|
||||
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
|
||||
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
||||
if self.args.mm_projector_lr is not None:
|
||||
projector_parameters = [name for name, _ in opt_model.named_parameters() if "mm_projector" in name]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [
|
||||
p for n, p in opt_model.named_parameters() if (n in decay_parameters and n not in projector_parameters and p.requires_grad)
|
||||
],
|
||||
"weight_decay": self.args.weight_decay,
|
||||
},
|
||||
{
|
||||
"params": [
|
||||
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n not in projector_parameters and p.requires_grad)
|
||||
],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
{
|
||||
"params": [
|
||||
p for n, p in opt_model.named_parameters() if (n in decay_parameters and n in projector_parameters and p.requires_grad)
|
||||
],
|
||||
"weight_decay": self.args.weight_decay,
|
||||
"lr": self.args.mm_projector_lr,
|
||||
},
|
||||
{
|
||||
"params": [
|
||||
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n in projector_parameters and p.requires_grad)
|
||||
],
|
||||
"weight_decay": 0.0,
|
||||
"lr": self.args.mm_projector_lr,
|
||||
},
|
||||
]
|
||||
else:
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [
|
||||
p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad)
|
||||
],
|
||||
"weight_decay": self.args.weight_decay,
|
||||
},
|
||||
{
|
||||
"params": [
|
||||
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad)
|
||||
],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
|
||||
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
|
||||
|
||||
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
|
||||
if optimizer_cls.__name__ == "Adam8bit":
|
||||
import bitsandbytes
|
||||
|
||||
manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
|
||||
|
||||
skipped = 0
|
||||
for module in opt_model.modules():
|
||||
if isinstance(module, nn.Embedding):
|
||||
skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values())
|
||||
logger.info(f"skipped {module}: {skipped/2**20}M params")
|
||||
manager.register_module_override(module, "weight", {"optim_bits": 32})
|
||||
logger.debug(f"bitsandbytes: will optimize {module} in fp32")
|
||||
logger.info(f"skipped: {skipped/2**20}M params")
|
||||
|
||||
return self.optimizer
|
||||
|
||||
def _save_checkpoint(self, model, trial, metrics=None):
|
||||
if getattr(self.args, 'tune_mm_mlp_adapter', False):
|
||||
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
|
||||
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
|
||||
|
||||
run_dir = self._get_output_dir(trial=trial)
|
||||
output_dir = os.path.join(run_dir, checkpoint_folder)
|
||||
|
||||
# Only save Adapter
|
||||
keys_to_match = ['mm_projector', 'vision_resampler']
|
||||
if getattr(self.args, "use_im_start_end", False):
|
||||
keys_to_match.extend(['embed_tokens', 'embed_in'])
|
||||
|
||||
weight_to_save = get_mm_adapter_state_maybe_zero_3(self.model.named_parameters(), keys_to_match)
|
||||
|
||||
if self.args.local_rank == 0 or self.args.local_rank == -1:
|
||||
self.model.config.save_pretrained(output_dir)
|
||||
torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin'))
|
||||
else:
|
||||
super(LLaVATrainer, self)._save_checkpoint(model, trial, metrics)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict=None):
|
||||
if getattr(self.args, 'tune_mm_mlp_adapter', False):
|
||||
pass
|
||||
else:
|
||||
super(LLaVATrainer, self)._save(output_dir, state_dict)
|
||||
1262
llava/train/train.py
Normal file
14
llava/train/train_mem.py
Normal file
@@ -0,0 +1,14 @@
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.abspath(".."))
|
||||
sys.path.insert(0, os.path.abspath("."))
|
||||
from llava.train.train import train
|
||||
|
||||
def is_debug():
|
||||
return int(os.environ.get('DEBUG', 0))
|
||||
|
||||
if __name__ == "__main__":
|
||||
if is_debug():
|
||||
train(attn_implementation=None)
|
||||
else:
|
||||
train(attn_implementation="flash_attention_2")
|
||||
13
llava/train/train_xformers.py
Normal file
@@ -0,0 +1,13 @@
|
||||
# Make it more memory efficient by monkey patching the LLaMA model with xformers attention.
|
||||
|
||||
# Need to call this before importing transformers.
|
||||
from llava.train.llama_xformers_attn_monkey_patch import (
|
||||
replace_llama_attn_with_xformers_attn,
|
||||
)
|
||||
|
||||
replace_llama_attn_with_xformers_attn()
|
||||
|
||||
from llava.train.train import train
|
||||
|
||||
if __name__ == "__main__":
|
||||
train()
|
||||
126
llava/utils.py
Normal file
@@ -0,0 +1,126 @@
|
||||
import datetime
|
||||
import logging
|
||||
import logging.handlers
|
||||
import os
|
||||
import sys
|
||||
|
||||
import requests
|
||||
|
||||
from llava.constants import LOGDIR
|
||||
|
||||
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
|
||||
moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
|
||||
|
||||
handler = None
|
||||
|
||||
|
||||
def build_logger(logger_name, logger_filename):
|
||||
global handler
|
||||
|
||||
formatter = logging.Formatter(
|
||||
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
||||
datefmt="%Y-%m-%d %H:%M:%S",
|
||||
)
|
||||
|
||||
# Set the format of root handlers
|
||||
if not logging.getLogger().handlers:
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logging.getLogger().handlers[0].setFormatter(formatter)
|
||||
|
||||
# Redirect stdout and stderr to loggers
|
||||
stdout_logger = logging.getLogger("stdout")
|
||||
stdout_logger.setLevel(logging.INFO)
|
||||
sl = StreamToLogger(stdout_logger, logging.INFO)
|
||||
sys.stdout = sl
|
||||
|
||||
stderr_logger = logging.getLogger("stderr")
|
||||
stderr_logger.setLevel(logging.ERROR)
|
||||
sl = StreamToLogger(stderr_logger, logging.ERROR)
|
||||
sys.stderr = sl
|
||||
|
||||
# Get logger
|
||||
logger = logging.getLogger(logger_name)
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
# Add a file handler for all loggers
|
||||
if handler is None:
|
||||
os.makedirs(LOGDIR, exist_ok=True)
|
||||
filename = os.path.join(LOGDIR, logger_filename)
|
||||
handler = logging.handlers.TimedRotatingFileHandler(
|
||||
filename, when='D', utc=True, encoding='UTF-8')
|
||||
handler.setFormatter(formatter)
|
||||
|
||||
for name, item in logging.root.manager.loggerDict.items():
|
||||
if isinstance(item, logging.Logger):
|
||||
item.addHandler(handler)
|
||||
|
||||
return logger
|
||||
|
||||
|
||||
class StreamToLogger(object):
|
||||
"""
|
||||
Fake file-like stream object that redirects writes to a logger instance.
|
||||
"""
|
||||
def __init__(self, logger, log_level=logging.INFO):
|
||||
self.terminal = sys.stdout
|
||||
self.logger = logger
|
||||
self.log_level = log_level
|
||||
self.linebuf = ''
|
||||
|
||||
def __getattr__(self, attr):
|
||||
return getattr(self.terminal, attr)
|
||||
|
||||
def write(self, buf):
|
||||
temp_linebuf = self.linebuf + buf
|
||||
self.linebuf = ''
|
||||
for line in temp_linebuf.splitlines(True):
|
||||
# From the io.TextIOWrapper docs:
|
||||
# On output, if newline is None, any '\n' characters written
|
||||
# are translated to the system default line separator.
|
||||
# By default sys.stdout.write() expects '\n' newlines and then
|
||||
# translates them so this is still cross platform.
|
||||
if line[-1] == '\n':
|
||||
self.logger.log(self.log_level, line.rstrip())
|
||||
else:
|
||||
self.linebuf += line
|
||||
|
||||
def flush(self):
|
||||
if self.linebuf != '':
|
||||
self.logger.log(self.log_level, self.linebuf.rstrip())
|
||||
self.linebuf = ''
|
||||
|
||||
|
||||
def disable_torch_init():
|
||||
"""
|
||||
Disable the redundant torch default initialization to accelerate model creation.
|
||||
"""
|
||||
import torch
|
||||
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
||||
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
||||
|
||||
|
||||
def violates_moderation(text):
|
||||
"""
|
||||
Check whether the text violates OpenAI moderation API.
|
||||
"""
|
||||
url = "https://api.openai.com/v1/moderations"
|
||||
headers = {"Content-Type": "application/json",
|
||||
"Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
|
||||
text = text.replace("\n", "")
|
||||
data = "{" + '"input": ' + f'"{text}"' + "}"
|
||||
data = data.encode("utf-8")
|
||||
try:
|
||||
ret = requests.post(url, headers=headers, data=data, timeout=5)
|
||||
flagged = ret.json()["results"][0]["flagged"]
|
||||
except requests.exceptions.RequestException as e:
|
||||
flagged = False
|
||||
except KeyError as e:
|
||||
flagged = False
|
||||
|
||||
return flagged
|
||||
|
||||
|
||||
def pretty_print_semaphore(semaphore):
|
||||
if semaphore is None:
|
||||
return "None"
|
||||
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
|
||||
213
requirements.txt
Normal file
@@ -0,0 +1,213 @@
|
||||
accelerate==0.33.0
|
||||
aiohttp==3.9.5
|
||||
aiosignal==1.3.1
|
||||
altair==5.3.0
|
||||
annotated-types==0.6.0
|
||||
antlr4-python3-runtime==4.9.3
|
||||
appdirs==1.4.4
|
||||
asttokens==2.4.1
|
||||
async-timeout==4.0.3
|
||||
attrs==23.2.0
|
||||
autofaiss==2.17.0
|
||||
backcall==0.2.0
|
||||
bleach==6.1.0
|
||||
blinker==1.7.0
|
||||
blis==0.7.11
|
||||
braceexpand==0.1.7
|
||||
cachetools==5.3.3
|
||||
cairocffi==1.6.1
|
||||
CairoSVG==2.7.1
|
||||
catalogue==2.0.10
|
||||
certifi==2024.2.2
|
||||
cffi==1.16.0
|
||||
cfgv==3.4.0
|
||||
chardet==5.2.0
|
||||
charset-normalizer==2.1.1
|
||||
click==8.1.7
|
||||
cloudpathlib==0.16.0
|
||||
cmake==3.25.0
|
||||
colorama==0.4.6
|
||||
confection==0.1.4
|
||||
contexttimer==0.3.3
|
||||
contourpy==1.1.1
|
||||
cssselect2==0.7.0
|
||||
cycler==0.12.1
|
||||
cymem==2.0.8
|
||||
DataProperty==1.0.1
|
||||
datasets==2.19.1
|
||||
decorator==5.1.1
|
||||
decord==0.6.0
|
||||
deepspeed==0.12.6
|
||||
defusedxml==0.7.1
|
||||
dill==0.3.8
|
||||
distlib==0.3.8
|
||||
docker-pycreds==0.4.0
|
||||
einops==0.7.0
|
||||
embedding-reader==1.7.0
|
||||
en-core-web-lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.7.1/en_core_web_lg-3.7.1-py3-none-any.whl#sha256=ab70aeb6172cde82508f7739f35ebc9918a3d07debeed637403c8f794ba3d3dc
|
||||
evaluate==0.4.2
|
||||
executing==2.0.1
|
||||
fairscale==0.4.4
|
||||
faiss-cpu==1.7.4
|
||||
filelock==3.13.3
|
||||
fire==0.5.0
|
||||
flash-attn==2.6.2
|
||||
fonttools==4.50.0
|
||||
frozenlist==1.4.1
|
||||
fsspec==2024.2.0
|
||||
ftfy==6.2.0
|
||||
gitdb==4.0.11
|
||||
GitPython==3.1.42
|
||||
hf_transfer==0.1.6
|
||||
hjson==3.1.0
|
||||
huggingface-hub==0.23.3
|
||||
identify==2.5.35
|
||||
idna==3.4
|
||||
imageio==2.34.0
|
||||
importlib_resources==6.4.0
|
||||
iopath==0.1.10
|
||||
ipython==8.12.3
|
||||
jedi==0.19.1
|
||||
Jinja2==3.1.2
|
||||
joblib==1.4.2
|
||||
jsonschema==4.21.1
|
||||
jsonschema-specifications==2023.12.1
|
||||
kaggle==1.6.8
|
||||
kiwisolver==1.4.5
|
||||
langcodes==3.3.0
|
||||
lazy_loader==0.3
|
||||
lit==15.0.7
|
||||
lxml==5.2.2
|
||||
markdown-it-py==3.0.0
|
||||
MarkupSafe==2.1.3
|
||||
matplotlib==3.7.5
|
||||
matplotlib-inline==0.1.6
|
||||
mbstrdecoder==1.1.3
|
||||
mdurl==0.1.2
|
||||
mpmath==1.3.0
|
||||
multidict==6.0.5
|
||||
multiprocess==0.70.16
|
||||
murmurhash==1.0.10
|
||||
natsort==8.4.0
|
||||
networkx==3.0
|
||||
ninja==1.11.1.1
|
||||
nodeenv==1.8.0
|
||||
numpy==1.24.1
|
||||
nvidia-cublas-cu11==11.11.3.6
|
||||
nvidia-cuda-cupti-cu11==11.8.87
|
||||
nvidia-cuda-nvrtc-cu11==11.8.89
|
||||
nvidia-cuda-runtime-cu11==11.8.89
|
||||
nvidia-cudnn-cu11==8.7.0.84
|
||||
nvidia-cufft-cu11==10.9.0.58
|
||||
nvidia-curand-cu11==10.3.0.86
|
||||
nvidia-cusolver-cu11==11.4.1.48
|
||||
nvidia-cusparse-cu11==11.7.5.86
|
||||
nvidia-nccl-cu11==2.20.5
|
||||
nvidia-nvtx-cu11==11.8.86
|
||||
omegaconf==2.3.0
|
||||
opencv-python-headless==4.5.5.64
|
||||
opendatasets==0.1.22
|
||||
packaging==23.2
|
||||
pandas==2.0.3
|
||||
parso==0.8.3
|
||||
pathvalidate==3.2.0
|
||||
peft==0.12.0
|
||||
pexpect==4.9.0
|
||||
pickleshare==0.7.5
|
||||
pillow==10.2.0
|
||||
pkgutil_resolve_name==1.3.10
|
||||
platformdirs==4.2.0
|
||||
plotly==5.20.0
|
||||
portalocker==2.8.2
|
||||
pre-commit==3.5.0
|
||||
preshed==3.0.9
|
||||
prompt-toolkit==3.0.43
|
||||
protobuf==4.25.3
|
||||
psutil==5.9.8
|
||||
ptyprocess==0.7.0
|
||||
pure-eval==0.2.2
|
||||
py-cpuinfo==9.0.0
|
||||
pyarrow==15.0.0
|
||||
pyarrow-hotfix==0.6
|
||||
pycocoevalcap==1.2
|
||||
pycocotools==2.0.7
|
||||
pycparser==2.21
|
||||
pydantic==2.6.4
|
||||
pydantic_core==2.16.3
|
||||
pydeck==0.8.1b0
|
||||
Pygments==2.17.2
|
||||
pynvml==11.5.0
|
||||
pyparsing==3.1.2
|
||||
pytablewriter==1.2.0
|
||||
python-dateutil==2.8.2
|
||||
python-magic==0.4.27
|
||||
python-slugify==8.0.4
|
||||
pytz==2024.1
|
||||
PyWavelets==1.4.1
|
||||
PyYAML==6.0.1
|
||||
referencing==0.34.0
|
||||
regex==2023.12.25
|
||||
requests==2.32.3
|
||||
rich==13.7.1
|
||||
rpds-py==0.18.0
|
||||
s2wrapper @ git+https://github.com/bfshi/scaling_on_scales.git@3bbee376f98fcd0e670ef6814416e35d5454e803
|
||||
sacrebleu==2.4.2
|
||||
safetensors==0.4.2
|
||||
salesforce-lavis==1.0.2
|
||||
scikit-image==0.21.0
|
||||
scikit-learn==1.3.2
|
||||
scipy==1.10.1
|
||||
sentencepiece==0.2.0
|
||||
sentry-sdk==1.42.0
|
||||
setproctitle==1.3.3
|
||||
six==1.16.0
|
||||
smart-open==6.4.0
|
||||
smmap==5.0.1
|
||||
spacy==3.7.4
|
||||
spacy-legacy==3.0.12
|
||||
spacy-loggers==1.0.5
|
||||
sqlitedict==2.1.0
|
||||
srsly==2.4.8
|
||||
stack-data==0.6.3
|
||||
streamlit==1.32.2
|
||||
sympy==1.12
|
||||
tabledata==1.3.3
|
||||
tabulate==0.9.0
|
||||
tcolorpy==0.1.6
|
||||
tenacity==8.2.3
|
||||
termcolor==2.4.0
|
||||
text-unidecode==1.3
|
||||
thinc==8.2.3
|
||||
threadpoolctl==3.5.0
|
||||
tifffile==2023.7.10
|
||||
timm==0.4.12
|
||||
tinycss2==1.2.1
|
||||
tokenizers==0.19.1
|
||||
toml==0.10.2
|
||||
toolz==0.12.1
|
||||
torch==2.3.0+cu118
|
||||
torchaudio==2.2.2+cu118
|
||||
torchvision==0.18.0+cu118
|
||||
tornado==6.4
|
||||
tqdm==4.66.2
|
||||
traitlets==5.14.2
|
||||
transformers==4.43.1
|
||||
triton==2.3.0
|
||||
typepy==1.3.2
|
||||
typer==0.9.4
|
||||
typing_extensions==4.10.0
|
||||
tzdata==2024.1
|
||||
ujson==5.9.0
|
||||
urllib3==1.26.13
|
||||
virtualenv==20.25.1
|
||||
wandb==0.16.4
|
||||
wasabi==1.1.2
|
||||
watchdog==4.0.0
|
||||
wcwidth==0.2.13
|
||||
weasel==0.3.4
|
||||
webdataset==0.2.86
|
||||
webencodings==0.5.1
|
||||
wget==3.2
|
||||
xxhash==3.4.1
|
||||
yarl==1.9.4
|
||||
zipp==3.18.1
|
||||
18
scripts/convert_gqa_for_eval.py
Normal file
@@ -0,0 +1,18 @@
|
||||
import os
|
||||
import json
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--src", type=str)
|
||||
parser.add_argument("--dst", type=str)
|
||||
args = parser.parse_args()
|
||||
|
||||
all_answers = []
|
||||
for line_idx, line in enumerate(open(args.src)):
|
||||
res = json.loads(line)
|
||||
question_id = res['question_id']
|
||||
text = res['text'].rstrip('.').lower()
|
||||
all_answers.append({"questionId": question_id, "prediction": text})
|
||||
|
||||
with open(args.dst, 'w') as f:
|
||||
json.dump(all_answers, f)
|
||||
27
scripts/convert_mmbench_for_submission.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import os
|
||||
import json
|
||||
import argparse
|
||||
import pandas as pd
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--annotation-file", type=str, required=True)
|
||||
parser.add_argument("--result-dir", type=str, required=True)
|
||||
parser.add_argument("--upload-dir", type=str, required=True)
|
||||
parser.add_argument("--experiment", type=str, required=True)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
df = pd.read_table(args.annotation_file)
|
||||
|
||||
cur_df = df.copy()
|
||||
cur_df = cur_df.drop(columns=['hint', 'category', 'source', 'image', 'comment', 'l2-category'])
|
||||
cur_df.insert(6, 'prediction', None)
|
||||
for pred in open(os.path.join(args.result_dir, f"{args.experiment}.jsonl")):
|
||||
pred = json.loads(pred)
|
||||
cur_df.loc[df['index'] == pred['question_id'], 'prediction'] = pred['text']
|
||||
|
||||
cur_df.to_excel(os.path.join(args.upload_dir, f"{args.experiment}.xlsx"), index=False, engine='openpyxl')
|
||||
18
scripts/convert_mmvet_for_eval.py
Normal file
@@ -0,0 +1,18 @@
|
||||
import os
|
||||
import json
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--src", type=str)
|
||||
parser.add_argument("--dst", type=str)
|
||||
args = parser.parse_args()
|
||||
|
||||
cur_result = {}
|
||||
|
||||
for line in open(args.src):
|
||||
data = json.loads(line)
|
||||
qid = data['question_id']
|
||||
cur_result[f'v1_{qid}'] = data['text']
|
||||
|
||||
with open(args.dst, 'w') as f:
|
||||
json.dump(cur_result, f, indent=2)
|
||||
74
scripts/convert_seed_for_submission.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import os
|
||||
import json
|
||||
import argparse
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--annotation-file", type=str)
|
||||
parser.add_argument("--result-file", type=str)
|
||||
parser.add_argument("--result-upload-file", type=str)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def eval_single(result_file, eval_only_type=None):
|
||||
results = {}
|
||||
for line in open(result_file):
|
||||
row = json.loads(line)
|
||||
results[row['question_id']] = row
|
||||
|
||||
type_counts = {}
|
||||
correct_counts = {}
|
||||
for question_data in data['questions']:
|
||||
if eval_only_type is not None and question_data['data_type'] != eval_only_type: continue
|
||||
data_type = question_data['question_type_id']
|
||||
type_counts[data_type] = type_counts.get(data_type, 0) + 1
|
||||
try:
|
||||
question_id = int(question_data['question_id'])
|
||||
except:
|
||||
question_id = question_data['question_id']
|
||||
if question_id not in results:
|
||||
correct_counts[data_type] = correct_counts.get(data_type, 0)
|
||||
continue
|
||||
row = results[question_id]
|
||||
if row['text'] == question_data['answer']:
|
||||
correct_counts[data_type] = correct_counts.get(data_type, 0) + 1
|
||||
|
||||
total_count = 0
|
||||
total_correct = 0
|
||||
for data_type in sorted(type_counts.keys()):
|
||||
accuracy = correct_counts[data_type] / type_counts[data_type] * 100
|
||||
if eval_only_type is None:
|
||||
print(f"{ques_type_id_to_name[data_type]}: {accuracy:.2f}%")
|
||||
|
||||
total_count += type_counts[data_type]
|
||||
total_correct += correct_counts[data_type]
|
||||
|
||||
total_accuracy = total_correct / total_count * 100
|
||||
if eval_only_type is None:
|
||||
print(f"Total accuracy: {total_accuracy:.2f}%")
|
||||
else:
|
||||
print(f"{eval_only_type} accuracy: {total_accuracy:.2f}%")
|
||||
|
||||
return results
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
data = json.load(open(args.annotation_file))
|
||||
ques_type_id_to_name = {id:n for n,id in data['question_type'].items()}
|
||||
|
||||
results = eval_single(args.result_file)
|
||||
eval_single(args.result_file, eval_only_type='image')
|
||||
eval_single(args.result_file, eval_only_type='video')
|
||||
|
||||
with open(args.result_upload_file, 'w') as fp:
|
||||
for question in data['questions']:
|
||||
qid = question['question_id']
|
||||
if qid in results:
|
||||
result = results[qid]
|
||||
else:
|
||||
result = results[int(qid)]
|
||||
fp.write(json.dumps({
|
||||
'question_id': qid,
|
||||
'prediction': result['text']
|
||||
}) + '\n')
|
||||
88
scripts/convert_sqa_to_llava.py
Normal file
@@ -0,0 +1,88 @@
|
||||
import json
|
||||
import os
|
||||
import fire
|
||||
import re
|
||||
from convert_sqa_to_llava_base_prompt import build_prompt_chatbot
|
||||
|
||||
|
||||
def convert_to_llava(base_dir, split, prompt_format="QCM-LEA"):
|
||||
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[split]
|
||||
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
||||
|
||||
split_problems = build_prompt_chatbot(
|
||||
problems, split_indices, prompt_format,
|
||||
use_caption=False, is_test=False)
|
||||
|
||||
target_format = []
|
||||
for prob_id, (input, output) in split_problems.items():
|
||||
if input.startswith('Question: '):
|
||||
input = input.replace('Question: ', '')
|
||||
if output.startswith('Answer: '):
|
||||
output = output.replace('Answer: ', '')
|
||||
|
||||
raw_prob_data = problems[prob_id]
|
||||
if raw_prob_data['image'] is None:
|
||||
target_format.append({
|
||||
"id": prob_id,
|
||||
"conversations": [
|
||||
{'from': 'human', 'value': f"{input}"},
|
||||
{'from': 'gpt', 'value': f"{output}"},
|
||||
],
|
||||
})
|
||||
|
||||
else:
|
||||
target_format.append({
|
||||
"id": prob_id,
|
||||
"image": os.path.join(prob_id, raw_prob_data['image']),
|
||||
"conversations": [
|
||||
{'from': 'human', 'value': f"{input}\n<image>"},
|
||||
{'from': 'gpt', 'value': f"{output}"},
|
||||
],
|
||||
})
|
||||
|
||||
print(f'Number of samples: {len(target_format)}')
|
||||
|
||||
with open(os.path.join(base_dir, f"llava_{split}_{prompt_format}.json"), "w") as f:
|
||||
json.dump(target_format, f, indent=2)
|
||||
|
||||
|
||||
def convert_to_jsonl(base_dir, split, prompt_format="QCM-LEPA"):
|
||||
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[split]
|
||||
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
||||
|
||||
split_problems = build_prompt_chatbot(
|
||||
problems, split_indices, prompt_format,
|
||||
use_caption=False, is_test=False)
|
||||
|
||||
writer = open(os.path.join(base_dir, f"scienceqa_{split}_{prompt_format}.jsonl"), "w")
|
||||
for prob_id, (input, output) in split_problems.items():
|
||||
if input.startswith('Question: '):
|
||||
input = input.replace('Question: ', '')
|
||||
if output.startswith('Answer: '):
|
||||
output = output.replace('Answer: ', '')
|
||||
|
||||
raw_prob_data = problems[prob_id]
|
||||
if raw_prob_data['image'] is None:
|
||||
data = {
|
||||
"id": prob_id,
|
||||
"instruction": f"{input}",
|
||||
"output": f"{output}",
|
||||
}
|
||||
|
||||
else:
|
||||
data = {
|
||||
"id": prob_id,
|
||||
"image": os.path.join(prob_id, raw_prob_data['image']),
|
||||
"instruction": f"{input}\n<image>",
|
||||
"output": f"{output}",
|
||||
}
|
||||
writer.write(json.dumps(data) + '\n')
|
||||
writer.close()
|
||||
|
||||
|
||||
def main(task, **kwargs):
|
||||
globals()[task](**kwargs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(main)
|
||||
334
scripts/convert_sqa_to_llava_base_prompt.py
Normal file
@@ -0,0 +1,334 @@
|
||||
def get_question_text(problem):
|
||||
question = problem['question']
|
||||
return question
|
||||
|
||||
|
||||
def get_context_text(problem, use_caption):
|
||||
txt_context = problem['hint']
|
||||
img_context = problem['caption'] if use_caption else ""
|
||||
context = " ".join([txt_context, img_context]).strip()
|
||||
if context == "":
|
||||
context = "N/A"
|
||||
return context
|
||||
|
||||
|
||||
def get_choice_text(probelm, options):
|
||||
choices = probelm['choices']
|
||||
choice_list = []
|
||||
for i, c in enumerate(choices):
|
||||
choice_list.append("({}) {}".format(options[i], c))
|
||||
choice_txt = " ".join(choice_list)
|
||||
#print(choice_txt)
|
||||
return choice_txt
|
||||
|
||||
|
||||
def get_answer(problem, options):
|
||||
return options[problem['answer']]
|
||||
|
||||
|
||||
def get_lecture_text(problem):
|
||||
# \\n: GPT-3 can generate the lecture with more tokens.
|
||||
lecture = problem['lecture'].replace("\n", "\\n")
|
||||
return lecture
|
||||
|
||||
|
||||
def get_solution_text(problem):
|
||||
# \\n: GPT-3 can generate the solution with more tokens
|
||||
solution = problem['solution'].replace("\n", "\\n")
|
||||
return solution
|
||||
|
||||
|
||||
def create_one_example_chatbot(format, question, context, choice, answer, lecture, solution, test_example=True):
|
||||
|
||||
input_format, output_format = format.split("-")
|
||||
|
||||
## Inputs
|
||||
if input_format == "CQM":
|
||||
input = f"Context: {context}\nQuestion: {question}\nOptions: {choice}\n"
|
||||
elif input_format == "QCM":
|
||||
input = f"Question: {question}\nContext: {context}\nOptions: {choice}\n"
|
||||
# upper bound experiment
|
||||
elif input_format == "QCML":
|
||||
input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture}\n"
|
||||
elif input_format == "QCME":
|
||||
input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {solution}\n"
|
||||
elif input_format == "QCMLE":
|
||||
input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture} {solution}\n"
|
||||
|
||||
elif input_format == "QCLM":
|
||||
input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture}\nOptions: {choice}\n"
|
||||
elif input_format == "QCEM":
|
||||
input = f"Question: {question}\nContext: {context}\nBECAUSE: {solution}\nOptions: {choice}\n"
|
||||
elif input_format == "QCLEM":
|
||||
input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture} {solution}\nOptions: {choice}\n"
|
||||
|
||||
# Outputs
|
||||
if test_example:
|
||||
output = "Answer:"
|
||||
elif output_format == 'A':
|
||||
output = f"Answer: The answer is {answer}."
|
||||
|
||||
elif output_format == 'AL':
|
||||
output = f"Answer: The answer is {answer}. BECAUSE: {solution}"
|
||||
elif output_format == 'AE':
|
||||
output = f"Answer: The answer is {answer}. BECAUSE: {lecture}"
|
||||
elif output_format == 'ALE':
|
||||
output = f"Answer: The answer is {answer}. BECAUSE: {lecture} {solution}"
|
||||
elif output_format == 'AEL':
|
||||
output = f"Answer: The answer is {answer}. BECAUSE: {solution} {lecture}"
|
||||
|
||||
elif output_format == 'LA':
|
||||
output = f"Answer: {lecture} The answer is {answer}."
|
||||
elif output_format == 'EA':
|
||||
output = f"Answer: {solution} The answer is {answer}."
|
||||
elif output_format == 'LEA':
|
||||
output = f"Answer: {lecture} {solution} The answer is {answer}."
|
||||
elif output_format == 'ELA':
|
||||
output = f"Answer: {solution} {lecture} The answer is {answer}."
|
||||
elif output_format == 'LEPA':
|
||||
output = ''
|
||||
if len(lecture.strip()) > 0:
|
||||
output += f"LECTURE: {lecture}\n"
|
||||
if len(solution.strip()) > 0:
|
||||
output += f"SOLUTION: {solution}\n"
|
||||
output += '###\n'
|
||||
output += f"ANSWER: {answer}."
|
||||
|
||||
input = input.replace(" ", " ").strip()
|
||||
output = output.replace(" ", " ").strip()
|
||||
if input.endswith("BECAUSE:"):
|
||||
input = input.replace("BECAUSE:", "").strip()
|
||||
if output.endswith("BECAUSE:"):
|
||||
output = output.replace("BECAUSE:", "").strip()
|
||||
return input, output
|
||||
|
||||
|
||||
def create_one_example(format, question, context, choice, answer, lecture, solution, test_example=True):
|
||||
|
||||
input_format, output_format = format.split("-")
|
||||
|
||||
## Inputs
|
||||
if input_format == "CQM":
|
||||
input = f"Context: {context}\nQuestion: {question}\nOptions: {choice}\n"
|
||||
elif input_format == "QCM":
|
||||
input = f"Question: {question}\nContext: {context}\nOptions: {choice}\n"
|
||||
# upper bound experiment
|
||||
elif input_format == "QCML":
|
||||
input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture}\n"
|
||||
elif input_format == "QCME":
|
||||
input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {solution}\n"
|
||||
elif input_format == "QCMLE":
|
||||
input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture} {solution}\n"
|
||||
|
||||
elif input_format == "QCLM":
|
||||
input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture}\nOptions: {choice}\n"
|
||||
elif input_format == "QCEM":
|
||||
input = f"Question: {question}\nContext: {context}\nBECAUSE: {solution}\nOptions: {choice}\n"
|
||||
elif input_format == "QCLEM":
|
||||
input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture} {solution}\nOptions: {choice}\n"
|
||||
|
||||
# Outputs
|
||||
if test_example:
|
||||
output = "Answer:"
|
||||
elif output_format == 'A':
|
||||
output = f"Answer: The answer is {answer}."
|
||||
|
||||
elif output_format == 'AL':
|
||||
output = f"Answer: The answer is {answer}. BECAUSE: {solution}"
|
||||
elif output_format == 'AE':
|
||||
output = f"Answer: The answer is {answer}. BECAUSE: {lecture}"
|
||||
elif output_format == 'ALE':
|
||||
output = f"Answer: The answer is {answer}. BECAUSE: {lecture} {solution}"
|
||||
elif output_format == 'AEL':
|
||||
output = f"Answer: The answer is {answer}. BECAUSE: {solution} {lecture}"
|
||||
|
||||
elif output_format == 'LA':
|
||||
output = f"Answer: {lecture} The answer is {answer}."
|
||||
elif output_format == 'EA':
|
||||
output = f"Answer: {solution} The answer is {answer}."
|
||||
elif output_format == 'LEA':
|
||||
output = f"Answer: {lecture} {solution} The answer is {answer}."
|
||||
elif output_format == 'ELA':
|
||||
output = f"Answer: {solution} {lecture} The answer is {answer}."
|
||||
|
||||
text = input + output
|
||||
text = text.replace(" ", " ").strip()
|
||||
if text.endswith("BECAUSE:"):
|
||||
text = text.replace("BECAUSE:", "").strip()
|
||||
return text
|
||||
|
||||
|
||||
|
||||
def create_one_example_gpt4(format, question, context, choice, answer, lecture, solution, test_example=True):
|
||||
|
||||
input_format, output_format = format.split("-")
|
||||
|
||||
## Inputs
|
||||
if input_format == "CQM":
|
||||
input = f"Context: {context}\nQuestion: {question}\nOptions: {choice}\n"
|
||||
elif input_format == "QCM":
|
||||
input = f"Question: {question}\nContext: {context}\nOptions: {choice}\n"
|
||||
# upper bound experiment
|
||||
elif input_format == "QCML":
|
||||
input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture}\n"
|
||||
elif input_format == "QCME":
|
||||
input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {solution}\n"
|
||||
elif input_format == "QCMLE":
|
||||
input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture} {solution}\n"
|
||||
|
||||
elif input_format == "QCLM":
|
||||
input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture}\nOptions: {choice}\n"
|
||||
elif input_format == "QCEM":
|
||||
input = f"Question: {question}\nContext: {context}\nBECAUSE: {solution}\nOptions: {choice}\n"
|
||||
elif input_format == "QCLEM":
|
||||
input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture} {solution}\nOptions: {choice}\n"
|
||||
|
||||
# Outputs
|
||||
if test_example:
|
||||
output = "Answer:"
|
||||
elif output_format == 'A':
|
||||
output = f"Answer: The answer is {answer}."
|
||||
|
||||
elif output_format == 'AL':
|
||||
output = f"Answer: The answer is {answer}. BECAUSE: {solution}"
|
||||
elif output_format == 'AE':
|
||||
output = f"Answer: The answer is {answer}. BECAUSE: {lecture}"
|
||||
elif output_format == 'ALE':
|
||||
output = f"Answer: The answer is {answer}. BECAUSE: {lecture} {solution}"
|
||||
elif output_format == 'AEL':
|
||||
output = f"Answer: The answer is {answer}. BECAUSE: {solution} {lecture}"
|
||||
|
||||
elif output_format == 'LA':
|
||||
output = f"Answer: {lecture} The answer is {answer}."
|
||||
elif output_format == 'EA':
|
||||
output = f"Answer: {solution} The answer is {answer}."
|
||||
elif output_format == 'LEA':
|
||||
output = f"Answer: {lecture} {solution} The answer is {answer}."
|
||||
elif output_format == 'ELA':
|
||||
output = f"Answer: {solution} {lecture} The answer is {answer}."
|
||||
|
||||
input = input.replace(" ", " ").strip()
|
||||
output = output.replace(" ", " ").strip()
|
||||
if output.endswith("BECAUSE:"):
|
||||
output = output.replace("BECAUSE:", "").strip()
|
||||
|
||||
user_prompt = {"role": "user", "content": f"Can you explain {input}?"}
|
||||
assistant_prompt = {"role": "assistant", "content": f"{output}"}
|
||||
|
||||
return user_prompt, assistant_prompt
|
||||
|
||||
|
||||
def build_prompt_chatbot(problems, shot_qids, prompt_format, use_caption=False, options=["A", "B", "C", "D", "E"], is_test=False):
|
||||
examples = {}
|
||||
|
||||
for qid in shot_qids:
|
||||
question = get_question_text(problems[qid])
|
||||
context = get_context_text(problems[qid], use_caption)
|
||||
choice = get_choice_text(problems[qid], options)
|
||||
answer = get_answer(problems[qid], options)
|
||||
lecture = get_lecture_text(problems[qid]).replace('\\n', '\n')
|
||||
solution = get_solution_text(problems[qid]).replace('\\n', '\n')
|
||||
|
||||
train_example = create_one_example_chatbot(prompt_format,
|
||||
question,
|
||||
context,
|
||||
choice,
|
||||
answer,
|
||||
lecture,
|
||||
solution,
|
||||
test_example=is_test)
|
||||
examples[qid] = train_example
|
||||
return examples
|
||||
|
||||
|
||||
def build_prompt(problems, shot_qids, test_qid, args):
|
||||
|
||||
examples = []
|
||||
|
||||
# n-shot training examples
|
||||
for qid in shot_qids:
|
||||
question = get_question_text(problems[qid])
|
||||
context = get_context_text(problems[qid], args.use_caption)
|
||||
choice = get_choice_text(problems[qid], args.options)
|
||||
answer = get_answer(problems[qid], args.options)
|
||||
lecture = get_lecture_text(problems[qid])
|
||||
solution = get_solution_text(problems[qid])
|
||||
|
||||
train_example = create_one_example(args.prompt_format,
|
||||
question,
|
||||
context,
|
||||
choice,
|
||||
answer,
|
||||
lecture,
|
||||
solution,
|
||||
test_example=False)
|
||||
examples.append(train_example)
|
||||
|
||||
# test example
|
||||
question = get_question_text(problems[test_qid])
|
||||
context = get_context_text(problems[test_qid], args.use_caption)
|
||||
choice = get_choice_text(problems[test_qid], args.options)
|
||||
answer = get_answer(problems[test_qid], args.options)
|
||||
lecture = get_lecture_text(problems[test_qid])
|
||||
solution = get_solution_text(problems[test_qid])
|
||||
|
||||
test_example = create_one_example(args.prompt_format,
|
||||
question,
|
||||
context,
|
||||
choice,
|
||||
answer,
|
||||
lecture,
|
||||
solution,
|
||||
test_example=True)
|
||||
examples.append(test_example)
|
||||
|
||||
# create the prompt input
|
||||
prompt_input = '\n\n'.join(examples)
|
||||
|
||||
return prompt_input
|
||||
|
||||
|
||||
def build_prompt_gpt4(problems, shot_qids, test_qid, args):
|
||||
|
||||
prompt_array = [{"role": "system", "content": "You are a helpful assistant."}]
|
||||
|
||||
# n-shot training examples
|
||||
for qid in shot_qids:
|
||||
question = get_question_text(problems[qid])
|
||||
context = get_context_text(problems[qid], args.use_caption)
|
||||
choice = get_choice_text(problems[qid], args.options)
|
||||
answer = get_answer(problems[qid], args.options)
|
||||
lecture = get_lecture_text(problems[qid])
|
||||
solution = get_solution_text(problems[qid])
|
||||
|
||||
user_prompt, assistant_prompt = create_one_example_gpt4(args.prompt_format,
|
||||
question,
|
||||
context,
|
||||
choice,
|
||||
answer,
|
||||
lecture,
|
||||
solution,
|
||||
test_example=False)
|
||||
prompt_array.append(user_prompt)
|
||||
prompt_array.append(assistant_prompt)
|
||||
|
||||
# test example
|
||||
question = get_question_text(problems[test_qid])
|
||||
context = get_context_text(problems[test_qid], args.use_caption)
|
||||
choice = get_choice_text(problems[test_qid], args.options)
|
||||
answer = get_answer(problems[test_qid], args.options)
|
||||
lecture = get_lecture_text(problems[test_qid])
|
||||
solution = get_solution_text(problems[test_qid])
|
||||
|
||||
user_prompt, assistant_prompt = create_one_example_gpt4(args.prompt_format,
|
||||
question,
|
||||
context,
|
||||
choice,
|
||||
answer,
|
||||
lecture,
|
||||
solution,
|
||||
test_example=True)
|
||||
prompt_array.append(user_prompt)
|
||||
prompt_array.append(assistant_prompt)
|
||||
|
||||
return prompt_array
|
||||
47
scripts/convert_vizwiz_for_submission.py
Normal file
@@ -0,0 +1,47 @@
|
||||
import os
|
||||
import argparse
|
||||
import json
|
||||
|
||||
from llava.eval.m4c_evaluator import EvalAIAnswerProcessor
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--annotation-file', type=str, required=True)
|
||||
parser.add_argument('--result-file', type=str, required=True)
|
||||
parser.add_argument('--result-upload-file', type=str, required=True)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
args = parse_args()
|
||||
|
||||
os.makedirs(os.path.dirname(args.result_upload_file), exist_ok=True)
|
||||
|
||||
results = []
|
||||
error_line = 0
|
||||
for line_idx, line in enumerate(open(args.result_file)):
|
||||
try:
|
||||
results.append(json.loads(line))
|
||||
except:
|
||||
error_line += 1
|
||||
results = {x['question_id']: x['text'] for x in results}
|
||||
test_split = [json.loads(line) for line in open(args.annotation_file)]
|
||||
split_ids = set([x['question_id'] for x in test_split])
|
||||
|
||||
print(f'total results: {len(results)}, total split: {len(test_split)}, error_line: {error_line}')
|
||||
|
||||
all_answers = []
|
||||
|
||||
answer_processor = EvalAIAnswerProcessor()
|
||||
|
||||
for x in test_split:
|
||||
assert x['question_id'] in results
|
||||
all_answers.append({
|
||||
'image': x['image'],
|
||||
'answer': answer_processor(results[x['question_id']])
|
||||
})
|
||||
|
||||
with open(args.result_upload_file, 'w') as f:
|
||||
json.dump(all_answers, f)
|
||||
56
scripts/convert_vqav2_for_submission.py
Normal file
@@ -0,0 +1,56 @@
|
||||
import os
|
||||
import argparse
|
||||
import json
|
||||
|
||||
from llava.eval.m4c_evaluator import EvalAIAnswerProcessor
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--dir', type=str, default="./playground/data/eval/vqav2")
|
||||
parser.add_argument('--ckpt', type=str, required=True)
|
||||
parser.add_argument('--split', type=str, required=True)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
args = parse_args()
|
||||
|
||||
src = os.path.join(args.dir, 'answers', args.split, args.ckpt, 'merge.jsonl')
|
||||
test_split = os.path.join(args.dir, 'llava_vqav2_mscoco_test2015.jsonl')
|
||||
dst = os.path.join(args.dir, 'answers_upload', args.split, f'{args.ckpt}.json')
|
||||
os.makedirs(os.path.dirname(dst), exist_ok=True)
|
||||
|
||||
results = []
|
||||
error_line = 0
|
||||
for line_idx, line in enumerate(open(src)):
|
||||
try:
|
||||
results.append(json.loads(line))
|
||||
except:
|
||||
error_line += 1
|
||||
|
||||
results = {x['question_id']: x['text'] for x in results}
|
||||
test_split = [json.loads(line) for line in open(test_split)]
|
||||
split_ids = set([x['question_id'] for x in test_split])
|
||||
|
||||
print(f'total results: {len(results)}, total split: {len(test_split)}, error_line: {error_line}')
|
||||
|
||||
all_answers = []
|
||||
|
||||
answer_processor = EvalAIAnswerProcessor()
|
||||
|
||||
for x in test_split:
|
||||
if x['question_id'] not in results:
|
||||
all_answers.append({
|
||||
'question_id': x['question_id'],
|
||||
'answer': ''
|
||||
})
|
||||
else:
|
||||
all_answers.append({
|
||||
'question_id': x['question_id'],
|
||||
'answer': answer_processor(results[x['question_id']])
|
||||
})
|
||||
|
||||
with open(dst, 'w') as f:
|
||||
json.dump(all_answers, open(dst, 'w'))
|
||||
47
scripts/extract_mm_projector.py
Normal file
@@ -0,0 +1,47 @@
|
||||
"""
|
||||
This is just a utility that I use to extract the projector for quantized models.
|
||||
It is NOT necessary at all to train, or run inference/serve demos.
|
||||
Use this script ONLY if you fully understand its implications.
|
||||
"""
|
||||
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import torch
|
||||
import json
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Extract MMProjector weights')
|
||||
parser.add_argument('--model-path', type=str, help='model folder')
|
||||
parser.add_argument('--output', type=str, help='output file')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
|
||||
keys_to_match = ['mm_projector']
|
||||
ckpt_to_key = defaultdict(list)
|
||||
try:
|
||||
model_indices = json.load(open(os.path.join(args.model_path, 'pytorch_model.bin.index.json')))
|
||||
for k, v in model_indices['weight_map'].items():
|
||||
if any(key_match in k for key_match in keys_to_match):
|
||||
ckpt_to_key[v].append(k)
|
||||
except FileNotFoundError:
|
||||
# Smaller models or model checkpoints saved by DeepSpeed.
|
||||
v = 'pytorch_model.bin'
|
||||
for k in torch.load(os.path.join(args.model_path, v), map_location='cpu').keys():
|
||||
if any(key_match in k for key_match in keys_to_match):
|
||||
ckpt_to_key[v].append(k)
|
||||
|
||||
loaded_weights = {}
|
||||
|
||||
for ckpt_name, weight_keys in ckpt_to_key.items():
|
||||
ckpt = torch.load(os.path.join(args.model_path, ckpt_name), map_location='cpu')
|
||||
for k in weight_keys:
|
||||
loaded_weights[k] = ckpt[k]
|
||||
|
||||
torch.save(loaded_weights, args.output)
|
||||
48
scripts/finetune.sh
Normal file
@@ -0,0 +1,48 @@
|
||||
#!/bin/bash
|
||||
|
||||
# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5!
|
||||
|
||||
# Uncomment and set the following variables correspondingly to run this script:
|
||||
|
||||
################## VICUNA ##################
|
||||
# PROMPT_VERSION=v1
|
||||
# MODEL_VERSION="vicuna-v1-3-7b"
|
||||
################## VICUNA ##################
|
||||
|
||||
################## LLaMA-2 ##################
|
||||
# PROMPT_VERSION="llava_llama_2"
|
||||
# MODEL_VERSION="llama-2-7b-chat"
|
||||
################## LLaMA-2 ##################
|
||||
|
||||
deepspeed llava/train/train_mem.py \
|
||||
--deepspeed ./scripts/zero2.json \
|
||||
--model_name_or_path ./checkpoints/$MODEL_VERSION \
|
||||
--version $PROMPT_VERSION \
|
||||
--data_path ./playground/data/llava_instruct_80k.json \
|
||||
--image_folder /path/to/coco/train2017 \
|
||||
--vision_tower openai/clip-vit-large-patch14 \
|
||||
--pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \
|
||||
--mm_vision_select_layer -2 \
|
||||
--mm_use_im_start_end False \
|
||||
--mm_use_im_patch_token False \
|
||||
--bf16 True \
|
||||
--output_dir ./checkpoints/llava-$MODEL_VERSION-finetune \
|
||||
--num_train_epochs 1 \
|
||||
--per_device_train_batch_size 16 \
|
||||
--per_device_eval_batch_size 4 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--evaluation_strategy "no" \
|
||||
--save_strategy "steps" \
|
||||
--save_steps 50000 \
|
||||
--save_total_limit 1 \
|
||||
--learning_rate 2e-5 \
|
||||
--weight_decay 0. \
|
||||
--warmup_ratio 0.03 \
|
||||
--lr_scheduler_type "cosine" \
|
||||
--logging_steps 1 \
|
||||
--tf32 True \
|
||||
--model_max_length 2048 \
|
||||
--gradient_checkpointing True \
|
||||
--dataloader_num_workers 4 \
|
||||
--lazy_preprocess True \
|
||||
--report_to wandb
|
||||
48
scripts/finetune_full_schedule.sh
Normal file
@@ -0,0 +1,48 @@
|
||||
#!/bin/bash
|
||||
|
||||
# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5!
|
||||
|
||||
# Uncomment and set the following variables correspondingly to run this script:
|
||||
|
||||
################## VICUNA ##################
|
||||
# PROMPT_VERSION=v1
|
||||
# MODEL_VERSION="vicuna-v1-3-7b"
|
||||
################## VICUNA ##################
|
||||
|
||||
################## LLaMA-2 ##################
|
||||
# PROMPT_VERSION="llava_llama_2"
|
||||
# MODEL_VERSION="llama-2-7b-chat"
|
||||
################## LLaMA-2 ##################
|
||||
|
||||
deepspeed llava/train/train_mem.py \
|
||||
--deepspeed ./scripts/zero2.json \
|
||||
--model_name_or_path ./checkpoints/$MODEL_VERSION \
|
||||
--version $PROMPT_VERSION \
|
||||
--data_path ./playground/data/llava_instruct_158k.json \
|
||||
--image_folder /path/to/coco/train2017 \
|
||||
--vision_tower openai/clip-vit-large-patch14 \
|
||||
--pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \
|
||||
--mm_vision_select_layer -2 \
|
||||
--mm_use_im_start_end False \
|
||||
--mm_use_im_patch_token False \
|
||||
--bf16 True \
|
||||
--output_dir ./checkpoints/llava-$MODEL_VERSION-finetune \
|
||||
--num_train_epochs 3 \
|
||||
--per_device_train_batch_size 16 \
|
||||
--per_device_eval_batch_size 4 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--evaluation_strategy "no" \
|
||||
--save_strategy "steps" \
|
||||
--save_steps 50000 \
|
||||
--save_total_limit 1 \
|
||||
--learning_rate 2e-5 \
|
||||
--weight_decay 0. \
|
||||
--warmup_ratio 0.03 \
|
||||
--lr_scheduler_type "cosine" \
|
||||
--logging_steps 1 \
|
||||
--tf32 True \
|
||||
--model_max_length 2048 \
|
||||
--gradient_checkpointing True \
|
||||
--dataloader_num_workers 4 \
|
||||
--lazy_preprocess True \
|
||||
--report_to wandb
|
||||
49
scripts/finetune_lora.sh
Normal file
@@ -0,0 +1,49 @@
|
||||
#!/bin/bash
|
||||
|
||||
# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5!
|
||||
|
||||
# Uncomment and set the following variables correspondingly to run this script:
|
||||
|
||||
################## VICUNA ##################
|
||||
# PROMPT_VERSION=v1
|
||||
# MODEL_VERSION="vicuna-v1-3-7b"
|
||||
################## VICUNA ##################
|
||||
|
||||
################## LLaMA-2 ##################
|
||||
# PROMPT_VERSION="llava_llama_2"
|
||||
# MODEL_VERSION="llama-2-7b-chat"
|
||||
################## LLaMA-2 ##################
|
||||
|
||||
deepspeed llava/train/train_mem.py \
|
||||
--deepspeed ./scripts/zero2.json \
|
||||
--lora_enable True \
|
||||
--model_name_or_path ./checkpoints/$MODEL_VERSION \
|
||||
--version $PROMPT_VERSION \
|
||||
--data_path ./playground/data/llava_instruct_80k.json \
|
||||
--image_folder /path/to/coco/train2017 \
|
||||
--vision_tower openai/clip-vit-large-patch14 \
|
||||
--pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \
|
||||
--mm_vision_select_layer -2 \
|
||||
--mm_use_im_start_end False \
|
||||
--mm_use_im_patch_token False \
|
||||
--bf16 True \
|
||||
--output_dir ./checkpoints/llava-$MODEL_VERSION-finetune_lora \
|
||||
--num_train_epochs 1 \
|
||||
--per_device_train_batch_size 16 \
|
||||
--per_device_eval_batch_size 4 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--evaluation_strategy "no" \
|
||||
--save_strategy "steps" \
|
||||
--save_steps 50000 \
|
||||
--save_total_limit 1 \
|
||||
--learning_rate 2e-5 \
|
||||
--weight_decay 0. \
|
||||
--warmup_ratio 0.03 \
|
||||
--lr_scheduler_type "cosine" \
|
||||
--logging_steps 1 \
|
||||
--tf32 True \
|
||||
--model_max_length 2048 \
|
||||
--gradient_checkpointing True \
|
||||
--lazy_preprocess True \
|
||||
--dataloader_num_workers 4 \
|
||||
--report_to wandb
|
||||
50
scripts/finetune_qlora.sh
Normal file
@@ -0,0 +1,50 @@
|
||||
#!/bin/bash
|
||||
|
||||
# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5!
|
||||
|
||||
# Uncomment and set the following variables correspondingly to run this script:
|
||||
|
||||
################## VICUNA ##################
|
||||
# PROMPT_VERSION=v1
|
||||
# MODEL_VERSION="vicuna-v1-3-7b"
|
||||
################## VICUNA ##################
|
||||
|
||||
################## LLaMA-2 ##################
|
||||
# PROMPT_VERSION="llava_llama_2"
|
||||
# MODEL_VERSION="llama-2-7b-chat"
|
||||
################## LLaMA-2 ##################
|
||||
|
||||
deepspeed llava/train/train_mem.py \
|
||||
--deepspeed ./scripts/zero2.json \
|
||||
--lora_enable True \
|
||||
--bits 4 \
|
||||
--model_name_or_path ./checkpoints/$MODEL_VERSION \
|
||||
--version $PROMPT_VERSION \
|
||||
--data_path ./playground/data/llava_instruct_80k.json \
|
||||
--image_folder /path/to/coco/train2017 \
|
||||
--vision_tower openai/clip-vit-large-patch14 \
|
||||
--pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \
|
||||
--mm_vision_select_layer -2 \
|
||||
--mm_use_im_start_end False \
|
||||
--mm_use_im_patch_token False \
|
||||
--bf16 True \
|
||||
--output_dir ./checkpoints/llava-$MODEL_VERSION-finetune_lora \
|
||||
--num_train_epochs 1 \
|
||||
--per_device_train_batch_size 16 \
|
||||
--per_device_eval_batch_size 4 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--evaluation_strategy "no" \
|
||||
--save_strategy "steps" \
|
||||
--save_steps 50000 \
|
||||
--save_total_limit 1 \
|
||||
--learning_rate 2e-5 \
|
||||
--weight_decay 0. \
|
||||
--warmup_ratio 0.03 \
|
||||
--lr_scheduler_type "cosine" \
|
||||
--logging_steps 1 \
|
||||
--tf32 True \
|
||||
--model_max_length 2048 \
|
||||
--gradient_checkpointing True \
|
||||
--lazy_preprocess True \
|
||||
--dataloader_num_workers 4 \
|
||||
--report_to wandb
|
||||
36
scripts/finetune_sqa.sh
Normal file
@@ -0,0 +1,36 @@
|
||||
#!/bin/bash
|
||||
|
||||
# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5!
|
||||
|
||||
deepspeed llava/train/train_mem.py \
|
||||
--deepspeed ./scripts/zero2.json \
|
||||
--model_name_or_path lmsys/vicuna-13b-v1.3 \
|
||||
--version $PROMPT_VERSION \
|
||||
--data_path /Data/ScienceQA/data/scienceqa/llava_train_QCM-LEA.json \
|
||||
--image_folder /Data/ScienceQA/data/scienceqa/images/train \
|
||||
--vision_tower openai/clip-vit-large-patch14 \
|
||||
--pretrain_mm_mlp_adapter ./checkpoints/huggingface/liuhaotian/llava-pretrain-vicuna-13b-v1.3/mm_projector.bin \
|
||||
--mm_vision_select_layer -2 \
|
||||
--mm_use_im_start_end False \
|
||||
--mm_use_im_patch_token False \
|
||||
--bf16 True \
|
||||
--output_dir ./checkpoints/llava-vicuna-13b-v1.3-pretrain_lcs558k_plain-ScienceQA_QCM_LEA-12e \
|
||||
--num_train_epochs 12 \
|
||||
--per_device_train_batch_size 16 \
|
||||
--per_device_eval_batch_size 4 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--evaluation_strategy "no" \
|
||||
--save_strategy "steps" \
|
||||
--save_steps 50000 \
|
||||
--save_total_limit 1 \
|
||||
--learning_rate 2e-5 \
|
||||
--weight_decay 0. \
|
||||
--warmup_ratio 0.03 \
|
||||
--lr_scheduler_type "cosine" \
|
||||
--logging_steps 1 \
|
||||
--tf32 True \
|
||||
--model_max_length 2048 \
|
||||
--gradient_checkpointing True \
|
||||
--dataloader_num_workers 4 \
|
||||
--lazy_preprocess True \
|
||||
--report_to wandb
|
||||
22
scripts/merge_lora_weights.py
Normal file
@@ -0,0 +1,22 @@
|
||||
import argparse
|
||||
from llava.model.builder import load_pretrained_model
|
||||
from llava.mm_utils import get_model_name_from_path
|
||||
|
||||
|
||||
def merge_lora(args):
|
||||
model_name = get_model_name_from_path(args.model_path)
|
||||
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, device_map='cpu')
|
||||
|
||||
model.save_pretrained(args.save_model_path)
|
||||
tokenizer.save_pretrained(args.save_model_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-path", type=str, required=True)
|
||||
parser.add_argument("--model-base", type=str, required=True)
|
||||
parser.add_argument("--save-model-path", type=str, required=True)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
merge_lora(args)
|
||||
64
scripts/more/00_pretrain.sh
Normal file
@@ -0,0 +1,64 @@
|
||||
#!/bin/bash
|
||||
|
||||
source activate more
|
||||
cd local/path
|
||||
|
||||
export PYTHONPATH=.
|
||||
export WANDB_ENTITYproject_entity
|
||||
export WANDB_PROJECT=project_name
|
||||
export WANDB_MODE=offline
|
||||
export TOKENIZER_PATH=lmsys/vicuna-7b-v1.5
|
||||
|
||||
IFS=',' read -r -a nodelist <<<$SLURM_NODELIST
|
||||
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
||||
export MASTER_PORT=`comm -23 <(seq 5000 6000 | sort) <(ss -Htan | awk '{print $4}' | cut -d':' -f2 | sort -u) | shuf | head -n 1`
|
||||
export OMP_NUM_THREADS=1
|
||||
|
||||
echo "CPUs: $SLURM_CPUS_PER_TASK"
|
||||
echo "GPUs: $SLURM_GPUS_PER_NODE"
|
||||
echo "MASTER ADDR: ${MASTER_ADDR}"
|
||||
echo "MASTER PORT: ${MASTER_PORT}"
|
||||
|
||||
epochs=1
|
||||
vicuna_path=local/path
|
||||
images_path=local/path
|
||||
data_train_path=local/path
|
||||
vision_tower=local/path
|
||||
|
||||
job_name="your/job/name"
|
||||
echo "job name: $job_name"
|
||||
|
||||
deepspeed llava/train/train_mem.py \
|
||||
--deepspeed ./scripts/zero2.json \
|
||||
--model_name_or_path $vicuna_path \
|
||||
--version plain \
|
||||
--data_path $data_train_path \
|
||||
--image_folder $images_path \
|
||||
--vision_tower $vision_tower \
|
||||
--mm_projector_type mlp2x_gelu \
|
||||
--tune_mm_mlp_adapter True \
|
||||
--mm_vision_select_layer -2 \
|
||||
--mm_use_im_start_end False \
|
||||
--mm_use_im_patch_token False \
|
||||
--bf16 True \
|
||||
--output_dir ./checkpoints/${job_name} \
|
||||
--num_train_epochs $epochs \
|
||||
--per_device_train_batch_size 16 \
|
||||
--per_device_eval_batch_size 4 \
|
||||
--gradient_accumulation_steps 2 \
|
||||
--evaluation_strategy no \
|
||||
--save_strategy steps \
|
||||
--save_steps 24000 \
|
||||
--save_total_limit 2 \
|
||||
--learning_rate 1e-3 \
|
||||
--weight_decay 0. \
|
||||
--warmup_ratio 0.03 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 1 \
|
||||
--tf32 True \
|
||||
--model_max_length 2048 \
|
||||
--gradient_checkpointing True \
|
||||
--dataloader_num_workers 8 \
|
||||
--lazy_preprocess True \
|
||||
--report_to wandb \
|
||||
--run_name $job_name \
|
||||
67
scripts/more/01_finetuning.sh
Normal file
@@ -0,0 +1,67 @@
|
||||
#!/bin/bash
|
||||
|
||||
source activate more
|
||||
cd local/path
|
||||
|
||||
export PYTHONPATH=.
|
||||
export WANDB_ENTITYproject_entity
|
||||
export WANDB_PROJECT=project_name
|
||||
export WANDB_MODE=offline
|
||||
export TOKENIZER_PATH=lmsys/vicuna-7b-v1.5
|
||||
|
||||
IFS=',' read -r -a nodelist <<<$SLURM_NODELIST
|
||||
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
||||
export MASTER_PORT=`comm -23 <(seq 5000 6000 | sort) <(ss -Htan | awk '{print $4}' | cut -d':' -f2 | sort -u) | shuf | head -n 1`
|
||||
export OMP_NUM_THREADS=1
|
||||
|
||||
echo "CPUs: $SLURM_CPUS_PER_TASK"
|
||||
echo "GPUs: $SLURM_GPUS_PER_NODE"
|
||||
echo "MASTER ADDR: ${MASTER_ADDR}"
|
||||
echo "MASTER PORT: ${MASTER_PORT}"
|
||||
|
||||
epochs=1
|
||||
vicuna_path=local/path
|
||||
images_path=local/path
|
||||
data_train_path=local/path
|
||||
vision_tower=local/path
|
||||
mm_projector_path=local/path/mm_projector.bin
|
||||
|
||||
job_name="your/job/name"
|
||||
echo "job name: $job_name"
|
||||
|
||||
deepspeed llava/train/train_mem.py \
|
||||
--deepspeed ./scripts/zero3.json \
|
||||
--model_name_or_path $vicuna_path \
|
||||
--version v1 \
|
||||
--data_path $data_train_path \
|
||||
--image_folder $images_path \
|
||||
--vision_tower $vision_tower \
|
||||
--pretrain_mm_mlp_adapter $mm_projector_path \
|
||||
--mm_projector_type mlp2x_gelu \
|
||||
--mm_vision_select_layer -2 \
|
||||
--mm_use_im_start_end False \
|
||||
--mm_use_im_patch_token False \
|
||||
--image_aspect_ratio pad \
|
||||
--group_by_modality_length True \
|
||||
--bf16 True \
|
||||
--output_dir ./checkpoints/${job_name} \
|
||||
--num_train_epochs $epochs \
|
||||
--per_device_train_batch_size 16 \
|
||||
--per_device_eval_batch_size 4 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--evaluation_strategy no \
|
||||
--save_strategy steps \
|
||||
--save_steps 24000 \
|
||||
--save_total_limit 2 \
|
||||
--learning_rate 2e-5 \
|
||||
--weight_decay 0. \
|
||||
--warmup_ratio 0.03 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 1 \
|
||||
--tf32 True \
|
||||
--model_max_length 2048 \
|
||||
--gradient_checkpointing True \
|
||||
--dataloader_num_workers 8 \
|
||||
--lazy_preprocess True \
|
||||
--report_to wandb \
|
||||
--run_name $job_name \
|
||||
68
scripts/more/02_finetuning_lora.sh
Normal file
@@ -0,0 +1,68 @@
|
||||
#!/bin/bash
|
||||
|
||||
source activate more
|
||||
cd local/path
|
||||
|
||||
export PYTHONPATH=.
|
||||
export WANDB_ENTITYproject_entity
|
||||
export WANDB_PROJECT=project_name
|
||||
export WANDB_MODE=offline
|
||||
export TOKENIZER_PATH=lmsys/vicuna-7b-v1.5
|
||||
|
||||
IFS=',' read -r -a nodelist <<<$SLURM_NODELIST
|
||||
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
||||
export MASTER_PORT=`comm -23 <(seq 5000 6000 | sort) <(ss -Htan | awk '{print $4}' | cut -d':' -f2 | sort -u) | shuf | head -n 1`
|
||||
export OMP_NUM_THREADS=1
|
||||
|
||||
echo "CPUs: $SLURM_CPUS_PER_TASK"
|
||||
echo "GPUs: $SLURM_GPUS_PER_NODE"
|
||||
echo "MASTER ADDR: ${MASTER_ADDR}"
|
||||
echo "MASTER PORT: ${MASTER_PORT}"
|
||||
|
||||
epochs=1
|
||||
vicuna_path=local/path
|
||||
images_path=local/path
|
||||
data_train_path=local/path
|
||||
vision_tower=local/path
|
||||
mm_projector_path=local/path/mm_projector.bin
|
||||
|
||||
job_name="your/job/name"
|
||||
echo "job name: $job_name"
|
||||
|
||||
deepspeed llava/train/train_mem.py \
|
||||
--lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
|
||||
--deepspeed ./scripts/zero3.json \
|
||||
--model_name_or_path $vicuna_path \
|
||||
--version v1 \
|
||||
--data_path $data_train_path \
|
||||
--image_folder $images_path \
|
||||
--vision_tower $vision_tower \
|
||||
--pretrain_mm_mlp_adapter $mm_projector_path \
|
||||
--mm_projector_type mlp2x_gelu \
|
||||
--mm_vision_select_layer -2 \
|
||||
--mm_use_im_start_end False \
|
||||
--mm_use_im_patch_token False \
|
||||
--image_aspect_ratio pad \
|
||||
--group_by_modality_length True \
|
||||
--bf16 True \
|
||||
--output_dir ./checkpoints/${job_name} \
|
||||
--num_train_epochs $epochs \
|
||||
--per_device_train_batch_size 16 \
|
||||
--per_device_eval_batch_size 4 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--evaluation_strategy no \
|
||||
--save_strategy steps \
|
||||
--save_steps 24000 \
|
||||
--save_total_limit 2 \
|
||||
--learning_rate 2e-4 \
|
||||
--weight_decay 0. \
|
||||
--warmup_ratio 0.03 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 1 \
|
||||
--tf32 True \
|
||||
--model_max_length 2048 \
|
||||
--gradient_checkpointing True \
|
||||
--dataloader_num_workers 8 \
|
||||
--lazy_preprocess True \
|
||||
--report_to wandb \
|
||||
--run_name $job_name \
|
||||