Files
LongCodeZip/README.md
2025-10-11 21:45:53 +08:00

82 lines
3.2 KiB
Markdown

<div align="center">
<img src="assets/logo.png" alt="LongCodeZip Logo" width="200"/>
[![arXiv](https://img.shields.io/badge/arXiv-2510.00446-b31b1b.svg)](https://arxiv.org/abs/2510.00446) [![Accepted: ASE 2025](https://img.shields.io/badge/Accepted-ASE%202025-brightgreen.svg)](https://conf.researchr.org/details/ase-2025/ase-2025-papers/121/LongCodeZip-Compress-Long-Context-for-Code-Language-Models) [![Python Version](https://img.shields.io/badge/Python-3.9.7-blue.svg)](https://www.python.org/downloads/release/python-397/) [![GitHub stars](https://img.shields.io/github/stars/YerbaPage/LongCodeZip?style=social)](https://github.com/YerbaPage/LongCodeZip) [![License](https://img.shields.io/badge/License-MIT-blue.svg)](LICENSE)
</div>
# LongCodeZip
This repository is the official implementation of LongCodeZip, a novel two-stage long code compression method. Our paper "LongCodeZip: Compress Long Context for Code Language Models" has been accepted to **ASE 2025**.
## Method Overview
![Overview](assets/overview.png)
LongCodeZip introduces a two-stage code compression framework specifically designed for code LLMs:
1. **Coarse-grained Compression**: Function-based chunking and ranking using conditional perplexity with respect to the query to select the most relevant functions.
2. **Fine-grained Compression**: Entropy-based block detection combined with 0/1 knapsack optimization to maximize relevance within adaptive token budgets.
The method is plug-and-play and can be integrated with existing code LLMs to achieve significant compression ratios while maintaining or improving task performance.
## Installation
You can install directly from the GitHub repository:
```bash
pip install git+https://github.com/YerbaPage/LongCodeZip.git
```
Or clone and install in development mode:
```bash
git clone https://github.com/YerbaPage/LongCodeZip.git
cd LongCodeZip
pip install -e .
```
## Quick Demo
We provide a simple demo (`demo.py`) to help you get started with LongCodeZip.
```bash
python demo.py
```
The demo showcases both compression modes: coarse-grained compression (function-level selection only) and the full two-stage compression (with fine-grained token optimization). It demonstrates how LongCodeZip compresses a code file based on a given query and achieves different compression ratios.
## Basic Example
```python
from longcodezip import LongCodeZip
# Initialize the compressor
compressor = LongCodeZip(model_name="Qwen/Qwen2.5-Coder-7B-Instruct")
# Compress code with a query
result = compressor.compress_code_file(
code=<your_code_string>,
query=<your_query>,
instruction=<your_instruction>,
rate=0.5, # Keep 50% of tokens
rank_only=False, # Set to True to only rank and select contexts without fine-grained compression
)
# Access compressed results
compressed_code = result['compressed_code']
compressed_prompt = result['compressed_prompt'] # Full prompt with instruction
compression_ratio = result['compression_ratio']
```
## References
```bibtex
@article{shi2025longcodezip,
title={LongCodeZip: Compress Long Context for Code Language Models},
author={Shi, Yuling and Qian, Yichun and Zhang, Hongyu and Shen, Beijun and Gu, Xiaodong},
journal={arXiv preprint arXiv:2510.00446},
year={2025}
}
```