Files
LongCodeZip/README.md
2025-10-08 13:07:39 +08:00

147 lines
5.2 KiB
Markdown

<div align="center">
<img src="assets/logo.png" alt="LongCodeZip Logo" width="200"/>
[![arXiv](https://img.shields.io/badge/arXiv-2510.00446-b31b1b.svg)](https://arxiv.org/abs/2510.00446) [![Accepted: ASE 2025](https://img.shields.io/badge/Accepted-ASE%202025-brightgreen.svg)](https://conf.researchr.org/details/ase-2025/ase-2025-papers/121/LongCodeZip-Compress-Long-Context-for-Code-Language-Models) [![Python Version](https://img.shields.io/badge/Python-3.9.7-blue.svg)](https://www.python.org/downloads/release/python-397/) [![GitHub stars](https://img.shields.io/github/stars/YerbaPage/LongCodeZip?style=social)](https://github.com/YerbaPage/LongCodeZip) [![License](https://img.shields.io/badge/License-MIT-blue.svg)](LICENSE)
</div>
# LongCodeZip
This repository is the official implementation of LongCodeZip, a novel two-stage long code compression method. Our paper "LongCodeZip: Compress Long Context for Code Language Models" has been accepted to **ASE 2025**.
## Method Overview
![Overview](assets/overview.png)
LongCodeZip introduces a two-stage code compression framework specifically designed for code LLMs:
1. **Coarse-grained Compression**: Function-based chunking and ranking using conditional perplexity with respect to the query to select the most relevant functions.
2. **Fine-grained Compression**: Entropy-based block detection combined with 0/1 knapsack optimization to maximize relevance within adaptive token budgets.
The method is plug-and-play and can be integrated with existing code LLMs to achieve significant compression ratios while maintaining or improving task performance.
## Repository Structure
This repository contains implementations and experiments for three code-related tasks:
```
LongCodeZip/
├── repo-qa/ # Code Retrieval Task
│ ├── main.py # Main evaluation script
│ ├── run.sh # Experiment runner
│ ├── code_compressor.py # Core compression implementation
│ ├── compute_score.py # Evaluation metrics
│ └── ...
├── long-code-completion/ # Code Completion Task
│ ├── main.py # Main evaluation script
│ ├── run.sh # Experiment runner
│ ├── code_compressor.py # Core compression implementation
│ ├── utils.py # Utility functions
│ └── ...
├── module-summarization/ # Code Summarization Task
│ ├── main.py # Main evaluation script
│ ├── run.sh # Experiment runner
│ ├── code_compressor.py # Core compression implementation
│ ├── utils.py # Utility functions
│ └── ...
└── README.md
```
## Installation
```bash
pip install -r requirements.txt
```
## Quick Demo
We provide a simple demo (`demo.py`) to help you get started with LongCodeZip:
```bash
python demo.py
```
This demo showcases the core compression functionality by compressing a simple code snippet containing multiple functions (add, quick_sort, search_with_binary_search) based on a query about quick sort. The compressor will:
1. Rank functions by relevance to the query
2. Apply fine-grained compression to maximize information density
3. Generate a compressed prompt suitable for code LLMs
**Example output:**
```python
# Original: ~150 tokens
# Compressed: ~64 tokens (target)
# Selected: quick_sort function (most relevant to query)
```
## Core API Usage
LongCodeZip provides a simple and powerful API for compressing long code contexts. Here's how to use it:
### Basic Example
```python
from longcodezip import CodeCompressor
# Initialize the compressor
compressor = CodeCompressor(model_name="Qwen/Qwen2.5-Coder-7B-Instruct")
# Compress code with a query
result = compressor.compress_code_file(
code=your_code_string,
query="What does this function do?",
instruction="Answer the question based on the code.",
rate=0.5, # Keep 50% of tokens
)
# Access compressed results
compressed_code = result['compressed_code']
compressed_prompt = result['compressed_prompt'] # Full prompt with instruction
compression_ratio = result['compression_ratio']
```
## Usage
### Quick Start
Each task directory contains a `run.sh` script for easy experimentation. Simply navigate to the desired task directory and run:
```bash
cd <task_directory>
bash run.sh
```
### Code Retrieval (RepoQA)
Navigate to the `repo-qa` directory and run experiments with different compression ratios:
```bash
cd repo-qa
bash run.sh
```
The script will evaluate LongCodeZip on the RepoQA dataset with compression ratios, running experiments in parallel on multiple GPUs.
**Key Parameters:**
- `--compression-ratio`: Controls the compression level
- `--model`: Specifies the base LLM model
- `--backend`: Backend for model inference (vllm)
### Code Completion
Navigate to the `long-code-completion` directory:
```bash
cd long-code-completion
bash run.sh
```
## References
```bibtex
@article{shi2025longcodezip,
title={LongCodeZip: Compress Long Context for Code Language Models},
author={Shi, Yuling and Qian, Yichun and Zhang, Hongyu and Shen, Beijun and Gu, Xiaodong},
journal={arXiv preprint arXiv:2510.00446},
year={2025}
}
```