mirror of
https://github.com/xlang-ai/OSWorld.git
synced 2024-04-29 12:26:03 +03:00
Clean Code; Refactor README
This commit is contained in:
0
CONTRIBUTION.md
Normal file
0
CONTRIBUTION.md
Normal file
87
README.md
87
README.md
@@ -1,10 +1,4 @@
|
||||
# OSWorld: Open-Ended Tasks in Real Computer Environments
|
||||
|
||||
<p align="center">
|
||||
<img src="desktop_env/assets/icon.jpg" alt="Logo" width="80px">
|
||||
<br>
|
||||
<b>SLOGAN</b>
|
||||
</p>
|
||||
# OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments
|
||||
|
||||
<p align="center">
|
||||
<a href="">Website</a> •
|
||||
@@ -14,74 +8,65 @@
|
||||
![Overview]()
|
||||
|
||||
## Updates
|
||||
- 2024-03-01: We released our [paper](), [environment code](), [dataset](), and [project page](). Check it out!
|
||||
- 2024-03-28: We released our [paper](), [environment and benchmark](), and [project page](https://os-world.github.io/). Check it out!
|
||||
|
||||
## Install
|
||||
1. Install VMWare and configure `vmrun` command:
|
||||
Please refer to [guidance](https://docs.google.com/document/d/1KBdeZwmZs2Vi_Wsnngb3Wf1-RiwMMpXTftwMqP2Ztak/edit#heading=h.uh0x0tkl7fuw)
|
||||
1. Install VMWare and configure `vmrun` command, and verify by:
|
||||
```bash
|
||||
vmrun -T ws list
|
||||
```
|
||||
|
||||
2. Install the environment package, download the examples and the virtual machine image.
|
||||
For x86_64 Linux or Windows, you can install the environment package and download the examples and the virtual machine image by running the following commands:
|
||||
For x86_64 CPU Linux or Windows, you can install the environment package and download the examples and the virtual machine image by running the following commands:
|
||||
Remove the `nogui` parameter if you want to see what happens in the virtual machine.
|
||||
```bash
|
||||
git clone https://github.com/xlang-ai/DesktopEnv
|
||||
cd DesktopEnv
|
||||
git clone https://github.com/xlang-ai/OSWorld
|
||||
cd OSWorld
|
||||
pip install -r requirements.txt
|
||||
gdown https://drive.google.com/drive/folders/1HX5gcf7UeyR-2UmiA15Q9U-
|
||||
Wr6E6Gio8 -O Ubuntu --folder
|
||||
gdown https://drive.google.com/drive/folders/1HX5gcf7UeyR-2UmiA15Q9U-Wr6E6Gio8 -O Ubuntu --folder
|
||||
vmrun -T ws start "Ubuntu/Ubuntu.vmx" nogui
|
||||
vmrun -T ws snapshot "Ubuntu/Ubuntu.vmx" "init_state"
|
||||
```
|
||||
|
||||
For Apple-chip macOS, you should install the specially prepared virtual machine image by running the following commands:
|
||||
```bash
|
||||
gdown https://drive.google.com/drive/folders/xxx -O Ubuntu --folder
|
||||
vmrun -T fusion start "Ubuntu/Ubuntu.vmx"
|
||||
vmrun -T fusion snapshot "Ubuntu/Ubuntu.vmx" "init_state"
|
||||
```
|
||||
|
||||
## Quick Start
|
||||
Run the following minimal example to interact with the environment:
|
||||
```python
|
||||
import json
|
||||
from desktop_env.envs.desktop_env import DesktopEnv
|
||||
|
||||
with open("evaluation_examples/examples/gimp/f723c744-e62c-4ae6-98d1-750d3cd7d79d.json", "r", encoding="utf-8") as f:
|
||||
example = json.load(f)
|
||||
|
||||
example = {
|
||||
"id": "94d95f96-9699-4208-98ba-3c3119edf9c2",
|
||||
"instruction": "I want to install Spotify on my current system. Could you please help me?",
|
||||
"config": [{"type": "execute", "parameters": {"command": ["python","-c","import pyautogui; import time; pyautogui.click(960, 540); time.sleep(0.5);"]}}], "evaluator": {"func": "check_include_exclude", "result": {"type": "vm_command_line","command": "which spotify"}, "expected": {"type": "rule","rules": {"include": ["spotify"], "exclude": ["not found"]}}}
|
||||
}
|
||||
env = DesktopEnv(
|
||||
path_to_vm=r"path_to_vm",
|
||||
action_space="computer_13",
|
||||
path_to_vm="Ubuntu/Ubuntu.vmx",
|
||||
action_space="pyautogui",
|
||||
task_config=example
|
||||
)
|
||||
observation = env.reset()
|
||||
|
||||
observation, reward, done, info = env.step({"action_type": "CLICK", "parameters": {"button": "right", "num_clicks": 1}})
|
||||
obs = env.reset()
|
||||
obs, reward, done, info = env.step("pyautogui.rightClick()")
|
||||
```
|
||||
|
||||
## Annotation Tool Usage
|
||||
We provide an annotation tool to help you annotate the examples.
|
||||
## Run Benchmark
|
||||
### Run the Baseline Agent
|
||||
If you want to run the baseline agent we use in our paper, you can run the following command as an example:
|
||||
```bash
|
||||
|
||||
## Agent Usage
|
||||
We provide a simple agent to interact with the environment. You can use it as a starting point to build your own agent.
|
||||
```
|
||||
|
||||
## Road map of infra (Proposed)
|
||||
### Run Evaluation of Your Agent
|
||||
Please first read through the [agent interface](https://github.com/xlang-ai/OSWorld/mm_agents/README.md) and the [environment interface](https://github.com/xlang-ai/OSWorld/desktop_env/README.md).
|
||||
And implement the agent interface correctly and import you customized one in the `run.py` file.
|
||||
Then, you can run the following command to evaluate your agent:
|
||||
|
||||
- [x] Explore VMWare, and whether it can be connected and control through mouse package
|
||||
- [x] Explore Windows and MacOS, whether it can be installed
|
||||
- MacOS is closed source and cannot be legally installed
|
||||
- Windows is available legally and can be installed
|
||||
- [x] Build gym-like python interface for controlling the VM
|
||||
- [x] Recording of actions (mouse movement, click, keyboard) for humans to annotate, and we can replay it and compress it
|
||||
- [x] Build a simple task, e.g. open a browser, open a website, click on a button, and close the browser
|
||||
- [x] Set up a pipeline and build agents implementation (zero-shot) for the task
|
||||
- [x] Start to design on which tasks inside the DesktopENv to focus on, start to wrap up the environment to be public
|
||||
- [x] Start to annotate the examples for ~~training~~ and testing
|
||||
- [x] Error handling during file passing and file opening, etc.
|
||||
- [x] Add accessibility tree from the OS into the observation space
|
||||
- [x] Add pre-process and post-process action support for benchmarking setup and evaluation
|
||||
- [ ] Multiprocess support, this can enable the reinforcement learning to be more efficient
|
||||
- [ ] Experiment logging and visualization system
|
||||
- [ ] Add more tasks, maybe scale to 300 for v1.0.0, and create a dynamic leaderboard
|
||||
|
||||
## Road map of benchmark, tools and resources (Proposed)
|
||||
- [ ] Improve the annotation tool base on DuckTrack, make it more robust which align on accessibility tree
|
||||
- [ ] Annotate the steps of doing the task
|
||||
- [ ] Build a website for the project
|
||||
- [ ] Crawl all resources we explored from the internet, and make it easy to access
|
||||
- [ ] Set up ways for community to contribute new examples
|
||||
|
||||
## Citation
|
||||
If you find this environment useful, please consider citing our work:
|
||||
|
||||
0
desktop_env/README.md
Normal file
0
desktop_env/README.md
Normal file
65
mm_agents/README.md
Normal file
65
mm_agents/README.md
Normal file
@@ -0,0 +1,65 @@
|
||||
# Agent
|
||||
## Prompt-based Agents
|
||||
|
||||
### Supported Models
|
||||
We currently support the following models as the foundation models for the agents:
|
||||
- `GPT-3.5` (gpt-3.5-turbo-16k, ...)
|
||||
- `GPT-4` (gpt-4-0125-preview, gpt-4-1106-preview, ...)
|
||||
- `GPT-4V` (gpt-4-vision-preview, ...)
|
||||
- `Gemini-Pro`
|
||||
- `Gemini-Pro-Vision`
|
||||
- `Claude-3, 2` (claude-3-haiku-2024030, claude-3-sonnet-2024022, ...)
|
||||
- ...
|
||||
|
||||
And those from open-source community:
|
||||
- `Mixtral 8x7B`
|
||||
- `QWEN`, `QWEN-VL`
|
||||
- `CogAgent`
|
||||
- ...
|
||||
|
||||
And we will integrate and support more foundation models to support digital agent in the future, stay tuned.
|
||||
|
||||
### How to use
|
||||
|
||||
```python
|
||||
from mm_agents.agent import PromptAgent
|
||||
|
||||
agent = PromptAgent(
|
||||
model="gpt-4-0125-preview",
|
||||
observation_type="screenshot",
|
||||
)
|
||||
agent.reset()
|
||||
# say we have a instruction and observation
|
||||
instruction = "Please help me to find the nearest restaurant."
|
||||
obs = {"screenshot": "path/to/observation.jpg"}
|
||||
response, actions = agent.predict(
|
||||
instruction,
|
||||
obs
|
||||
)
|
||||
```
|
||||
|
||||
### Observation Space and Action Space
|
||||
We currently support the following observation spaces:
|
||||
- `a11y_tree`: the a11y tree of the current screen
|
||||
- `screenshot`: a screenshot of the current screen
|
||||
- `screenshot_a11y_tree`: a screenshot of the current screen with a11y tree
|
||||
- `som`: the set-of-mark trick on the current screen, with a table metadata
|
||||
|
||||
And the following action spaces:
|
||||
- `pyautogui`: valid python code with `pyauotgui` code valid
|
||||
- `computer_13`: a set of enumerated actions designed by us
|
||||
|
||||
To use feed an observation into the agent, you have to keep the obs variable as a dict with the corresponding information:
|
||||
```python
|
||||
obs = {
|
||||
"screenshot": "path/to/observation.jpg",
|
||||
"a11y_tree": "" # [a11y_tree data]
|
||||
}
|
||||
response, actions = agent.predict(
|
||||
instruction,
|
||||
obs
|
||||
)
|
||||
```
|
||||
|
||||
## Efficient Agents, Q* Agents, and more
|
||||
Stay tuned for more updates.
|
||||
@@ -180,6 +180,7 @@ def trim_accessibility_tree(linearized_accessibility_tree, max_tokens):
|
||||
linearized_accessibility_tree += "[...]\n"
|
||||
return linearized_accessibility_tree
|
||||
|
||||
|
||||
class PromptAgent:
|
||||
def __init__(
|
||||
self,
|
||||
@@ -572,22 +573,10 @@ class PromptAgent:
|
||||
|
||||
logger.debug("CLAUDE MESSAGE: %s", repr(claude_messages))
|
||||
|
||||
# headers = {
|
||||
# "x-api-key": os.environ["ANTHROPIC_API_KEY"],
|
||||
# "anthropic-version": "2023-06-01",
|
||||
# "content-type": "application/json"
|
||||
# }
|
||||
|
||||
# headers = {
|
||||
# "Accept": "application / json",
|
||||
# "Authorization": "Bearer " + os.environ["ANTHROPIC_API_KEY"],
|
||||
# "User-Agent": "Apifox/1.0.0 (https://apifox.com)",
|
||||
# "Content-Type": "application/json"
|
||||
# }
|
||||
|
||||
headers = {
|
||||
"Authorization": os.environ["ANTHROPIC_API_KEY"],
|
||||
"Content-Type": "application/json"
|
||||
"x-api-key": os.environ["ANTHROPIC_API_KEY"],
|
||||
"anthropic-version": "2023-06-01",
|
||||
"content-type": "application/json"
|
||||
}
|
||||
|
||||
payload = {
|
||||
@@ -598,28 +587,21 @@ class PromptAgent:
|
||||
"top_p": top_p
|
||||
}
|
||||
|
||||
max_attempts = 20
|
||||
attempt = 0
|
||||
while attempt < max_attempts:
|
||||
# response = requests.post("https://api.aigcbest.top/v1/chat/completions", headers=headers, json=payload)
|
||||
response = requests.post("https://token.cluade-chat.top/v1/chat/completions", headers=headers,
|
||||
json=payload)
|
||||
if response.status_code == 200:
|
||||
result = response.json()['choices'][0]['message']['content']
|
||||
break
|
||||
else:
|
||||
logger.error(f"Failed to call LLM: {response.text}")
|
||||
time.sleep(10)
|
||||
attempt += 1
|
||||
response = requests.post(
|
||||
"https://api.anthropic.com/v1/messages",
|
||||
headers=headers,
|
||||
json=payload
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
|
||||
logger.error("Failed to call LLM: " + response.text)
|
||||
time.sleep(5)
|
||||
return ""
|
||||
else:
|
||||
print("Exceeded maximum attempts to call LLM.")
|
||||
result = ""
|
||||
|
||||
return result
|
||||
|
||||
return response.json()['content'][0]['text']
|
||||
|
||||
elif self.model.startswith("mistral"):
|
||||
print("Call mistral")
|
||||
messages = payload["messages"]
|
||||
max_tokens = payload["max_tokens"]
|
||||
top_p = payload["top_p"]
|
||||
@@ -652,7 +634,9 @@ class PromptAgent:
|
||||
response = client.chat.completions.create(
|
||||
messages=mistral_messages,
|
||||
model=self.model,
|
||||
max_tokens=max_tokens
|
||||
max_tokens=max_tokens,
|
||||
top_p=top_p,
|
||||
temperature=temperature
|
||||
)
|
||||
break
|
||||
except:
|
||||
@@ -670,7 +654,6 @@ class PromptAgent:
|
||||
|
||||
elif self.model.startswith("THUDM"):
|
||||
# THUDM/cogagent-chat-hf
|
||||
print("Call CogAgent")
|
||||
messages = payload["messages"]
|
||||
max_tokens = payload["max_tokens"]
|
||||
top_p = payload["top_p"]
|
||||
@@ -703,7 +686,9 @@ class PromptAgent:
|
||||
payload = {
|
||||
"model": self.model,
|
||||
"max_tokens": max_tokens,
|
||||
"messages": cog_messages
|
||||
"messages": cog_messages,
|
||||
"temperature": temperature,
|
||||
"top_p": top_p
|
||||
}
|
||||
|
||||
base_url = "http://127.0.0.1:8000"
|
||||
@@ -717,7 +702,6 @@ class PromptAgent:
|
||||
print("Failed to call LLM: ", response.status_code)
|
||||
return ""
|
||||
|
||||
|
||||
elif self.model.startswith("gemini"):
|
||||
def encoded_img_to_pil_img(data_str):
|
||||
base64_str = data_str.replace("data:image/png;base64,", "")
|
||||
@@ -802,7 +786,8 @@ class PromptAgent:
|
||||
messages = payload["messages"]
|
||||
max_tokens = payload["max_tokens"]
|
||||
top_p = payload["top_p"]
|
||||
temperature = payload["temperature"]
|
||||
if payload["temperature"]:
|
||||
logger.warning("Qwen model does not support temperature parameter, it will be ignored.")
|
||||
|
||||
qwen_messages = []
|
||||
|
||||
@@ -821,7 +806,9 @@ class PromptAgent:
|
||||
|
||||
response = dashscope.MultiModalConversation.call(
|
||||
model='qwen-vl-plus',
|
||||
messages=messages, # todo: add the hyperparameters
|
||||
messages=messages,
|
||||
max_length=max_tokens,
|
||||
top_p=top_p,
|
||||
)
|
||||
# The response status_code is HTTPStatus.OK indicate success,
|
||||
# otherwise indicate request is failed, you can get error code
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 1.5 MiB |
Reference in New Issue
Block a user