mirror of
https://github.com/microsoft/OmniParser.git
synced 2025-02-18 03:18:33 +03:00
Rename folder + remove coloring on omniparseragent printouts
This commit is contained in:
@@ -1,17 +0,0 @@
|
||||
"""
|
||||
Define some colorful stuffs for better visualization in the chat.
|
||||
"""
|
||||
|
||||
# Define the RGB colors for each letter
|
||||
colors = {
|
||||
'S': 'rgb(106, 158, 210)',
|
||||
'h': 'rgb(111, 163, 82)',
|
||||
'o': 'rgb(209, 100, 94)',
|
||||
'w': 'rgb(238, 171, 106)',
|
||||
'U': 'rgb(0, 0, 0)',
|
||||
'I': 'rgb(0, 0, 0)',
|
||||
}
|
||||
|
||||
colorful_text_vlm = "**OmniParser Agent**"
|
||||
|
||||
colorful_text_user = "**User**"
|
||||
@@ -1,374 +0,0 @@
|
||||
"""
|
||||
Entrypoint for Gradio, see https://gradio.app/
|
||||
python app.py --windows_host_url xxxx:8006/ --omniparser_host_url localhost:8000
|
||||
"""
|
||||
|
||||
import os
|
||||
from datetime import datetime
|
||||
from enum import StrEnum
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
from typing import cast
|
||||
import argparse
|
||||
import gradio as gr
|
||||
from anthropic import APIResponse
|
||||
from anthropic.types import TextBlock
|
||||
from anthropic.types.beta import BetaMessage, BetaTextBlock, BetaToolUseBlock
|
||||
from anthropic.types.tool_use_block import ToolUseBlock
|
||||
from computer_use_demo.loop import (
|
||||
APIProvider,
|
||||
sampling_loop_sync,
|
||||
)
|
||||
from computer_use_demo.tools import ToolResult
|
||||
|
||||
CONFIG_DIR = Path("~/.anthropic").expanduser()
|
||||
API_KEY_FILE = CONFIG_DIR / "api_key"
|
||||
|
||||
INTRO_TEXT = '''
|
||||
🚀🤖✨ It's Play Time!
|
||||
|
||||
Welcome to the OmniParser+X Demo! X = [GPT-4o/4o-mini, Claude, Phi, Llama]. Let OmniParser turn your general purpose vision-langauge model to an AI agent.
|
||||
|
||||
Type a message and press submit to start OmniParser+X. Press the trash icon in the chat to clear the message history.
|
||||
'''
|
||||
|
||||
def parse_arguments():
|
||||
parser = argparse.ArgumentParser(description="Gradio App")
|
||||
parser.add_argument("--windows_host_url", type=str, default='localhost:8006')
|
||||
parser.add_argument("--omniparser_host_url", type=str, default="localhost:8000")
|
||||
return parser.parse_args()
|
||||
args = parse_arguments()
|
||||
windows_host_url = args.windows_host_url
|
||||
omniparser_host_url = args.omniparser_host_url
|
||||
print(f"Windows host URL: {windows_host_url}")
|
||||
print(f"OmniParser host URL: {omniparser_host_url}")
|
||||
|
||||
|
||||
class Sender(StrEnum):
|
||||
USER = "user"
|
||||
BOT = "assistant"
|
||||
TOOL = "tool"
|
||||
|
||||
|
||||
def setup_state(state):
|
||||
if "messages" not in state:
|
||||
state["messages"] = []
|
||||
if "model" not in state:
|
||||
state["model"] = "omniparser + gpt-4o"
|
||||
if "provider" not in state:
|
||||
state["provider"] = "openai"
|
||||
if "openai_api_key" not in state: # Fetch API keys from environment variables
|
||||
state["openai_api_key"] = os.getenv("OPENAI_API_KEY", "")
|
||||
if "anthropic_api_key" not in state:
|
||||
state["anthropic_api_key"] = os.getenv("ANTHROPIC_API_KEY", "")
|
||||
if "api_key" not in state:
|
||||
state["api_key"] = ""
|
||||
if "auth_validated" not in state:
|
||||
state["auth_validated"] = False
|
||||
if "responses" not in state:
|
||||
state["responses"] = {}
|
||||
if "tools" not in state:
|
||||
state["tools"] = {}
|
||||
if "only_n_most_recent_images" not in state:
|
||||
state["only_n_most_recent_images"] = 2
|
||||
if 'chatbot_messages' not in state:
|
||||
state['chatbot_messages'] = []
|
||||
|
||||
async def main(state):
|
||||
"""Render loop for Gradio"""
|
||||
setup_state(state)
|
||||
return "Setup completed"
|
||||
|
||||
def validate_auth(provider: APIProvider, api_key: str | None):
|
||||
if provider == APIProvider.ANTHROPIC:
|
||||
if not api_key:
|
||||
return "Enter your Anthropic API key to continue."
|
||||
if provider == APIProvider.BEDROCK:
|
||||
import boto3
|
||||
|
||||
if not boto3.Session().get_credentials():
|
||||
return "You must have AWS credentials set up to use the Bedrock API."
|
||||
if provider == APIProvider.VERTEX:
|
||||
import google.auth
|
||||
from google.auth.exceptions import DefaultCredentialsError
|
||||
|
||||
if not os.environ.get("CLOUD_ML_REGION"):
|
||||
return "Set the CLOUD_ML_REGION environment variable to use the Vertex API."
|
||||
try:
|
||||
google.auth.default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
|
||||
except DefaultCredentialsError:
|
||||
return "Your google cloud credentials are not set up correctly."
|
||||
|
||||
def load_from_storage(filename: str) -> str | None:
|
||||
"""Load data from a file in the storage directory."""
|
||||
try:
|
||||
file_path = CONFIG_DIR / filename
|
||||
if file_path.exists():
|
||||
data = file_path.read_text().strip()
|
||||
if data:
|
||||
return data
|
||||
except Exception as e:
|
||||
print(f"Debug: Error loading {filename}: {e}")
|
||||
return None
|
||||
|
||||
def save_to_storage(filename: str, data: str) -> None:
|
||||
"""Save data to a file in the storage directory."""
|
||||
try:
|
||||
CONFIG_DIR.mkdir(parents=True, exist_ok=True)
|
||||
file_path = CONFIG_DIR / filename
|
||||
file_path.write_text(data)
|
||||
# Ensure only user can read/write the file
|
||||
file_path.chmod(0o600)
|
||||
except Exception as e:
|
||||
print(f"Debug: Error saving {filename}: {e}")
|
||||
|
||||
def _api_response_callback(response: APIResponse[BetaMessage], response_state: dict):
|
||||
response_id = datetime.now().isoformat()
|
||||
response_state[response_id] = response
|
||||
|
||||
def _tool_output_callback(tool_output: ToolResult, tool_id: str, tool_state: dict):
|
||||
tool_state[tool_id] = tool_output
|
||||
|
||||
def chatbot_output_callback(message, chatbot_state, hide_images=False, sender="bot"):
|
||||
def _render_message(message: str | BetaTextBlock | BetaToolUseBlock | ToolResult, hide_images=False):
|
||||
|
||||
print(f"_render_message: {str(message)[:100]}")
|
||||
|
||||
if isinstance(message, str):
|
||||
return message
|
||||
|
||||
is_tool_result = not isinstance(message, str) and (
|
||||
isinstance(message, ToolResult)
|
||||
or message.__class__.__name__ == "ToolResult"
|
||||
or message.__class__.__name__ == "CLIResult"
|
||||
)
|
||||
if not message or (
|
||||
is_tool_result
|
||||
and hide_images
|
||||
and not hasattr(message, "error")
|
||||
and not hasattr(message, "output")
|
||||
): # return None if hide_images is True
|
||||
return
|
||||
# render tool result
|
||||
if is_tool_result:
|
||||
message = cast(ToolResult, message)
|
||||
if message.output:
|
||||
return message.output
|
||||
if message.error:
|
||||
return f"Error: {message.error}"
|
||||
if message.base64_image and not hide_images:
|
||||
# somehow can't display via gr.Image
|
||||
# image_data = base64.b64decode(message.base64_image)
|
||||
# return gr.Image(value=Image.open(io.BytesIO(image_data)))
|
||||
return f'<img src="data:image/png;base64,{message.base64_image}">'
|
||||
|
||||
elif isinstance(message, BetaTextBlock) or isinstance(message, TextBlock):
|
||||
return f"Analysis: {message.text}"
|
||||
elif isinstance(message, BetaToolUseBlock) or isinstance(message, ToolUseBlock):
|
||||
# return f"Tool Use: {message.name}\nInput: {message.input}"
|
||||
return f"Next I will perform the following action: {message.input}"
|
||||
else:
|
||||
return message
|
||||
|
||||
def _truncate_string(s, max_length=500):
|
||||
"""Truncate long strings for concise printing."""
|
||||
if isinstance(s, str) and len(s) > max_length:
|
||||
return s[:max_length] + "..."
|
||||
return s
|
||||
# processing Anthropic messages
|
||||
message = _render_message(message, hide_images)
|
||||
|
||||
if sender == "bot":
|
||||
chatbot_state.append((None, message))
|
||||
else:
|
||||
chatbot_state.append((message, None))
|
||||
|
||||
# Create a concise version of the chatbot state for printing
|
||||
concise_state = [(_truncate_string(user_msg), _truncate_string(bot_msg))
|
||||
for user_msg, bot_msg in chatbot_state]
|
||||
# print(f"chatbot_output_callback chatbot_state: {concise_state} (truncated)")
|
||||
|
||||
def process_input(user_input, state):
|
||||
# Append the user message to state["messages"]
|
||||
state["messages"].append(
|
||||
{
|
||||
"role": Sender.USER,
|
||||
"content": [TextBlock(type="text", text=user_input)],
|
||||
}
|
||||
)
|
||||
|
||||
# Append the user's message to chatbot_messages with None for the assistant's reply
|
||||
state['chatbot_messages'].append((user_input, None))
|
||||
yield state['chatbot_messages'] # Yield to update the chatbot UI with the user's message
|
||||
|
||||
print("state")
|
||||
print(state)
|
||||
|
||||
# Run sampling_loop_sync with the chatbot_output_callback
|
||||
for loop_msg in sampling_loop_sync(
|
||||
model=state["model"],
|
||||
provider=state["provider"],
|
||||
messages=state["messages"],
|
||||
output_callback=partial(chatbot_output_callback, chatbot_state=state['chatbot_messages'], hide_images=False),
|
||||
tool_output_callback=partial(_tool_output_callback, tool_state=state["tools"]),
|
||||
api_response_callback=partial(_api_response_callback, response_state=state["responses"]),
|
||||
api_key=state["api_key"],
|
||||
only_n_most_recent_images=state["only_n_most_recent_images"],
|
||||
omniparser_url=omniparser_host_url
|
||||
):
|
||||
if loop_msg is None:
|
||||
yield state['chatbot_messages']
|
||||
print("End of task. Close the loop.")
|
||||
break
|
||||
|
||||
yield state['chatbot_messages'] # Yield the updated chatbot_messages to update the chatbot UI
|
||||
|
||||
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
||||
gr.HTML("""
|
||||
<style>
|
||||
.no-padding {
|
||||
padding: 0 !important;
|
||||
}
|
||||
.no-padding > div {
|
||||
padding: 0 !important;
|
||||
}
|
||||
</style>
|
||||
""")
|
||||
state = gr.State({}) # Use Gradio's state management
|
||||
|
||||
setup_state(state.value) # Initialize the state
|
||||
|
||||
# Retrieve screen details
|
||||
gr.Markdown("# OmniParser + ✖️ Demo")
|
||||
|
||||
if not os.getenv("HIDE_WARNING", False):
|
||||
gr.Markdown(INTRO_TEXT)
|
||||
|
||||
with gr.Accordion("Settings", open=True):
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
model = gr.Dropdown(
|
||||
label="Model",
|
||||
choices=["omniparser + gpt-4o", "omniparser + phi35v", "claude-3-5-sonnet-20241022"],
|
||||
value="omniparser + gpt-4o", # Set to one of the choices
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Column():
|
||||
only_n_images = gr.Slider(
|
||||
label="N most recent screenshots",
|
||||
minimum=0,
|
||||
maximum=10,
|
||||
step=1,
|
||||
value=2,
|
||||
interactive=True
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column(1):
|
||||
provider = gr.Dropdown(
|
||||
label="API Provider",
|
||||
choices=[option.value for option in APIProvider],
|
||||
value="openai",
|
||||
interactive=False,
|
||||
)
|
||||
with gr.Column(2):
|
||||
api_key = gr.Textbox(
|
||||
label="API Key",
|
||||
type="password",
|
||||
value=state.value.get("api_key", ""),
|
||||
placeholder="Paste your API key here",
|
||||
interactive=True,
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=8):
|
||||
chat_input = gr.Textbox(show_label=False, placeholder="Type a message to send to Omniparser + X ...", container=False)
|
||||
with gr.Column(scale=1, min_width=50):
|
||||
submit_button = gr.Button(value="Send", variant="primary")
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1):
|
||||
chatbot = gr.Chatbot(label="Chatbot History", autoscroll=True, height=580)
|
||||
with gr.Column(scale=3):
|
||||
if not windows_host_url:
|
||||
iframe = gr.HTML(
|
||||
f'<iframe src="http://localhost:8006/vnc.html?view_only=1&autoconnect=1&resize=scale" width="100%" height="580" allow="fullscreen"></iframe>',
|
||||
container=False,
|
||||
elem_classes="no-padding"
|
||||
)
|
||||
else:
|
||||
# machine_fqdn = socket.getfqdn()
|
||||
# print('machine_fqdn:', machine_fqdn)
|
||||
iframe = gr.HTML(
|
||||
f'<iframe src="http://{windows_host_url}/vnc.html?view_only=1&autoconnect=1&resize=scale" width="100%" height="580" allow="fullscreen"></iframe>',
|
||||
container=False,
|
||||
elem_classes="no-padding"
|
||||
)
|
||||
|
||||
def update_model(model_selection, state):
|
||||
state["model"] = model_selection
|
||||
print(f"Model updated to: {state['model']}")
|
||||
|
||||
if model_selection == "claude-3-5-sonnet-20241022":
|
||||
provider_choices = [option.value for option in APIProvider if option.value != "openai"]
|
||||
elif model_selection == "omniparser + gpt-4o" or model_selection == "omniparser + phi35v":
|
||||
provider_choices = ["openai"]
|
||||
else:
|
||||
provider_choices = [option.value for option in APIProvider]
|
||||
default_provider_value = provider_choices[0]
|
||||
provider_interactive = len(provider_choices) > 1
|
||||
api_key_placeholder = f"{default_provider_value.title()} API Key"
|
||||
|
||||
# Update state
|
||||
state["provider"] = default_provider_value
|
||||
state["api_key"] = state.get(f"{default_provider_value}_api_key", "")
|
||||
|
||||
# Calls to update other components UI
|
||||
provider_update = gr.update(
|
||||
choices=provider_choices,
|
||||
value=default_provider_value,
|
||||
interactive=provider_interactive
|
||||
)
|
||||
api_key_update = gr.update(
|
||||
placeholder=api_key_placeholder,
|
||||
value=state["api_key"]
|
||||
)
|
||||
|
||||
return provider_update, api_key_update
|
||||
|
||||
def update_only_n_images(only_n_images_value, state):
|
||||
state["only_n_most_recent_images"] = only_n_images_value
|
||||
|
||||
def update_provider(provider_value, state):
|
||||
# Update state
|
||||
state["provider"] = provider_value
|
||||
state["api_key"] = state.get(f"{provider_value}_api_key", "")
|
||||
|
||||
# Calls to update other components UI
|
||||
api_key_update = gr.update(
|
||||
placeholder=f"{provider_value.title()} API Key",
|
||||
value=state["api_key"]
|
||||
)
|
||||
return api_key_update
|
||||
|
||||
def update_api_key(api_key_value, state):
|
||||
state["api_key"] = api_key_value
|
||||
state[f'{state["provider"]}_api_key'] = api_key_value
|
||||
|
||||
def clear_chat(state):
|
||||
# Reset message-related state
|
||||
state["messages"] = []
|
||||
state["responses"] = {}
|
||||
state["tools"] = {}
|
||||
state['chatbot_messages'] = []
|
||||
return state['chatbot_messages']
|
||||
|
||||
model.change(fn=update_model, inputs=[model, state], outputs=[provider, api_key])
|
||||
only_n_images.change(fn=update_only_n_images, inputs=[only_n_images, state], outputs=None)
|
||||
provider.change(fn=update_provider, inputs=[provider, state], outputs=api_key)
|
||||
api_key.change(fn=update_api_key, inputs=[api_key, state], outputs=None)
|
||||
chatbot.clear(fn=clear_chat, inputs=[state], outputs=[chatbot])
|
||||
|
||||
submit_button.click(process_input, [chat_input, state], chatbot)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch(server_name="0.0.0.0", server_port=7888)
|
||||
@@ -1,182 +0,0 @@
|
||||
"""
|
||||
Agentic sampling loop that calls the Anthropic API and local implenmentation of anthropic-defined computer use tools.
|
||||
"""
|
||||
import asyncio
|
||||
import platform
|
||||
from collections.abc import Callable
|
||||
from datetime import datetime
|
||||
from enum import StrEnum
|
||||
from typing import Any, cast
|
||||
|
||||
from anthropic import Anthropic, AnthropicBedrock, AnthropicVertex, APIResponse
|
||||
from anthropic.types import (
|
||||
ToolResultBlockParam,
|
||||
)
|
||||
from anthropic.types.beta import (
|
||||
BetaContentBlock,
|
||||
BetaContentBlockParam,
|
||||
BetaImageBlockParam,
|
||||
BetaMessage,
|
||||
BetaMessageParam,
|
||||
BetaTextBlockParam,
|
||||
BetaToolResultBlockParam,
|
||||
)
|
||||
from anthropic.types import TextBlock
|
||||
from anthropic.types.beta import BetaMessage, BetaTextBlock, BetaToolUseBlock
|
||||
|
||||
from computer_use_demo.tools import ComputerTool, ToolCollection, ToolResult
|
||||
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
import gradio as gr
|
||||
from typing import Dict
|
||||
|
||||
BETA_FLAG = "computer-use-2024-10-22"
|
||||
|
||||
class APIProvider(StrEnum):
|
||||
ANTHROPIC = "anthropic"
|
||||
BEDROCK = "bedrock"
|
||||
VERTEX = "vertex"
|
||||
|
||||
SYSTEM_PROMPT = f"""<SYSTEM_CAPABILITY>
|
||||
* You are utilizing a Windows system with internet access.
|
||||
* The current date is {datetime.today().strftime('%A, %B %d, %Y')}.
|
||||
</SYSTEM_CAPABILITY>
|
||||
"""
|
||||
|
||||
class AnthropicActor:
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
provider: APIProvider,
|
||||
api_key: str,
|
||||
api_response_callback: Callable[[APIResponse[BetaMessage]], None],
|
||||
max_tokens: int = 4096,
|
||||
only_n_most_recent_images: int | None = None,
|
||||
print_usage: bool = True,
|
||||
):
|
||||
self.model = model
|
||||
self.provider = provider
|
||||
self.api_key = api_key
|
||||
self.api_response_callback = api_response_callback
|
||||
self.max_tokens = max_tokens
|
||||
self.only_n_most_recent_images = only_n_most_recent_images
|
||||
|
||||
self.tool_collection = ToolCollection(ComputerTool())
|
||||
|
||||
self.system = SYSTEM_PROMPT
|
||||
|
||||
self.total_token_usage = 0
|
||||
self.total_cost = 0
|
||||
self.print_usage = print_usage
|
||||
|
||||
# Instantiate the appropriate API client based on the provider
|
||||
if provider == APIProvider.ANTHROPIC:
|
||||
self.client = Anthropic(api_key=api_key)
|
||||
elif provider == APIProvider.VERTEX:
|
||||
self.client = AnthropicVertex()
|
||||
elif provider == APIProvider.BEDROCK:
|
||||
self.client = AnthropicBedrock()
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
*,
|
||||
messages: list[BetaMessageParam]
|
||||
):
|
||||
"""
|
||||
Generate a response given history messages.
|
||||
"""
|
||||
if self.only_n_most_recent_images:
|
||||
_maybe_filter_to_n_most_recent_images(messages, self.only_n_most_recent_images)
|
||||
|
||||
# Call the API synchronously
|
||||
raw_response = self.client.beta.messages.with_raw_response.create(
|
||||
max_tokens=self.max_tokens,
|
||||
messages=messages,
|
||||
model=self.model,
|
||||
system=self.system,
|
||||
tools=self.tool_collection.to_params(),
|
||||
betas=["computer-use-2024-10-22"],
|
||||
)
|
||||
|
||||
self.api_response_callback(cast(APIResponse[BetaMessage], raw_response))
|
||||
|
||||
response = raw_response.parse()
|
||||
print(f"AnthropicActor response: {response}")
|
||||
|
||||
self.total_token_usage += response.usage.input_tokens + response.usage.output_tokens
|
||||
self.total_cost += (response.usage.input_tokens * 3 / 1000000 + response.usage.output_tokens * 15 / 1000000)
|
||||
|
||||
if self.print_usage:
|
||||
print(f"Claude total token usage so far: {self.total_token_usage}, total cost so far: $USD{self.total_cost}")
|
||||
|
||||
return response
|
||||
|
||||
|
||||
def _maybe_filter_to_n_most_recent_images(
|
||||
messages: list[BetaMessageParam],
|
||||
images_to_keep: int,
|
||||
min_removal_threshold: int = 10,
|
||||
):
|
||||
"""
|
||||
With the assumption that images are screenshots that are of diminishing value as
|
||||
the conversation progresses, remove all but the final `images_to_keep` tool_result
|
||||
images in place, with a chunk of min_removal_threshold to reduce the amount we
|
||||
break the implicit prompt cache.
|
||||
"""
|
||||
if images_to_keep is None:
|
||||
return messages
|
||||
|
||||
tool_result_blocks = cast(
|
||||
list[ToolResultBlockParam],
|
||||
[
|
||||
item
|
||||
for message in messages
|
||||
for item in (
|
||||
message["content"] if isinstance(message["content"], list) else []
|
||||
)
|
||||
if isinstance(item, dict) and item.get("type") == "tool_result"
|
||||
],
|
||||
)
|
||||
|
||||
total_images = sum(
|
||||
1
|
||||
for tool_result in tool_result_blocks
|
||||
for content in tool_result.get("content", [])
|
||||
if isinstance(content, dict) and content.get("type") == "image"
|
||||
)
|
||||
|
||||
images_to_remove = total_images - images_to_keep
|
||||
# for better cache behavior, we want to remove in chunks
|
||||
images_to_remove -= images_to_remove % min_removal_threshold
|
||||
|
||||
for tool_result in tool_result_blocks:
|
||||
if isinstance(tool_result.get("content"), list):
|
||||
new_content = []
|
||||
for content in tool_result.get("content", []):
|
||||
if isinstance(content, dict) and content.get("type") == "image":
|
||||
if images_to_remove > 0:
|
||||
images_to_remove -= 1
|
||||
continue
|
||||
new_content.append(content)
|
||||
tool_result["content"] = new_content
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
||||
# client = Anthropic(api_key="")
|
||||
# response = client.beta.messages.with_raw_response.create(
|
||||
# max_tokens=4096,
|
||||
# model="claude-3-5-sonnet-20241022",
|
||||
# system=SYSTEM_PROMPT,
|
||||
# # tools=ToolCollection(
|
||||
# # ComputerTool(),
|
||||
# # ).to_params(),
|
||||
# betas=["computer-use-2024-10-22"],
|
||||
# messages=[
|
||||
# {"role": "user", "content": "click on (199, 199)."}
|
||||
# ],
|
||||
# )
|
||||
|
||||
# print(f"AnthropicActor response: {response.parse().usage.input_tokens+response.parse().usage.output_tokens}")
|
||||
@@ -1,107 +0,0 @@
|
||||
|
||||
import os
|
||||
import logging
|
||||
import base64
|
||||
import requests
|
||||
|
||||
def is_image_path(text):
|
||||
# Checking if the input text ends with typical image file extensions
|
||||
image_extensions = (".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".tif")
|
||||
if text.endswith(image_extensions):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def encode_image(image_path):
|
||||
"""Encode image file to base64."""
|
||||
with open(image_path, "rb") as image_file:
|
||||
return base64.b64encode(image_file.read()).decode("utf-8")
|
||||
|
||||
def run_oai_interleaved(messages: list, system: str, llm: str, api_key: str, max_tokens=256, temperature=0):
|
||||
|
||||
api_key = api_key or os.environ.get("OPENAI_API_KEY")
|
||||
if not api_key:
|
||||
raise ValueError("OPENAI_API_KEY is not set")
|
||||
|
||||
headers = {"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {api_key}"}
|
||||
|
||||
final_messages = [{"role": "system", "content": system}]
|
||||
|
||||
# image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||||
if type(messages) == list:
|
||||
for item in messages:
|
||||
contents = []
|
||||
if isinstance(item, dict):
|
||||
for cnt in item["content"]:
|
||||
if isinstance(cnt, str):
|
||||
if is_image_path(cnt):
|
||||
base64_image = encode_image(cnt)
|
||||
content = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
||||
else:
|
||||
content = {"type": "text", "text": cnt}
|
||||
else:
|
||||
# in this case it is a text block from anthropic
|
||||
content = {"type": "text", "text": str(cnt)}
|
||||
|
||||
contents.append(content)
|
||||
|
||||
message = {"role": 'user', "content": contents}
|
||||
else: # str
|
||||
contents.append({"type": "text", "text": item})
|
||||
message = {"role": "user", "content": contents}
|
||||
|
||||
final_messages.append(message)
|
||||
|
||||
|
||||
elif isinstance(messages, str):
|
||||
final_messages = [{"role": "user", "content": messages}]
|
||||
# import pdb; pdb.set_trace()
|
||||
|
||||
print("[oai] sending messages:", {"role": "user", "content": messages})
|
||||
|
||||
payload = {
|
||||
"model": llm,
|
||||
"messages": final_messages,
|
||||
"max_tokens": max_tokens,
|
||||
"temperature": temperature,
|
||||
# "stop": stop,
|
||||
}
|
||||
|
||||
# from IPython.core.debugger import Pdb; Pdb().set_trace()
|
||||
|
||||
response = requests.post(
|
||||
"https://api.openai.com/v1/chat/completions", headers=headers, json=payload
|
||||
)
|
||||
|
||||
try:
|
||||
text = response.json()['choices'][0]['message']['content']
|
||||
token_usage = int(response.json()['usage']['total_tokens'])
|
||||
return text, token_usage
|
||||
|
||||
# return error message if the response is not successful
|
||||
except Exception as e:
|
||||
print(f"Error in interleaved openAI: {e}. This may due to your invalid OPENAI_API_KEY. Please check the response: {response.json()} ")
|
||||
return response.json()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
if not api_key:
|
||||
raise ValueError("OPENAI_API_KEY is not set")
|
||||
|
||||
text, token_usage = run_oai_interleaved(
|
||||
messages= [{"content": [
|
||||
"What is in the screenshot?",
|
||||
"./tmp/outputs/screenshot_0b04acbb783d4706bc93873d17ba8c05.png"],
|
||||
"role": "user"
|
||||
}],
|
||||
llm="gpt-4o-mini",
|
||||
system="You are a helpful assistant",
|
||||
api_key=api_key,
|
||||
max_tokens=256,
|
||||
temperature=0)
|
||||
|
||||
print(text, token_usage)
|
||||
# There is an introduction describing the Calyx... 36986
|
||||
@@ -1,44 +0,0 @@
|
||||
import requests
|
||||
import base64
|
||||
from pathlib import Path
|
||||
from computer_use_demo.tools.screen_capture import get_screenshot
|
||||
from computer_use_demo.agent.llm_utils.oai import encode_image
|
||||
|
||||
OUTPUT_DIR = "./tmp/outputs"
|
||||
|
||||
class OmniParserClient:
|
||||
def __init__(self,
|
||||
url: str) -> None:
|
||||
self.url = url
|
||||
|
||||
def __call__(self,):
|
||||
screenshot, screenshot_path = get_screenshot()
|
||||
screenshot_path = str(screenshot_path)
|
||||
image_base64 = encode_image(screenshot_path)
|
||||
response = requests.post(self.url, json={"base64_image": image_base64})
|
||||
response_json = response.json()
|
||||
print('omniparser latency:', response_json['latency'])
|
||||
|
||||
som_image_data = base64.b64decode(response_json['som_image_base64'])
|
||||
screenshot_path_uuid = Path(screenshot_path).stem.replace("screenshot_", "")
|
||||
som_screenshot_path = f"{OUTPUT_DIR}/screenshot_som_{screenshot_path_uuid}.png"
|
||||
with open(som_screenshot_path, "wb") as f:
|
||||
f.write(som_image_data)
|
||||
|
||||
response_json['width'] = screenshot.size[0]
|
||||
response_json['height'] = screenshot.size[1]
|
||||
response_json['original_screenshot_base64'] = image_base64
|
||||
response_json['screenshot_uuid'] = screenshot_path_uuid
|
||||
response_json = self.reformat_messages(response_json)
|
||||
return response_json
|
||||
|
||||
def reformat_messages(self, response_json: dict):
|
||||
screen_info = ""
|
||||
for idx, element in enumerate(response_json["parsed_content_list"]):
|
||||
element['idx'] = idx
|
||||
if element['type'] == 'text':
|
||||
screen_info += f'ID: {idx}, Text: {element["content"]}\n'
|
||||
elif element['type'] == 'icon':
|
||||
screen_info += f'ID: {idx}, Icon: {element["content"]}\n'
|
||||
response_json['screen_info'] = screen_info
|
||||
return response_json
|
||||
@@ -1,302 +0,0 @@
|
||||
import json
|
||||
from collections.abc import Callable
|
||||
from typing import cast, Callable
|
||||
import uuid
|
||||
from PIL import Image, ImageDraw
|
||||
import base64
|
||||
from io import BytesIO
|
||||
|
||||
from anthropic import APIResponse
|
||||
from anthropic.types import ToolResultBlockParam
|
||||
from anthropic.types.beta import BetaMessage, BetaTextBlock, BetaToolUseBlock, BetaMessageParam, BetaUsage
|
||||
|
||||
from computer_use_demo.agent.llm_utils.oai import run_oai_interleaved
|
||||
from computer_use_demo.colorful_text import colorful_text_vlm
|
||||
import time
|
||||
import re
|
||||
|
||||
OUTPUT_DIR = "./tmp/outputs"
|
||||
|
||||
def extract_data(input_string, data_type):
|
||||
# Regular expression to extract content starting from '```python' until the end if there are no closing backticks
|
||||
pattern = f"```{data_type}" + r"(.*?)(```|$)"
|
||||
# Extract content
|
||||
# re.DOTALL allows '.' to match newlines as well
|
||||
matches = re.findall(pattern, input_string, re.DOTALL)
|
||||
# Return the first match if exists, trimming whitespace and ignoring potential closing backticks
|
||||
return matches[0][0].strip() if matches else input_string
|
||||
|
||||
class VLMAgent:
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
provider: str,
|
||||
api_key: str,
|
||||
output_callback: Callable,
|
||||
api_response_callback: Callable,
|
||||
max_tokens: int = 4096,
|
||||
only_n_most_recent_images: int | None = None,
|
||||
print_usage: bool = True,
|
||||
):
|
||||
if model == "omniparser + gpt-4o":
|
||||
self.model = "gpt-4o-2024-11-20"
|
||||
else:
|
||||
raise ValueError(f"Model {model} not supported")
|
||||
|
||||
self.provider = provider
|
||||
self.api_key = api_key
|
||||
self.api_response_callback = api_response_callback
|
||||
self.max_tokens = max_tokens
|
||||
self.only_n_most_recent_images = only_n_most_recent_images
|
||||
self.output_callback = output_callback
|
||||
|
||||
self.print_usage = print_usage
|
||||
self.total_token_usage = 0
|
||||
self.total_cost = 0
|
||||
|
||||
self.system = ''
|
||||
|
||||
def __call__(self, messages: list, parsed_screen: list[str, list, dict]):
|
||||
# Show results of Omniparser
|
||||
image_base64 = parsed_screen['original_screenshot_base64']
|
||||
latency_omniparser = parsed_screen['latency']
|
||||
self.output_callback(f'Screenshot for {colorful_text_vlm}:\n<img src="data:image/png;base64,{image_base64}">',
|
||||
sender="bot")
|
||||
self.output_callback(f'Set of Marks Screenshot for {colorful_text_vlm}:\n<img src="data:image/png;base64,{parsed_screen["som_image_base64"]}">', sender="bot")
|
||||
screen_info = str(parsed_screen['screen_info'])
|
||||
# self.output_callback(f'Screen Info for {colorful_text_vlm}:\n{screen_info}', sender="bot")
|
||||
self.output_callback(
|
||||
f'<details>'
|
||||
f' <summary>Screen Info for {colorful_text_vlm}</summary>'
|
||||
f' <pre>{screen_info}</pre>'
|
||||
f'</details>',
|
||||
sender="bot"
|
||||
)
|
||||
|
||||
|
||||
screenshot_uuid = parsed_screen['screenshot_uuid']
|
||||
screen_width, screen_height = parsed_screen['width'], parsed_screen['height']
|
||||
|
||||
# example parsed_screen: {"som_image_base64": dino_labled_img, "parsed_content_list": parsed_content_list, "screen_info"}
|
||||
boxids_and_labels = parsed_screen["screen_info"]
|
||||
system = self._get_system_prompt(boxids_and_labels)
|
||||
|
||||
# drop looping actions msg, byte image etc
|
||||
planner_messages = messages
|
||||
# import pdb; pdb.set_trace()
|
||||
planner_messages = _keep_latest_images(planner_messages)
|
||||
# if self.only_n_most_recent_images:
|
||||
# _maybe_filter_to_n_most_recent_images(planner_messages, self.only_n_most_recent_images)
|
||||
# print(f"filtered_messages: {planner_messages}\n\n", "full messages:", messages)
|
||||
|
||||
if isinstance(planner_messages[-1], dict):
|
||||
if not isinstance(planner_messages[-1]["content"], list):
|
||||
planner_messages[-1]["content"] = [planner_messages[-1]["content"]]
|
||||
planner_messages[-1]["content"].append(f"{OUTPUT_DIR}/screenshot_{screenshot_uuid}.png")
|
||||
planner_messages[-1]["content"].append(f"{OUTPUT_DIR}/screenshot_som_{screenshot_uuid}.png")
|
||||
|
||||
# print(f"Sending messages to VLMPlanner : {planner_messages}")
|
||||
start = time.time()
|
||||
if "gpt" in self.model:
|
||||
vlm_response, token_usage = run_oai_interleaved(
|
||||
messages=planner_messages,
|
||||
system=system,
|
||||
llm=self.model,
|
||||
api_key=self.api_key,
|
||||
max_tokens=self.max_tokens,
|
||||
temperature=0,
|
||||
)
|
||||
print(f"oai token usage: {token_usage}")
|
||||
self.total_token_usage += token_usage
|
||||
self.total_cost += (token_usage * 0.15 / 1000000) # https://openai.com/api/pricing/
|
||||
elif "phi" in self.model:
|
||||
pass # TODO
|
||||
else:
|
||||
raise ValueError(f"Model {self.model} not supported")
|
||||
latency_vlm = time.time() - start
|
||||
self.output_callback(f"VLMPlanner latency: {latency_vlm}, Omniparser latency: {latency_omniparser}", sender="bot")
|
||||
|
||||
print(f"VLMPlanner response: {vlm_response}")
|
||||
|
||||
if self.print_usage:
|
||||
print(f"VLMPlanner total token usage so far: {self.total_token_usage}. Total cost so far: $USD{self.total_cost:.5f}")
|
||||
|
||||
vlm_response_json = extract_data(vlm_response, "json")
|
||||
vlm_response_json = json.loads(vlm_response_json)
|
||||
|
||||
# map "box_id" to "idx" in parsed_screen, and output the xy coordinate of bbox
|
||||
try:
|
||||
bbox = parsed_screen["parsed_content_list"][int(vlm_response_json["Box ID"])]["bbox"]
|
||||
vlm_response_json["box_centroid_coordinate"] = [int((bbox[0] + bbox[2]) / 2 * screen_width), int((bbox[1] + bbox[3]) / 2 * screen_height)]
|
||||
# draw a circle on the screenshot image to indicate the action
|
||||
self.draw_action(vlm_response_json, image_base64)
|
||||
except:
|
||||
print("No Box ID in the response.")
|
||||
|
||||
# Convert the VLM output to a string for printing in chat
|
||||
vlm_plan_str = ""
|
||||
for key, value in vlm_response_json.items():
|
||||
if key == "Reasoning":
|
||||
vlm_plan_str += f'{value}'
|
||||
else:
|
||||
vlm_plan_str += f'\n{key}: {value}'
|
||||
# self.output_callback(f"{colorful_text_vlm}:\n{vlm_plan_str}", sender="bot")
|
||||
|
||||
# construct the response so that anthropicExcutor can execute the tool
|
||||
response_content = [BetaTextBlock(text=vlm_plan_str, type='text')]
|
||||
if 'box_centroid_coordinate' in vlm_response_json:
|
||||
move_cursor_block = BetaToolUseBlock(id=f'toolu_{uuid.uuid4()}',
|
||||
input={'action': 'mouse_move', 'coordinate': vlm_response_json["box_centroid_coordinate"]},
|
||||
name='computer', type='tool_use')
|
||||
response_content.append(move_cursor_block)
|
||||
if vlm_response_json["Next Action"] == "type":
|
||||
click_block = BetaToolUseBlock(id=f'toolu_{uuid.uuid4()}', input={'action': 'left_click'}, name='computer', type='tool_use')
|
||||
sim_content_block = BetaToolUseBlock(id=f'toolu_{uuid.uuid4()}',
|
||||
input={'action': vlm_response_json["Next Action"], 'text': vlm_response_json["value"]},
|
||||
name='computer', type='tool_use')
|
||||
response_content.extend([click_block, sim_content_block])
|
||||
elif vlm_response_json["Next Action"] == "None":
|
||||
print("Task paused/completed.")
|
||||
else:
|
||||
sim_content_block = BetaToolUseBlock(id=f'toolu_{uuid.uuid4()}',
|
||||
input={'action': vlm_response_json["Next Action"]},
|
||||
name='computer', type='tool_use')
|
||||
response_content.append(sim_content_block)
|
||||
response_message = BetaMessage(id=f'toolu_{uuid.uuid4()}', content=response_content, model='', role='assistant', type='message', stop_reason='tool_use', usage=BetaUsage(input_tokens=0, output_tokens=0))
|
||||
return response_message, vlm_response_json
|
||||
|
||||
def _api_response_callback(self, response: APIResponse):
|
||||
self.api_response_callback(response)
|
||||
|
||||
def _get_system_prompt(self, screen_info: str = ""):
|
||||
return f"""
|
||||
You are using a Windows device.
|
||||
You are able to use a mouse and keyboard to interact with the computer based on the given task and screenshot.
|
||||
You can only interact with the desktop GUI (no terminal or application menu access).
|
||||
|
||||
You may be given some history plan and actions, this is the response from the previous loop.
|
||||
You should carefully consider your plan base on the task, screenshot, and history actions.
|
||||
|
||||
Here is the list of all detected bounding boxes by IDs on the screen and their description:{screen_info}
|
||||
|
||||
Your available "Next Action" only include:
|
||||
- type: type a string of text.
|
||||
- left_click: Describe the ui element to be clicked.
|
||||
- double_click: Describe the ui element to be double clicked.
|
||||
- right_click: Describe the ui element to be right clicked.
|
||||
- escape: Press an ESCAPE key.
|
||||
- hover: Describe the ui element to be hovered.
|
||||
- scroll_up: Scroll the screen up.
|
||||
- scroll_down: Scroll the screen down.
|
||||
- press: Describe the ui element to be pressed.
|
||||
|
||||
Based on the visual information from the screenshot image and the detected bounding boxes, please determine the next action, the Box ID you should operate on, and the value (if the action is 'type') in order to complete the task.
|
||||
|
||||
Output format:
|
||||
```json
|
||||
{{
|
||||
"Reasoning": str, # describe what is in the current screen, taking into account the history, then describe your step-by-step thoughts on how to achieve the task, choose one action from available actions at a time.
|
||||
"Next Action": "action_type, action description" | "None" # one action at a time, describe it in short and precisely.
|
||||
'Box ID': n,
|
||||
'value': "xxx" # if the action is type, you should provide the text to type.
|
||||
}}
|
||||
```
|
||||
|
||||
One Example:
|
||||
```json
|
||||
{{
|
||||
"Reasoning": "The current screen shows google result of amazon, in previous action I have searched amazon on google. Then I need to click on the first search results to go to amazon.com.",
|
||||
"Next Action": "left_click",
|
||||
'Box ID': m,
|
||||
}}
|
||||
```
|
||||
|
||||
Another Example:
|
||||
```json
|
||||
{{
|
||||
"Reasoning": "The current screen shows the front page of amazon. There is no previous action. Therefore I need to type "Apple watch" in the search bar.",
|
||||
"Next Action": "type",
|
||||
'Box ID': n,
|
||||
'value': "Apple watch"
|
||||
}}
|
||||
```
|
||||
|
||||
IMPORTANT NOTES:
|
||||
1. You should only give a single action at a time.
|
||||
2. You should give an analysis to the current screen, and reflect on what has been done by looking at the history, then describe your step-by-step thoughts on how to achieve the task.
|
||||
3. Attach the next action prediction in the "Next Action".
|
||||
4. You should not include other actions, such as keyboard shortcuts.
|
||||
5. When the task is completed, you should say "Next Action": "None" in the json field.
|
||||
"""
|
||||
def draw_action(self, vlm_response_json, image_base64):
|
||||
# draw a circle using the coordinate in parsed_screen['som_image_base64']
|
||||
image_data = base64.b64decode(image_base64)
|
||||
image = Image.open(BytesIO(image_data))
|
||||
|
||||
draw = ImageDraw.Draw(image)
|
||||
x, y = vlm_response_json["box_centroid_coordinate"]
|
||||
radius = 30
|
||||
draw.ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
|
||||
buffered = BytesIO()
|
||||
image.save(buffered, format="PNG")
|
||||
image_with_circle_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||
self.output_callback(f'Action performed on the red circle with centroid ({x}, {y}), for {colorful_text_vlm}:\n<img src="data:image/png;base64,{image_with_circle_base64}">', sender="bot")
|
||||
|
||||
|
||||
def _keep_latest_images(messages):
|
||||
for i in range(len(messages)-1):
|
||||
if isinstance(messages[i]["content"], list):
|
||||
for cnt in messages[i]["content"]:
|
||||
if isinstance(cnt, str):
|
||||
if cnt.endswith((".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".tif")):
|
||||
messages[i]["content"].remove(cnt)
|
||||
return messages
|
||||
|
||||
|
||||
def _maybe_filter_to_n_most_recent_images(
|
||||
messages: list[BetaMessageParam],
|
||||
images_to_keep: int,
|
||||
min_removal_threshold: int = 10,
|
||||
):
|
||||
"""
|
||||
With the assumption that images are screenshots that are of diminishing value as
|
||||
the conversation progresses, remove all but the final `images_to_keep` tool_result
|
||||
images in place, with a chunk of min_removal_threshold to reduce the amount we
|
||||
break the implicit prompt cache.
|
||||
"""
|
||||
if images_to_keep is None:
|
||||
return messages
|
||||
|
||||
tool_result_blocks = cast(
|
||||
list[ToolResultBlockParam],
|
||||
[
|
||||
item
|
||||
for message in messages
|
||||
for item in (
|
||||
message["content"] if isinstance(message["content"], list) else []
|
||||
)
|
||||
if isinstance(item, dict) and item.get("type") == "tool_result"
|
||||
],
|
||||
)
|
||||
|
||||
total_images = sum(
|
||||
1
|
||||
for tool_result in tool_result_blocks
|
||||
for content in tool_result.get("content", [])
|
||||
if isinstance(content, dict) and content.get("type") == "image"
|
||||
)
|
||||
|
||||
images_to_remove = total_images - images_to_keep
|
||||
# for better cache behavior, we want to remove in chunks
|
||||
images_to_remove -= images_to_remove % min_removal_threshold
|
||||
|
||||
for tool_result in tool_result_blocks:
|
||||
if isinstance(tool_result.get("content"), list):
|
||||
new_content = []
|
||||
for content in tool_result.get("content", []):
|
||||
if isinstance(content, dict) and content.get("type") == "image":
|
||||
if images_to_remove > 0:
|
||||
images_to_remove -= 1
|
||||
continue
|
||||
new_content.append(content)
|
||||
tool_result["content"] = new_content
|
||||
@@ -1,17 +0,0 @@
|
||||
"""
|
||||
Define some colorful stuffs for better visualization in the chat.
|
||||
"""
|
||||
|
||||
# Define the RGB colors for each letter
|
||||
colors = {
|
||||
'S': 'rgb(106, 158, 210)',
|
||||
'h': 'rgb(111, 163, 82)',
|
||||
'o': 'rgb(209, 100, 94)',
|
||||
'w': 'rgb(238, 171, 106)',
|
||||
'U': 'rgb(0, 0, 0)',
|
||||
'I': 'rgb(0, 0, 0)',
|
||||
}
|
||||
|
||||
colorful_text_vlm = "**OmniParser Agent**"
|
||||
|
||||
colorful_text_user = "**User**"
|
||||
@@ -1,132 +0,0 @@
|
||||
import asyncio
|
||||
from typing import Any, Dict, cast
|
||||
from collections.abc import Callable
|
||||
from anthropic.types.beta import (
|
||||
BetaContentBlock,
|
||||
BetaContentBlockParam,
|
||||
BetaImageBlockParam,
|
||||
BetaMessage,
|
||||
BetaMessageParam,
|
||||
BetaTextBlockParam,
|
||||
BetaToolResultBlockParam,
|
||||
)
|
||||
from anthropic.types import TextBlock
|
||||
from anthropic.types.beta import BetaMessage, BetaTextBlock, BetaToolUseBlock
|
||||
from ..tools import ComputerTool, ToolCollection, ToolResult
|
||||
|
||||
|
||||
class AnthropicExecutor:
|
||||
def __init__(
|
||||
self,
|
||||
output_callback: Callable[[BetaContentBlockParam], None],
|
||||
tool_output_callback: Callable[[Any, str], None],
|
||||
):
|
||||
self.tool_collection = ToolCollection(
|
||||
ComputerTool()
|
||||
)
|
||||
self.output_callback = output_callback
|
||||
self.tool_output_callback = tool_output_callback
|
||||
|
||||
def __call__(self, response: BetaMessage, messages: list[BetaMessageParam]):
|
||||
new_message = {
|
||||
"role": "assistant",
|
||||
"content": cast(list[BetaContentBlockParam], response.content),
|
||||
}
|
||||
if new_message not in messages:
|
||||
messages.append(new_message)
|
||||
else:
|
||||
print("new_message already in messages, there are duplicates.")
|
||||
|
||||
tool_result_content: list[BetaToolResultBlockParam] = []
|
||||
for content_block in cast(list[BetaContentBlock], response.content):
|
||||
self.output_callback(content_block, sender="bot")
|
||||
# Execute the tool
|
||||
if content_block.type == "tool_use":
|
||||
# Run the asynchronous tool execution in a synchronous context
|
||||
result = asyncio.run(self.tool_collection.run(
|
||||
name=content_block.name,
|
||||
tool_input=cast(dict[str, Any], content_block.input),
|
||||
))
|
||||
|
||||
self.output_callback(result, sender="bot")
|
||||
|
||||
tool_result_content.append(
|
||||
_make_api_tool_result(result, content_block.id)
|
||||
)
|
||||
self.tool_output_callback(result, content_block.id)
|
||||
|
||||
# Craft messages based on the content_block
|
||||
# Note: to display the messages in the gradio, you should organize the messages in the following way (user message, bot message)
|
||||
|
||||
display_messages = _message_display_callback(messages)
|
||||
# display_messages = []
|
||||
|
||||
# Send the messages to the gradio
|
||||
for user_msg, bot_msg in display_messages:
|
||||
# yield [user_msg, bot_msg], tool_result_content
|
||||
yield [None, None], tool_result_content
|
||||
|
||||
if not tool_result_content:
|
||||
return messages
|
||||
|
||||
return tool_result_content
|
||||
|
||||
def _message_display_callback(messages):
|
||||
display_messages = []
|
||||
for msg in messages:
|
||||
try:
|
||||
if isinstance(msg["content"][0], TextBlock):
|
||||
display_messages.append((msg["content"][0].text, None)) # User message
|
||||
elif isinstance(msg["content"][0], BetaTextBlock):
|
||||
display_messages.append((None, msg["content"][0].text)) # Bot message
|
||||
elif isinstance(msg["content"][0], BetaToolUseBlock):
|
||||
display_messages.append((None, f"Tool Use: {msg['content'][0].name}\nInput: {msg['content'][0].input}")) # Bot message
|
||||
elif isinstance(msg["content"][0], Dict) and msg["content"][0]["content"][-1]["type"] == "image":
|
||||
display_messages.append((None, f'<img src="data:image/png;base64,{msg["content"][0]["content"][-1]["source"]["data"]}">')) # Bot message
|
||||
else:
|
||||
print(msg["content"][0])
|
||||
except Exception as e:
|
||||
print("error", e)
|
||||
pass
|
||||
return display_messages
|
||||
|
||||
def _make_api_tool_result(
|
||||
result: ToolResult, tool_use_id: str
|
||||
) -> BetaToolResultBlockParam:
|
||||
"""Convert an agent ToolResult to an API ToolResultBlockParam."""
|
||||
tool_result_content: list[BetaTextBlockParam | BetaImageBlockParam] | str = []
|
||||
is_error = False
|
||||
if result.error:
|
||||
is_error = True
|
||||
tool_result_content = _maybe_prepend_system_tool_result(result, result.error)
|
||||
else:
|
||||
if result.output:
|
||||
tool_result_content.append(
|
||||
{
|
||||
"type": "text",
|
||||
"text": _maybe_prepend_system_tool_result(result, result.output),
|
||||
}
|
||||
)
|
||||
if result.base64_image:
|
||||
tool_result_content.append(
|
||||
{
|
||||
"type": "image",
|
||||
"source": {
|
||||
"type": "base64",
|
||||
"media_type": "image/png",
|
||||
"data": result.base64_image,
|
||||
},
|
||||
}
|
||||
)
|
||||
return {
|
||||
"type": "tool_result",
|
||||
"content": tool_result_content,
|
||||
"tool_use_id": tool_use_id,
|
||||
"is_error": is_error,
|
||||
}
|
||||
|
||||
|
||||
def _maybe_prepend_system_tool_result(result: ToolResult, result_text: str):
|
||||
if result.system:
|
||||
result_text = f"<system>{result.system}</system>\n{result_text}"
|
||||
return result_text
|
||||
@@ -1,129 +0,0 @@
|
||||
"""
|
||||
Agentic sampling loop that calls the Anthropic API and local implenmentation of anthropic-defined computer use tools.
|
||||
"""
|
||||
from collections.abc import Callable
|
||||
from enum import StrEnum
|
||||
|
||||
from anthropic import APIResponse
|
||||
from anthropic.types import (
|
||||
TextBlock,
|
||||
)
|
||||
from anthropic.types.beta import (
|
||||
BetaContentBlock,
|
||||
BetaMessage,
|
||||
BetaMessageParam
|
||||
)
|
||||
from computer_use_demo.tools import ToolResult
|
||||
|
||||
from computer_use_demo.agent.llm_utils.omniparserclient import OmniParserClient
|
||||
from computer_use_demo.agent.anthropic_agent import AnthropicActor
|
||||
from computer_use_demo.agent.vlm_agent import VLMAgent
|
||||
from computer_use_demo.executor.anthropic_executor import AnthropicExecutor
|
||||
|
||||
BETA_FLAG = "computer-use-2024-10-22"
|
||||
|
||||
class APIProvider(StrEnum):
|
||||
ANTHROPIC = "anthropic"
|
||||
BEDROCK = "bedrock"
|
||||
VERTEX = "vertex"
|
||||
OPENAI = "openai"
|
||||
|
||||
|
||||
PROVIDER_TO_DEFAULT_MODEL_NAME: dict[APIProvider, str] = {
|
||||
APIProvider.ANTHROPIC: "claude-3-5-sonnet-20241022",
|
||||
APIProvider.BEDROCK: "anthropic.claude-3-5-sonnet-20241022-v2:0",
|
||||
APIProvider.VERTEX: "claude-3-5-sonnet-v2@20241022",
|
||||
APIProvider.OPENAI: "gpt-4o",
|
||||
}
|
||||
|
||||
def sampling_loop_sync(
|
||||
*,
|
||||
model: str,
|
||||
provider: APIProvider | None,
|
||||
messages: list[BetaMessageParam],
|
||||
output_callback: Callable[[BetaContentBlock], None],
|
||||
tool_output_callback: Callable[[ToolResult, str], None],
|
||||
api_response_callback: Callable[[APIResponse[BetaMessage]], None],
|
||||
api_key: str,
|
||||
only_n_most_recent_images: int | None = 2,
|
||||
max_tokens: int = 4096,
|
||||
omniparser_url: str
|
||||
):
|
||||
"""
|
||||
Synchronous agentic sampling loop for the assistant/tool interaction of computer use.
|
||||
"""
|
||||
print('in sampling_loop_sync, model:', model)
|
||||
omniparser_client = OmniParserClient(url=f"http://{omniparser_url}/parse/")
|
||||
if model == "claude-3-5-sonnet-20241022":
|
||||
# Register Actor and Executor
|
||||
actor = AnthropicActor(
|
||||
model=model,
|
||||
provider=provider,
|
||||
api_key=api_key,
|
||||
api_response_callback=api_response_callback,
|
||||
max_tokens=max_tokens,
|
||||
only_n_most_recent_images=only_n_most_recent_images
|
||||
)
|
||||
|
||||
# from IPython.core.debugger import Pdb; Pdb().set_trace()
|
||||
executor = AnthropicExecutor(
|
||||
output_callback=output_callback,
|
||||
tool_output_callback=tool_output_callback
|
||||
)
|
||||
|
||||
elif model == "omniparser + gpt-4o" or model == "omniparser + phi35v":
|
||||
actor = VLMAgent(
|
||||
model=model,
|
||||
provider=provider,
|
||||
api_key=api_key,
|
||||
api_response_callback=api_response_callback,
|
||||
output_callback=output_callback,
|
||||
)
|
||||
|
||||
executor = AnthropicExecutor(
|
||||
output_callback=output_callback,
|
||||
tool_output_callback=tool_output_callback,
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(f"Model {model} not supported")
|
||||
print(f"Model Inited: {model}, Provider: {provider}")
|
||||
|
||||
tool_result_content = None
|
||||
|
||||
print(f"Start the message loop. User messages: {messages}")
|
||||
|
||||
if model == "claude-3-5-sonnet-20241022": # Anthropic loop
|
||||
while True:
|
||||
parsed_screen = omniparser_client() # parsed_screen: {"som_image_base64": dino_labled_img, "parsed_content_list": parsed_content_list, "screen_info"}
|
||||
import pdb; pdb.set_trace()
|
||||
screen_info_block = TextBlock(text='Below is the structured accessibility information of the current UI screen, which includes text and icons you can operate on, take these information into account when you are making the prediction for the next action. Note you will still need to take screenshot to get the image: \n' + parsed_screen['screen_info'], type='text')
|
||||
# # messages[-1]['content'].append(screen_info_block)
|
||||
screen_info_dict = {"role": "user", "content": [screen_info_block]}
|
||||
messages.append(screen_info_dict)
|
||||
tools_use_needed = actor(messages=messages)
|
||||
|
||||
for message, tool_result_content in executor(tools_use_needed, messages):
|
||||
yield message
|
||||
|
||||
if not tool_result_content:
|
||||
return messages
|
||||
|
||||
messages.append({"content": tool_result_content, "role": "user"})
|
||||
|
||||
elif model == "omniparser + gpt-4o" or model == "omniparser + phi35v":
|
||||
while True:
|
||||
parsed_screen = omniparser_client()
|
||||
tools_use_needed, vlm_response_json = actor(messages=messages, parsed_screen=parsed_screen)
|
||||
|
||||
for message, tool_result_content in executor(tools_use_needed, messages):
|
||||
yield message
|
||||
|
||||
if not tool_result_content:
|
||||
return messages
|
||||
|
||||
# import pdb; pdb.set_trace()
|
||||
# messages.append({"role": "user",
|
||||
# "content": ["History plan:\n" + str(vlm_response_json['Reasoning'])]})
|
||||
|
||||
# messages.append({"content": tool_result_content, "role": "user"})
|
||||
@@ -1,12 +0,0 @@
|
||||
from .base import CLIResult, ToolResult
|
||||
from .collection import ToolCollection
|
||||
from .computer import ComputerTool
|
||||
from .screen_capture import get_screenshot
|
||||
|
||||
__ALL__ = [
|
||||
CLIResult,
|
||||
ComputerTool,
|
||||
ToolCollection,
|
||||
ToolResult,
|
||||
get_screenshot,
|
||||
]
|
||||
@@ -1,69 +0,0 @@
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from dataclasses import dataclass, fields, replace
|
||||
from typing import Any
|
||||
|
||||
from anthropic.types.beta import BetaToolUnionParam
|
||||
|
||||
|
||||
class BaseAnthropicTool(metaclass=ABCMeta):
|
||||
"""Abstract base class for Anthropic-defined tools."""
|
||||
|
||||
@abstractmethod
|
||||
def __call__(self, **kwargs) -> Any:
|
||||
"""Executes the tool with the given arguments."""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def to_params(
|
||||
self,
|
||||
) -> BetaToolUnionParam:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@dataclass(kw_only=True, frozen=True)
|
||||
class ToolResult:
|
||||
"""Represents the result of a tool execution."""
|
||||
|
||||
output: str | None = None
|
||||
error: str | None = None
|
||||
base64_image: str | None = None
|
||||
system: str | None = None
|
||||
|
||||
def __bool__(self):
|
||||
return any(getattr(self, field.name) for field in fields(self))
|
||||
|
||||
def __add__(self, other: "ToolResult"):
|
||||
def combine_fields(
|
||||
field: str | None, other_field: str | None, concatenate: bool = True
|
||||
):
|
||||
if field and other_field:
|
||||
if concatenate:
|
||||
return field + other_field
|
||||
raise ValueError("Cannot combine tool results")
|
||||
return field or other_field
|
||||
|
||||
return ToolResult(
|
||||
output=combine_fields(self.output, other.output),
|
||||
error=combine_fields(self.error, other.error),
|
||||
base64_image=combine_fields(self.base64_image, other.base64_image, False),
|
||||
system=combine_fields(self.system, other.system),
|
||||
)
|
||||
|
||||
def replace(self, **kwargs):
|
||||
"""Returns a new ToolResult with the given fields replaced."""
|
||||
return replace(self, **kwargs)
|
||||
|
||||
|
||||
class CLIResult(ToolResult):
|
||||
"""A ToolResult that can be rendered as a CLI output."""
|
||||
|
||||
|
||||
class ToolFailure(ToolResult):
|
||||
"""A ToolResult that represents a failure."""
|
||||
|
||||
|
||||
class ToolError(Exception):
|
||||
"""Raised when a tool encounters an error."""
|
||||
|
||||
def __init__(self, message):
|
||||
self.message = message
|
||||
@@ -1,34 +0,0 @@
|
||||
"""Collection classes for managing multiple tools."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
from anthropic.types.beta import BetaToolUnionParam
|
||||
|
||||
from .base import (
|
||||
BaseAnthropicTool,
|
||||
ToolError,
|
||||
ToolFailure,
|
||||
ToolResult,
|
||||
)
|
||||
|
||||
|
||||
class ToolCollection:
|
||||
"""A collection of anthropic-defined tools."""
|
||||
|
||||
def __init__(self, *tools: BaseAnthropicTool):
|
||||
self.tools = tools
|
||||
self.tool_map = {tool.to_params()["name"]: tool for tool in tools}
|
||||
|
||||
def to_params(
|
||||
self,
|
||||
) -> list[BetaToolUnionParam]:
|
||||
return [tool.to_params() for tool in self.tools]
|
||||
|
||||
async def run(self, *, name: str, tool_input: dict[str, Any]) -> ToolResult:
|
||||
tool = self.tool_map.get(name)
|
||||
if not tool:
|
||||
return ToolFailure(error=f"Tool {name} is invalid")
|
||||
try:
|
||||
return await tool(**tool_input)
|
||||
except ToolError as e:
|
||||
return ToolFailure(error=e.message)
|
||||
@@ -1,324 +0,0 @@
|
||||
import base64
|
||||
import time
|
||||
from enum import StrEnum
|
||||
from typing import Literal, TypedDict
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from anthropic.types.beta import BetaToolComputerUse20241022Param
|
||||
|
||||
from .base import BaseAnthropicTool, ToolError, ToolResult
|
||||
from .screen_capture import get_screenshot
|
||||
import requests
|
||||
import re
|
||||
|
||||
OUTPUT_DIR = "./tmp/outputs"
|
||||
|
||||
TYPING_DELAY_MS = 12
|
||||
TYPING_GROUP_SIZE = 50
|
||||
|
||||
Action = Literal[
|
||||
"key",
|
||||
"type",
|
||||
"mouse_move",
|
||||
"left_click",
|
||||
"left_click_drag",
|
||||
"right_click",
|
||||
"middle_click",
|
||||
"double_click",
|
||||
"screenshot",
|
||||
"cursor_position",
|
||||
]
|
||||
|
||||
|
||||
class Resolution(TypedDict):
|
||||
width: int
|
||||
height: int
|
||||
|
||||
|
||||
MAX_SCALING_TARGETS: dict[str, Resolution] = {
|
||||
"XGA": Resolution(width=1024, height=768), # 4:3
|
||||
"WXGA": Resolution(width=1280, height=800), # 16:10
|
||||
"FWXGA": Resolution(width=1366, height=768), # ~16:9
|
||||
}
|
||||
|
||||
|
||||
class ScalingSource(StrEnum):
|
||||
COMPUTER = "computer"
|
||||
API = "api"
|
||||
|
||||
|
||||
class ComputerToolOptions(TypedDict):
|
||||
display_height_px: int
|
||||
display_width_px: int
|
||||
display_number: int | None
|
||||
|
||||
|
||||
def chunks(s: str, chunk_size: int) -> list[str]:
|
||||
return [s[i : i + chunk_size] for i in range(0, len(s), chunk_size)]
|
||||
|
||||
class ComputerTool(BaseAnthropicTool):
|
||||
"""
|
||||
A tool that allows the agent to interact with the screen, keyboard, and mouse of the current computer.
|
||||
Adapted for Windows using 'pyautogui'.
|
||||
"""
|
||||
|
||||
name: Literal["computer"] = "computer"
|
||||
api_type: Literal["computer_20241022"] = "computer_20241022"
|
||||
width: int
|
||||
height: int
|
||||
display_num: int | None
|
||||
|
||||
_screenshot_delay = 2.0
|
||||
_scaling_enabled = True
|
||||
|
||||
@property
|
||||
def options(self) -> ComputerToolOptions:
|
||||
width, height = self.scale_coordinates(
|
||||
ScalingSource.COMPUTER, self.width, self.height
|
||||
)
|
||||
return {
|
||||
"display_width_px": width,
|
||||
"display_height_px": height,
|
||||
"display_number": self.display_num,
|
||||
}
|
||||
|
||||
def to_params(self) -> BetaToolComputerUse20241022Param:
|
||||
return {"name": self.name, "type": self.api_type, **self.options}
|
||||
|
||||
def __init__(self, is_scaling: bool = False):
|
||||
super().__init__()
|
||||
|
||||
# Get screen width and height using Windows command
|
||||
self.display_num = None
|
||||
self.offset_x = 0
|
||||
self.offset_y = 0
|
||||
self.is_scaling = is_scaling
|
||||
self.width, self.height = self.get_screen_size()
|
||||
print(f"screen size: {self.width}, {self.height}")
|
||||
|
||||
self.key_conversion = {"Page_Down": "pagedown",
|
||||
"Page_Up": "pageup",
|
||||
"Super_L": "win",
|
||||
"Escape": "esc"}
|
||||
|
||||
|
||||
async def __call__(
|
||||
self,
|
||||
*,
|
||||
action: Action,
|
||||
text: str | None = None,
|
||||
coordinate: tuple[int, int] | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
print(f"action: {action}, text: {text}, coordinate: {coordinate}, is_scaling: {self.is_scaling}")
|
||||
if action in ("mouse_move", "left_click_drag"):
|
||||
if coordinate is None:
|
||||
raise ToolError(f"coordinate is required for {action}")
|
||||
if text is not None:
|
||||
raise ToolError(f"text is not accepted for {action}")
|
||||
if not isinstance(coordinate, (list, tuple)) or len(coordinate) != 2:
|
||||
raise ToolError(f"{coordinate} must be a tuple of length 2")
|
||||
# if not all(isinstance(i, int) and i >= 0 for i in coordinate):
|
||||
if not all(isinstance(i, int) for i in coordinate):
|
||||
raise ToolError(f"{coordinate} must be a tuple of non-negative ints")
|
||||
|
||||
if self.is_scaling:
|
||||
x, y = self.scale_coordinates(
|
||||
ScalingSource.API, coordinate[0], coordinate[1]
|
||||
)
|
||||
else:
|
||||
x, y = coordinate
|
||||
|
||||
# print(f"scaled_coordinates: {x}, {y}")
|
||||
# print(f"offset: {self.offset_x}, {self.offset_y}")
|
||||
|
||||
# x += self.offset_x # TODO - check if this is needed
|
||||
# y += self.offset_y
|
||||
|
||||
print(f"mouse move to {x}, {y}")
|
||||
|
||||
if action == "mouse_move":
|
||||
self.send_to_vm(f"pyautogui.moveTo({x}, {y})")
|
||||
return ToolResult(output=f"Moved mouse to ({x}, {y})")
|
||||
elif action == "left_click_drag":
|
||||
current_x, current_y = self.send_to_vm("pyautogui.position()")
|
||||
self.send_to_vm(f"pyautogui.dragTo({x}, {y}, duration=0.5)")
|
||||
return ToolResult(output=f"Dragged mouse from ({current_x}, {current_y}) to ({x}, {y})")
|
||||
|
||||
if action in ("key", "type"):
|
||||
if text is None:
|
||||
raise ToolError(f"text is required for {action}")
|
||||
if coordinate is not None:
|
||||
raise ToolError(f"coordinate is not accepted for {action}")
|
||||
if not isinstance(text, str):
|
||||
raise ToolError(output=f"{text} must be a string")
|
||||
|
||||
if action == "key":
|
||||
# Handle key combinations
|
||||
keys = text.split('+')
|
||||
for key in keys:
|
||||
key = self.key_conversion.get(key.strip(), key.strip())
|
||||
key = key.lower()
|
||||
self.send_to_vm(f"pyautogui.keyDown('{key}')") # Press down each key
|
||||
for key in reversed(keys):
|
||||
key = self.key_conversion.get(key.strip(), key.strip())
|
||||
key = key.lower()
|
||||
self.send_to_vm(f"pyautogui.keyUp('{key}')") # Release each key in reverse order
|
||||
return ToolResult(output=f"Pressed keys: {text}")
|
||||
|
||||
elif action == "type":
|
||||
self.send_to_vm(f"pyautogui.typewrite('{text}', interval={TYPING_DELAY_MS / 1000})") # Convert ms to seconds
|
||||
self.send_to_vm("pyautogui.press('enter')")
|
||||
screenshot_base64 = (await self.screenshot()).base64_image
|
||||
return ToolResult(output=text, base64_image=screenshot_base64)
|
||||
|
||||
if action in (
|
||||
"left_click",
|
||||
"right_click",
|
||||
"double_click",
|
||||
"middle_click",
|
||||
"screenshot",
|
||||
"cursor_position",
|
||||
"left_press",
|
||||
):
|
||||
if text is not None:
|
||||
raise ToolError(f"text is not accepted for {action}")
|
||||
if coordinate is not None:
|
||||
raise ToolError(f"coordinate is not accepted for {action}")
|
||||
|
||||
if action == "screenshot":
|
||||
return await self.screenshot()
|
||||
elif action == "cursor_position":
|
||||
x, y = self.send_to_vm("pyautogui.position()")
|
||||
x, y = self.scale_coordinates(ScalingSource.COMPUTER, x, y)
|
||||
return ToolResult(output=f"X={x},Y={y}")
|
||||
else:
|
||||
if action == "left_click":
|
||||
self.send_to_vm("pyautogui.click()")
|
||||
elif action == "right_click":
|
||||
self.send_to_vm("pyautogui.rightClick()")
|
||||
elif action == "middle_click":
|
||||
self.send_to_vm("pyautogui.middleClick()")
|
||||
elif action == "double_click":
|
||||
self.send_to_vm("pyautogui.doubleClick()")
|
||||
elif action == "left_press":
|
||||
self.send_to_vm("pyautogui.mouseDown()")
|
||||
time.sleep(1)
|
||||
self.send_to_vm("pyautogui.mouseUp()")
|
||||
return ToolResult(output=f"Performed {action}")
|
||||
if action in ("scroll_up", "scroll_down"):
|
||||
if action == "scroll_up":
|
||||
self.send_to_vm("pyautogui.scroll(100)")
|
||||
elif action == "scroll_down":
|
||||
self.send_to_vm("pyautogui.scroll(-100)")
|
||||
return ToolResult(output=f"Performed {action}")
|
||||
|
||||
raise ToolError(f"Invalid action: {action}")
|
||||
|
||||
def send_to_vm(self, action: str):
|
||||
"""
|
||||
Executes a python command on the server. Only return tuple of x,y when action is "pyautogui.position()"
|
||||
"""
|
||||
prefix = "import pyautogui; pyautogui.FAILSAFE = False;"
|
||||
command_list = ["python", "-c", f"{prefix} {action}"]
|
||||
parse = action == "pyautogui.position()"
|
||||
if parse:
|
||||
command_list[-1] = f"{prefix} print({action})"
|
||||
|
||||
try:
|
||||
print(f"sending to vm: {command_list}")
|
||||
response = requests.post(
|
||||
f"http://localhost:5000/execute",
|
||||
headers={'Content-Type': 'application/json'},
|
||||
json={"command": command_list},
|
||||
timeout=90
|
||||
)
|
||||
time.sleep(0.7) # avoid async error as actions take time to complete
|
||||
print(f"action executed")
|
||||
if response.status_code != 200:
|
||||
raise ToolError(f"Failed to execute command. Status code: {response.status_code}")
|
||||
if parse:
|
||||
output = response.json()['output'].strip()
|
||||
match = re.search(r'Point\(x=(\d+),\s*y=(\d+)\)', output)
|
||||
if not match:
|
||||
raise ToolError(f"Could not parse coordinates from output: {output}")
|
||||
x, y = map(int, match.groups())
|
||||
return x, y
|
||||
except requests.exceptions.RequestException as e:
|
||||
raise ToolError(f"An error occurred while trying to execute the command: {str(e)}")
|
||||
|
||||
async def screenshot(self):
|
||||
if not hasattr(self, 'target_dimension'):
|
||||
screenshot = self.padding_image(screenshot)
|
||||
self.target_dimension = MAX_SCALING_TARGETS["WXGA"]
|
||||
width, height = self.target_dimension["width"], self.target_dimension["height"]
|
||||
screenshot, path = get_screenshot(resize=True, target_width=width, target_height=height)
|
||||
time.sleep(0.7) # avoid async error as actions take time to complete
|
||||
# return ToolResult()
|
||||
return ToolResult(base64_image=base64.b64encode(path.read_bytes()).decode())
|
||||
|
||||
raise ToolError(f"Failed to take screenshot: {path} does not exist.")
|
||||
|
||||
def padding_image(self, screenshot):
|
||||
"""Pad the screenshot to 16:10 aspect ratio, when the aspect ratio is not 16:10."""
|
||||
_, height = screenshot.size
|
||||
new_width = height * 16 // 10
|
||||
|
||||
padding_image = Image.new("RGB", (new_width, height), (255, 255, 255))
|
||||
# padding to top left
|
||||
padding_image.paste(screenshot, (0, 0))
|
||||
return padding_image
|
||||
|
||||
def scale_coordinates(self, source: ScalingSource, x: int, y: int):
|
||||
"""Scale coordinates to a target maximum resolution."""
|
||||
if not self._scaling_enabled:
|
||||
return x, y
|
||||
ratio = self.width / self.height
|
||||
target_dimension = None
|
||||
|
||||
for target_name, dimension in MAX_SCALING_TARGETS.items():
|
||||
# allow some error in the aspect ratio - not ratios are exactly 16:9
|
||||
if abs(dimension["width"] / dimension["height"] - ratio) < 0.02:
|
||||
if dimension["width"] < self.width:
|
||||
target_dimension = dimension
|
||||
self.target_dimension = target_dimension
|
||||
# print(f"target_dimension: {target_dimension}")
|
||||
break
|
||||
|
||||
if target_dimension is None:
|
||||
# TODO: currently we force the target to be WXGA (16:10), when it cannot find a match
|
||||
target_dimension = MAX_SCALING_TARGETS["WXGA"]
|
||||
self.target_dimension = MAX_SCALING_TARGETS["WXGA"]
|
||||
|
||||
# should be less than 1
|
||||
x_scaling_factor = target_dimension["width"] / self.width
|
||||
y_scaling_factor = target_dimension["height"] / self.height
|
||||
if source == ScalingSource.API:
|
||||
if x > self.width or y > self.height:
|
||||
raise ToolError(f"Coordinates {x}, {y} are out of bounds")
|
||||
# scale up
|
||||
return round(x / x_scaling_factor), round(y / y_scaling_factor)
|
||||
# scale down
|
||||
return round(x * x_scaling_factor), round(y * y_scaling_factor)
|
||||
|
||||
def get_screen_size(self):
|
||||
"""Return width and height of the screen"""
|
||||
try:
|
||||
response = requests.post(
|
||||
f"http://localhost:5000/execute",
|
||||
headers={'Content-Type': 'application/json'},
|
||||
json={"command": ["python", "-c", "import pyautogui; print(pyautogui.size())"]},
|
||||
timeout=90
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise ToolError(f"Failed to get screen size. Status code: {response.status_code}")
|
||||
|
||||
output = response.json()['output'].strip()
|
||||
match = re.search(r'Size\(width=(\d+),\s*height=(\d+)\)', output)
|
||||
if not match:
|
||||
raise ToolError(f"Could not parse screen size from output: {output}")
|
||||
width, height = map(int, match.groups())
|
||||
return width, height
|
||||
except requests.exceptions.RequestException as e:
|
||||
raise ToolError(f"An error occurred while trying to get screen size: {str(e)}")
|
||||
@@ -1,29 +0,0 @@
|
||||
from pathlib import Path
|
||||
from uuid import uuid4
|
||||
import requests
|
||||
from PIL import Image
|
||||
from .base import BaseAnthropicTool, ToolError
|
||||
from io import BytesIO
|
||||
|
||||
OUTPUT_DIR = "./tmp/outputs"
|
||||
|
||||
def get_screenshot(resize: bool = False, target_width: int = 1920, target_height: int = 1080):
|
||||
"""Capture screenshot by requesting from HTTP endpoint - returns native resolution unless resized"""
|
||||
output_dir = Path(OUTPUT_DIR)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
path = output_dir / f"screenshot_{uuid4().hex}.png"
|
||||
|
||||
try:
|
||||
response = requests.get('http://localhost:5000/screenshot')
|
||||
if response.status_code != 200:
|
||||
raise ToolError(f"Failed to capture screenshot: HTTP {response.status_code}")
|
||||
|
||||
# (1280, 800)
|
||||
screenshot = Image.open(BytesIO(response.content))
|
||||
|
||||
if resize and screenshot.size != (target_width, target_height):
|
||||
screenshot = screenshot.resize((target_width, target_height))
|
||||
screenshot.save(path)
|
||||
return screenshot, path
|
||||
except Exception as e:
|
||||
raise ToolError(f"Failed to capture screenshot: {str(e)}")
|
||||
Reference in New Issue
Block a user