minor fix to gradio demo

This commit is contained in:
yadonglu
2024-12-13 11:55:51 -08:00
parent c9ed5cb426
commit d0c163cd02
6 changed files with 10 additions and 6 deletions

Binary file not shown.

View File

@@ -12,7 +12,8 @@ from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, ge
import torch
from PIL import Image
yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt')
# yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt')
yolo_model = get_yolo_model(model_path='weights/icon_detect_v1_5/best.pt')
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence")
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
@@ -57,10 +58,11 @@ def process(
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr)
text, ocr_bbox = ocr_bbox_rslt
# print('prompt:', prompt)
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold, imgsz=imgsz)
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold, imgsz=imgsz,)
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
print('finish processing')
parsed_content_list = '\n'.join(parsed_content_list)
parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)])
# parsed_content_list = str(parsed_content_list)
return image, str(parsed_content_list)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 627 KiB

After

Width:  |  Height:  |  Size: 328 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 678 KiB

After

Width:  |  Height:  |  Size: 404 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 149 KiB

After

Width:  |  Height:  |  Size: 341 KiB

View File

@@ -75,7 +75,7 @@ def get_yolo_model(model_path):
@torch.inference_mode()
def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=None, batch_size=32):
def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=None, batch_size=None):
# Number of samples per batch, --> 256 roughly takes 23 GB of GPU memory for florence model
to_pil = ToPILImage()
@@ -99,6 +99,7 @@ def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_
generated_texts = []
device = model.device
# batch_size = 64
for i in range(0, len(croped_pil_image), batch_size):
start = time.time()
batch = croped_pil_image[i:i+batch_size]
@@ -398,7 +399,7 @@ def predict_yolo(model, image_path, box_threshold, imgsz, scale_img, iou_thresho
return boxes, conf, phrases
def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD = 0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None, scale_img=False, imgsz=None, batch_size=None):
def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD = 0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None, scale_img=False, imgsz=None, batch_size=64):
""" ocr_bbox: list of xyxy format bbox
"""
image_source = Image.open(img_path).convert("RGB")
@@ -432,6 +433,7 @@ def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD = 0.01, output_coord_
# get the index of the first 'content': None
starting_idx = next((i for i, box in enumerate(filtered_boxes_elem) if box['content'] is None), -1)
filtered_boxes = torch.tensor([box['bbox'] for box in filtered_boxes_elem])
print('len(filtered_boxes):', len(filtered_boxes), starting_idx)
# get parsed icon local semantics
@@ -501,7 +503,7 @@ def check_ocr_box(image_path, display_img = True, output_bb_format='xywh', goal_
else:
text_threshold = easyocr_args['text_threshold']
result = paddle_ocr.ocr(image_path, cls=False)[0]
conf = [item[1] for item in result]
# conf = [item[1] for item in result]
coord = [item[0] for item in result if item[1][1] > text_threshold]
text = [item[1][0] for item in result if item[1][1] > text_threshold]
else: # EasyOCR