Compare commits

...

27 Commits

Author SHA1 Message Date
Kyle Corbitt
db69b8e496 clean up example 2023-09-12 00:47:22 +00:00
Kyle Corbitt
38e28fa30a benchmark comparison to gpt-3.5 and gpt-3.5 finetuned 2023-08-28 03:55:50 +00:00
Kyle Corbitt
b4cb931f6c first version of example ready 2023-08-25 06:37:06 +00:00
Kyle Corbitt
40638a7848 more work 2023-08-24 23:49:44 +00:00
Kyle Corbitt
14eae45d18 more benchmarking 2023-08-24 19:52:31 +00:00
Kyle Corbitt
13bac46e0b generate-data and some eval 2023-08-24 18:43:42 +00:00
Kyle Corbitt
12d01cd3d5 initial example work 2023-08-24 07:05:28 +00:00
arcticfly
ec59252010 Wrap in Portal (#191) 2023-08-23 23:48:53 -07:00
arcticfly
87e2339df2 Remove openpipe object from config (#190)
* Remove openpipe object from config

* Remove comment
2023-08-23 23:31:39 -07:00
arcticfly
75ad6619a5 Add InfoCircles (#189) 2023-08-23 22:06:37 -07:00
Kyle Corbitt
4b8941d53a Merge pull request #188 from OpenPipe/export-fixes
Export fixes
2023-08-23 21:30:36 -07:00
David Corbitt
0d691d17cc Rename input to instruction in alpaca format 2023-08-23 21:26:28 -07:00
David Corbitt
815d4faad2 Fix mobile export styles 2023-08-23 21:21:09 -07:00
arcticfly
9632ccbc71 Export formatted logged calls (#187)
* Export formatted data

* Properly update inputMessageHashMap

* Hide remove duplicates checkbox in advanced options

* Remove unused import
2023-08-23 20:45:27 -07:00
Kyle Corbitt
a4131e4a10 Merge pull request #186 from OpenPipe/python-client
Python client
2023-08-23 19:37:55 -07:00
Kyle Corbitt
db1c8f171d Python client published 2023-08-23 19:37:05 -07:00
David Corbitt
678392ef17 Wait until flags are loaded to show beta modal 2023-08-23 18:27:39 -07:00
arcticfly
af722128e8 Use feature flags to control beta features (#185)
* Use feature flags to control beta features

* Remove references to beta env variable
2023-08-23 18:18:56 -07:00
Kyle Corbitt
50a79b6e3a python compat fixes 2023-08-23 17:14:19 -07:00
arcticfly
f59150ff5b Add flow for fine-tuning (#183)
* Remove unnecessary dataset code

* Fix jump on row selection

* Add FineTuneButton

* Add model slug to modal

* Add fine tunes to schema

* Remove dataset routers

* Remove more dataset-specific code

* Remove more data code

* Fix horizontal scroll bar jumping

* Add fine tunes page

* Actually create the fine tune entry

* Add beta modal

* Require beta for fine tunes and request logs

* Send user to waitlist link

* control beta features in .env variable

* Combine migration files

* Show beta features in app shell

* Clear selected log ids last when closing fine tune modal

* Remove ModalCloseButton from BetaModal

* Remove unused import

* Change timestamps to camelCase
2023-08-23 16:13:21 -07:00
David Corbitt
b58e0a8d54 Merge branch 'main' of github.com:corbt/prompt-lab 2023-08-23 03:29:23 -07:00
David Corbitt
dc82a3fa82 Add variant editor shadow 2023-08-23 03:29:07 -07:00
arcticfly
fedbf5784e Fix padding for mobile sign in (#184) 2023-08-23 01:07:55 -07:00
arcticfly
888c04af50 Allow user to toggle visible columns (#182)
* Maintain tag casing

* Persist column visibility in zustand

* Persist only visibleColumns key

* merge persisted state

* Only show ColumnVisibilityDropdown after rehydration

* Record storage rehydrated

* Add useIsClientRehydrated hook

* Hide ActionButton text on mobile

* Condense Paginator on mobile

---------

Co-authored-by: Kyle Corbitt <kyle@corbt.com>
2023-08-21 23:13:29 -07:00
arcticfly
1b36453051 Update README.md
Comment out most gifs
2023-08-21 13:54:23 -07:00
Kyle Corbitt
2f37b3ed87 Merge pull request #181 from OpenPipe/catch-rejections
Catch unhandled rejections in background worker
2023-08-18 22:58:31 -07:00
David Corbitt
17866a5249 Fix typo in newConstructionFn 2023-08-18 21:45:43 -07:00
69 changed files with 4709 additions and 1168 deletions

1
.gitignore vendored
View File

@@ -3,3 +3,4 @@
*.pyc
node_modules/
*.tsbuildinfo
dist/

View File

@@ -1,10 +1,8 @@
<!-- <img src="https://github.com/openpipe/openpipe/assets/41524992/ca59596e-eb80-40f9-921f-6d67f6e6d8fa" width="72px" /> -->
# OpenPipe
OpenPipe is a flexible playground for comparing and optimizing LLM prompts. It lets you quickly generate, test and compare candidate prompts, and can automatically [translate](#-translate-between-model-apis) those prompts between models.
<img src="https://github.com/openpipe/openpipe/assets/41524992/219a844e-3f4e-4f6b-8066-41348b42977b" alt="demo">
<img src="https://github.com/openpipe/openpipe/assets/41524992/66bb1843-cb72-4130-a369-eec2df3b8201" alt="demo">
You can use our hosted version of OpenPipe at https://openpipe.ai. You can also clone this repository and [run it locally](#running-locally).
@@ -37,25 +35,19 @@ OpenPipe lets you _template_ a prompt. Use the templating feature to run the pro
Write your prompt in one format and automatically convert it to work with any other model.
<img width="480" alt="Screenshot 2023-08-01 at 11 55 38 PM" src="https://github.com/OpenPipe/OpenPipe/assets/41524992/1e19ccf2-96b6-4e93-a3a5-1449710d1b5b" alt="translate between models">
<br><br>
<!-- <img width="480" alt="Screenshot 2023-08-01 at 11 55 38 PM" src="https://github.com/OpenPipe/OpenPipe/assets/41524992/1e19ccf2-96b6-4e93-a3a5-1449710d1b5b" alt="translate between models"> -->
### 🛠️ Refine Your Prompts Automatically
Use a growing database of best-practice refinements to improve your prompts automatically.
<img width="480" alt="Screenshot 2023-08-01 at 11 55 38 PM" src="https://github.com/OpenPipe/OpenPipe/assets/41524992/87a27fe7-daef-445c-a5e2-1c82b23f9f99" alt="add function call">
<br><br>
<!-- <img width="480" alt="Screenshot 2023-08-01 at 11 55 38 PM" src="https://github.com/OpenPipe/OpenPipe/assets/41524992/87a27fe7-daef-445c-a5e2-1c82b23f9f99" alt="add function call"> -->
### 🪄 Auto-generate Test Scenarios
OpenPipe includes a tool to generate new test scenarios based on your existing prompts and scenarios. Just click "Autogenerate Scenario" to try it out!
<img width="600" src="https://github.com/openpipe/openpipe/assets/41524992/219a844e-3f4e-4f6b-8066-41348b42977b" alt="auto-generate">
<br><br>
<!-- <img width="600" src="https://github.com/openpipe/openpipe/assets/41524992/219a844e-3f4e-4f6b-8066-41348b42977b" alt="auto-generate"> -->
## Running Locally
@@ -75,4 +67,4 @@ OpenPipe includes a tool to generate new test scenarios based on your existing p
1. Copy your `.env` file to `.env.test`.
2. Update the `DATABASE_URL` to have a different database name than your development one
3. Run `DATABASE_URL=[your new datatase url] pnpm prisma migrate dev --skip-seed --skip-generate`
4. Run `pnpm test`
4. Run `pnpm test`

View File

@@ -19,10 +19,9 @@ declare module "nextjs-routes" {
| DynamicRoute<"/api/v1/[...trpc]", { "trpc": string[] }>
| StaticRoute<"/api/v1/openapi">
| StaticRoute<"/dashboard">
| DynamicRoute<"/data/[id]", { "id": string }>
| StaticRoute<"/data">
| DynamicRoute<"/experiments/[experimentSlug]", { "experimentSlug": string }>
| StaticRoute<"/experiments">
| StaticRoute<"/fine-tunes">
| StaticRoute<"/">
| DynamicRoute<"/invitations/[invitationToken]", { "invitationToken": string }>
| StaticRoute<"/project/settings">

View File

@@ -23,7 +23,6 @@ ARG NEXT_PUBLIC_SOCKET_URL
ARG NEXT_PUBLIC_HOST
ARG NEXT_PUBLIC_SENTRY_DSN
ARG SENTRY_AUTH_TOKEN
ARG NEXT_PUBLIC_FF_SHOW_LOGGED_CALLS
WORKDIR /code
COPY --from=deps /code/node_modules ./node_modules

View File

@@ -48,6 +48,7 @@
"@trpc/react-query": "^10.26.0",
"@trpc/server": "^10.26.0",
"@vercel/og": "^0.5.9",
"archiver": "^6.0.0",
"ast-types": "^0.14.2",
"chroma-js": "^2.4.2",
"concurrently": "^8.2.0",
@@ -60,6 +61,7 @@
"framer-motion": "^10.12.17",
"gpt-tokens": "^1.0.10",
"graphile-worker": "^0.13.0",
"human-id": "^4.0.0",
"immer": "^10.0.2",
"isolated-vm": "^4.5.0",
"json-schema-to-typescript": "^13.0.2",
@@ -98,6 +100,7 @@
"replicate": "^0.12.3",
"socket.io": "^4.7.1",
"socket.io-client": "^4.7.1",
"stream-buffers": "^3.0.2",
"superjson": "1.12.2",
"trpc-openapi": "^1.2.0",
"tsx": "^3.12.7",
@@ -110,6 +113,7 @@
},
"devDependencies": {
"@openapi-contrib/openapi-schema-to-json-schema": "^4.0.5",
"@types/archiver": "^5.3.2",
"@types/babel__core": "^7.20.1",
"@types/babel__standalone": "^7.1.4",
"@types/chroma-js": "^2.4.0",
@@ -126,6 +130,7 @@
"@types/react": "^18.2.6",
"@types/react-dom": "^18.2.4",
"@types/react-syntax-highlighter": "^15.5.7",
"@types/stream-buffers": "^3.0.4",
"@types/uuid": "^9.0.2",
"@typescript-eslint/eslint-plugin": "^5.59.6",
"@typescript-eslint/parser": "^5.59.6",

View File

@@ -0,0 +1,48 @@
/*
Warnings:
- You are about to drop the column `input` on the `DatasetEntry` table. All the data in the column will be lost.
- You are about to drop the column `output` on the `DatasetEntry` table. All the data in the column will be lost.
- Added the required column `loggedCallId` to the `DatasetEntry` table without a default value. This is not possible if the table is not empty.
*/
-- AlterTable
ALTER TABLE "DatasetEntry" DROP COLUMN "input",
DROP COLUMN "output",
ADD COLUMN "loggedCallId" UUID NOT NULL;
-- AddForeignKey
ALTER TABLE "DatasetEntry" ADD CONSTRAINT "DatasetEntry_loggedCallId_fkey" FOREIGN KEY ("loggedCallId") REFERENCES "LoggedCall"("id") ON DELETE CASCADE ON UPDATE CASCADE;
-- AlterTable
ALTER TABLE "LoggedCallModelResponse" ALTER COLUMN "cost" SET DATA TYPE DOUBLE PRECISION;
-- CreateEnum
CREATE TYPE "FineTuneStatus" AS ENUM ('PENDING', 'TRAINING', 'AWAITING_DEPLOYMENT', 'DEPLOYING', 'DEPLOYED', 'ERROR');
-- CreateTable
CREATE TABLE "FineTune" (
"id" UUID NOT NULL,
"slug" TEXT NOT NULL,
"baseModel" TEXT NOT NULL,
"status" "FineTuneStatus" NOT NULL DEFAULT 'PENDING',
"trainingStartedAt" TIMESTAMP(3),
"trainingFinishedAt" TIMESTAMP(3),
"deploymentStartedAt" TIMESTAMP(3),
"deploymentFinishedAt" TIMESTAMP(3),
"datasetId" UUID NOT NULL,
"projectId" UUID NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
CONSTRAINT "FineTune_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE UNIQUE INDEX "FineTune_slug_key" ON "FineTune"("slug");
-- AddForeignKey
ALTER TABLE "FineTune" ADD CONSTRAINT "FineTune_datasetId_fkey" FOREIGN KEY ("datasetId") REFERENCES "Dataset"("id") ON DELETE CASCADE ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "FineTune" ADD CONSTRAINT "FineTune_projectId_fkey" FOREIGN KEY ("projectId") REFERENCES "Project"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -181,6 +181,7 @@ model Dataset {
name String
datasetEntries DatasetEntry[]
fineTunes FineTune[]
projectId String @db.Uuid
project Project @relation(fields: [projectId], references: [id], onDelete: Cascade)
@@ -192,8 +193,8 @@ model Dataset {
model DatasetEntry {
id String @id @default(uuid()) @db.Uuid
input String
output String?
loggedCallId String @db.Uuid
loggedCall LoggedCall @relation(fields: [loggedCallId], references: [id], onDelete: Cascade)
datasetId String @db.Uuid
dataset Dataset? @relation(fields: [datasetId], references: [id], onDelete: Cascade)
@@ -216,6 +217,7 @@ model Project {
experiments Experiment[]
datasets Dataset[]
loggedCalls LoggedCall[]
fineTunes FineTune[]
apiKeys ApiKey[]
}
@@ -276,8 +278,9 @@ model LoggedCall {
projectId String @db.Uuid
project Project? @relation(fields: [projectId], references: [id], onDelete: Cascade)
model String?
tags LoggedCallTag[]
model String?
tags LoggedCallTag[]
datasetEntries DatasetEntry[]
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
@@ -312,7 +315,7 @@ model LoggedCallModelResponse {
outputTokens Int?
finishReason String?
completionId String?
cost Decimal? @db.Decimal(18, 12)
cost Float?
// The LoggedCall that created this LoggedCallModelResponse
originalLoggedCallId String @unique @db.Uuid
@@ -427,3 +430,33 @@ model VerificationToken {
@@unique([identifier, token])
}
enum FineTuneStatus {
PENDING
TRAINING
AWAITING_DEPLOYMENT
DEPLOYING
DEPLOYED
ERROR
}
model FineTune {
id String @id @default(uuid()) @db.Uuid
slug String @unique
baseModel String
status FineTuneStatus @default(PENDING)
trainingStartedAt DateTime?
trainingFinishedAt DateTime?
deploymentStartedAt DateTime?
deploymentFinishedAt DateTime?
datasetId String @db.Uuid
dataset Dataset @relation(fields: [datasetId], references: [id], onDelete: Cascade)
projectId String @db.Uuid
project Project @relation(fields: [projectId], references: [id], onDelete: Cascade)
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
}

View File

@@ -0,0 +1,14 @@
import { Tooltip, Icon, VStack } from "@chakra-ui/react";
import { RiInformationFill } from "react-icons/ri";
const InfoCircle = ({ tooltipText }: { tooltipText: string }) => {
return (
<Tooltip label={tooltipText} fontSize="sm" shouldWrapChildren maxW={80}>
<VStack>
<Icon as={RiInformationFill} boxSize={5} color="gray.500" />
</VStack>
</Tooltip>
);
};
export default InfoCircle;

View File

@@ -11,6 +11,7 @@ import {
Button,
Text,
useDisclosure,
type InputGroupProps,
} from "@chakra-ui/react";
import { FiChevronDown } from "react-icons/fi";
@@ -20,15 +21,25 @@ type InputDropdownProps<T> = {
options: ReadonlyArray<T>;
selectedOption: T;
onSelect: (option: T) => void;
inputGroupProps?: InputGroupProps;
};
const InputDropdown = <T,>({ options, selectedOption, onSelect }: InputDropdownProps<T>) => {
const InputDropdown = <T,>({
options,
selectedOption,
onSelect,
inputGroupProps,
}: InputDropdownProps<T>) => {
const popover = useDisclosure();
return (
<Popover placement="bottom-start" {...popover}>
<PopoverTrigger>
<InputGroup cursor="pointer" w={(selectedOption as string).length * 14 + 180}>
<InputGroup
cursor="pointer"
w={(selectedOption as string).length * 14 + 180}
{...inputGroupProps}
>
<Input
value={selectedOption as string}
// eslint-disable-next-line @typescript-eslint/no-empty-function -- controlled input requires onChange

View File

@@ -77,6 +77,7 @@ export default function OutputsTable({ experimentId }: { experimentId: string |
{...sharedProps}
borderBottomLeftRadius={isFirst ? 8 : 0}
borderBottomRightRadius={isLast ? 8 : 0}
boxShadow="5px 5px 15px 1px rgba(0, 0, 0, 0.1);"
>
<VariantStats variant={variant} />
</GridItem>

View File

@@ -1,15 +1,19 @@
import { HStack, IconButton, Text, Select, type StackProps, Icon } from "@chakra-ui/react";
import {
HStack,
IconButton,
Text,
Select,
type StackProps,
Icon,
useBreakpointValue,
} from "@chakra-ui/react";
import React, { useCallback } from "react";
import { FiChevronsLeft, FiChevronsRight, FiChevronLeft, FiChevronRight } from "react-icons/fi";
import { usePageParams } from "~/utils/hooks";
const pageSizeOptions = [10, 25, 50, 100];
const Paginator = ({
count,
condense,
...props
}: { count: number; condense?: boolean } & StackProps) => {
const Paginator = ({ count, ...props }: { count: number; condense?: boolean } & StackProps) => {
const { page, pageSize, setPageParams } = usePageParams();
const lastPage = Math.ceil(count / pageSize);
@@ -37,6 +41,9 @@ const Paginator = ({
const goToLastPage = () => setPageParams({ page: lastPage }, "replace");
const goToFirstPage = () => setPageParams({ page: 1 }, "replace");
const isMobile = useBreakpointValue({ base: true, md: false });
const condense = isMobile || props.condense;
if (count === 0) return null;
return (

View File

@@ -1,112 +0,0 @@
import {
HStack,
Icon,
VStack,
Text,
Divider,
Spinner,
AspectRatio,
SkeletonText,
} from "@chakra-ui/react";
import { RiDatabase2Line } from "react-icons/ri";
import { formatTimePast } from "~/utils/dayjs";
import Link from "next/link";
import { useRouter } from "next/router";
import { BsPlusSquare } from "react-icons/bs";
import { api } from "~/utils/api";
import { useHandledAsyncCallback } from "~/utils/hooks";
import { useAppStore } from "~/state/store";
type DatasetData = {
name: string;
numEntries: number;
id: string;
createdAt: Date;
updatedAt: Date;
};
export const DatasetCard = ({ dataset }: { dataset: DatasetData }) => {
return (
<AspectRatio ratio={1.2} w="full">
<VStack
as={Link}
href={{ pathname: "/data/[id]", query: { id: dataset.id } }}
bg="gray.50"
_hover={{ bg: "gray.100" }}
transition="background 0.2s"
cursor="pointer"
borderColor="gray.200"
borderWidth={1}
p={4}
justify="space-between"
>
<HStack w="full" color="gray.700" justify="center">
<Icon as={RiDatabase2Line} boxSize={4} />
<Text fontWeight="bold">{dataset.name}</Text>
</HStack>
<HStack h="full" spacing={4} flex={1} align="center">
<CountLabel label="Rows" count={dataset.numEntries} />
</HStack>
<HStack w="full" color="gray.500" fontSize="xs" textAlign="center">
<Text flex={1}>Created {formatTimePast(dataset.createdAt)}</Text>
<Divider h={4} orientation="vertical" />
<Text flex={1}>Updated {formatTimePast(dataset.updatedAt)}</Text>
</HStack>
</VStack>
</AspectRatio>
);
};
const CountLabel = ({ label, count }: { label: string; count: number }) => {
return (
<VStack alignItems="center" flex={1}>
<Text color="gray.500" fontWeight="bold">
{label}
</Text>
<Text fontSize="sm" color="gray.500">
{count}
</Text>
</VStack>
);
};
export const NewDatasetCard = () => {
const router = useRouter();
const selectedProjectId = useAppStore((s) => s.selectedProjectId);
const createMutation = api.datasets.create.useMutation();
const [createDataset, isLoading] = useHandledAsyncCallback(async () => {
const newDataset = await createMutation.mutateAsync({ projectId: selectedProjectId ?? "" });
await router.push({ pathname: "/data/[id]", query: { id: newDataset.id } });
}, [createMutation, router, selectedProjectId]);
return (
<AspectRatio ratio={1.2} w="full">
<VStack
align="center"
justify="center"
_hover={{ cursor: "pointer", bg: "gray.50" }}
transition="background 0.2s"
cursor="pointer"
borderColor="gray.200"
borderWidth={1}
p={4}
onClick={createDataset}
>
<Icon as={isLoading ? Spinner : BsPlusSquare} boxSize={8} />
<Text display={{ base: "none", md: "block" }} ml={2}>
New Dataset
</Text>
</VStack>
</AspectRatio>
);
};
export const DatasetCardSkeleton = () => (
<AspectRatio ratio={1.2} w="full">
<VStack align="center" borderColor="gray.200" borderWidth={1} p={4} bg="gray.50">
<SkeletonText noOfLines={1} w="80%" />
<SkeletonText noOfLines={2} w="60%" />
<SkeletonText noOfLines={1} w="80%" />
</VStack>
</AspectRatio>
);

View File

@@ -1,16 +0,0 @@
import { type StackProps } from "@chakra-ui/react";
import { useDatasetEntries } from "~/utils/hooks";
import Paginator from "../Paginator";
const DatasetEntriesPaginator = (props: StackProps) => {
const { data } = useDatasetEntries();
if (!data) return null;
const { count } = data;
return <Paginator count={count} {...props} />;
};
export default DatasetEntriesPaginator;

View File

@@ -1,31 +0,0 @@
import { type StackProps, VStack, Table, Th, Tr, Thead, Tbody, Text } from "@chakra-ui/react";
import { useDatasetEntries } from "~/utils/hooks";
import TableRow from "./TableRow";
import DatasetEntriesPaginator from "./DatasetEntriesPaginator";
const DatasetEntriesTable = (props: StackProps) => {
const { data } = useDatasetEntries();
return (
<VStack justifyContent="space-between" {...props}>
<Table variant="simple" sx={{ "table-layout": "fixed", width: "full" }}>
<Thead>
<Tr>
<Th>Input</Th>
<Th>Output</Th>
</Tr>
</Thead>
<Tbody>{data?.entries.map((entry) => <TableRow key={entry.id} entry={entry} />)}</Tbody>
</Table>
{(!data || data.entries.length) === 0 ? (
<Text alignSelf="flex-start" pl={6} color="gray.500">
No entries found
</Text>
) : (
<DatasetEntriesPaginator />
)}
</VStack>
);
};
export default DatasetEntriesTable;

View File

@@ -1,26 +0,0 @@
import { Button, HStack, useDisclosure } from "@chakra-ui/react";
import { BiImport } from "react-icons/bi";
import { BsStars } from "react-icons/bs";
import { GenerateDataModal } from "./GenerateDataModal";
export const DatasetHeaderButtons = () => {
const generateModalDisclosure = useDisclosure();
return (
<>
<HStack>
<Button leftIcon={<BiImport />} colorScheme="blue" variant="ghost">
Import Data
</Button>
<Button leftIcon={<BsStars />} colorScheme="blue" onClick={generateModalDisclosure.onOpen}>
Generate Data
</Button>
</HStack>
<GenerateDataModal
isOpen={generateModalDisclosure.isOpen}
onClose={generateModalDisclosure.onClose}
/>
</>
);
};

View File

@@ -1,128 +0,0 @@
import {
Modal,
ModalBody,
ModalCloseButton,
ModalContent,
ModalHeader,
ModalOverlay,
ModalFooter,
Text,
HStack,
VStack,
Icon,
NumberInput,
NumberInputField,
NumberInputStepper,
NumberIncrementStepper,
NumberDecrementStepper,
Button,
} from "@chakra-ui/react";
import { BsStars } from "react-icons/bs";
import { useState } from "react";
import { useDataset, useHandledAsyncCallback } from "~/utils/hooks";
import { api } from "~/utils/api";
import AutoResizeTextArea from "~/components/AutoResizeTextArea";
export const GenerateDataModal = ({
isOpen,
onClose,
}: {
isOpen: boolean;
onClose: () => void;
}) => {
const utils = api.useContext();
const datasetId = useDataset().data?.id;
const [numToGenerate, setNumToGenerate] = useState<number>(20);
const [inputDescription, setInputDescription] = useState<string>(
"Each input should contain an email body. Half of the emails should contain event details, and the other half should not.",
);
const [outputDescription, setOutputDescription] = useState<string>(
`Each output should contain "true" or "false", where "true" indicates that the email contains event details.`,
);
const generateEntriesMutation = api.datasetEntries.autogenerateEntries.useMutation();
const [generateEntries, generateEntriesInProgress] = useHandledAsyncCallback(async () => {
if (!inputDescription || !outputDescription || !numToGenerate || !datasetId) return;
await generateEntriesMutation.mutateAsync({
datasetId,
inputDescription,
outputDescription,
numToGenerate,
});
await utils.datasetEntries.list.invalidate();
onClose();
}, [
generateEntriesMutation,
onClose,
inputDescription,
outputDescription,
numToGenerate,
datasetId,
]);
return (
<Modal isOpen={isOpen} onClose={onClose} size={{ base: "xl", sm: "2xl", md: "3xl" }}>
<ModalOverlay />
<ModalContent w={1200}>
<ModalHeader>
<HStack>
<Icon as={BsStars} />
<Text>Generate Data</Text>
</HStack>
</ModalHeader>
<ModalCloseButton />
<ModalBody maxW="unset">
<VStack w="full" spacing={8} padding={8} alignItems="flex-start">
<VStack alignItems="flex-start" spacing={2}>
<Text fontWeight="bold">Number of Rows:</Text>
<NumberInput
step={5}
defaultValue={15}
min={0}
max={100}
onChange={(valueString) => setNumToGenerate(parseInt(valueString) || 0)}
value={numToGenerate}
w="24"
>
<NumberInputField />
<NumberInputStepper>
<NumberIncrementStepper />
<NumberDecrementStepper />
</NumberInputStepper>
</NumberInput>
</VStack>
<VStack alignItems="flex-start" w="full" spacing={2}>
<Text fontWeight="bold">Input Description:</Text>
<AutoResizeTextArea
value={inputDescription}
onChange={(e) => setInputDescription(e.target.value)}
placeholder="Each input should contain..."
/>
</VStack>
<VStack alignItems="flex-start" w="full" spacing={2}>
<Text fontWeight="bold">Output Description (optional):</Text>
<AutoResizeTextArea
value={outputDescription}
onChange={(e) => setOutputDescription(e.target.value)}
placeholder="The output should contain..."
/>
</VStack>
</VStack>
</ModalBody>
<ModalFooter>
<Button
colorScheme="blue"
isLoading={generateEntriesInProgress}
isDisabled={!numToGenerate || !inputDescription || !outputDescription}
onClick={generateEntries}
>
Generate
</Button>
</ModalFooter>
</ModalContent>
</Modal>
);
};

View File

@@ -1,13 +0,0 @@
import { Td, Tr } from "@chakra-ui/react";
import { type DatasetEntry } from "@prisma/client";
const TableRow = ({ entry }: { entry: DatasetEntry }) => {
return (
<Tr key={entry.id}>
<Td>{entry.input}</Td>
<Td>{entry.output}</Td>
</Tr>
);
};
export default TableRow;

View File

@@ -0,0 +1,65 @@
import { Card, Table, Thead, Tr, Th, Tbody, Td, VStack, Icon, Text } from "@chakra-ui/react";
import { FaTable } from "react-icons/fa";
import { type FineTuneStatus } from "@prisma/client";
import dayjs from "~/utils/dayjs";
import { useFineTunes } from "~/utils/hooks";
const FineTunesTable = ({}) => {
const { data } = useFineTunes();
const fineTunes = data?.fineTunes || [];
return (
<Card width="100%" overflowX="auto">
{fineTunes.length ? (
<Table>
<Thead>
<Tr>
<Th>ID</Th>
<Th>Created At</Th>
<Th>Base Model</Th>
<Th>Dataset Size</Th>
<Th>Status</Th>
</Tr>
</Thead>
<Tbody>
{fineTunes.map((fineTune) => {
return (
<Tr key={fineTune.id}>
<Td>{fineTune.slug}</Td>
<Td>{dayjs(fineTune.createdAt).format("MMMM D h:mm A")}</Td>
<Td>{fineTune.baseModel}</Td>
<Td>{fineTune.dataset._count.datasetEntries}</Td>
<Td fontSize="sm" fontWeight="bold">
<Text color={getStatusColor(fineTune.status)}>{fineTune.status}</Text>
</Td>
</Tr>
);
})}
</Tbody>
</Table>
) : (
<VStack py={8}>
<Icon as={FaTable} boxSize={16} color="gray.300" />
<Text color="gray.400" fontSize="lg" fontWeight="bold">
No Fine Tunes Found
</Text>
</VStack>
)}
</Card>
);
};
export default FineTunesTable;
const getStatusColor = (status: FineTuneStatus) => {
switch (status) {
case "DEPLOYED":
return "green.500";
case "ERROR":
return "red.500";
default:
return "yellow.500";
}
};

View File

@@ -15,12 +15,14 @@ import Head from "next/head";
import Link from "next/link";
import { BsGearFill, BsGithub, BsPersonCircle } from "react-icons/bs";
import { IoStatsChartOutline } from "react-icons/io5";
import { RiHome3Line, RiDatabase2Line, RiFlaskLine } from "react-icons/ri";
import { RiHome3Line, RiFlaskLine } from "react-icons/ri";
import { FaRobot } from "react-icons/fa";
import { signIn, useSession } from "next-auth/react";
import { env } from "~/env.mjs";
import ProjectMenu from "./ProjectMenu";
import NavSidebarOption from "./NavSidebarOption";
import IconLink from "./IconLink";
import { BetaModal } from "./BetaModal";
import { useAppStore } from "~/state/store";
const Divider = () => <Box h="1px" bgColor="gray.300" w="full" />;
@@ -71,21 +73,10 @@ const NavSidebar = () => {
<ProjectMenu />
<Divider />
{env.NEXT_PUBLIC_FF_SHOW_LOGGED_CALLS && (
<>
<IconLink icon={RiHome3Line} label="Dashboard" href="/dashboard" beta />
<IconLink
icon={IoStatsChartOutline}
label="Request Logs"
href="/request-logs"
beta
/>
</>
)}
<IconLink icon={RiHome3Line} label="Dashboard" href="/dashboard" beta />
<IconLink icon={IoStatsChartOutline} label="Request Logs" href="/request-logs" beta />
<IconLink icon={FaRobot} label="Fine Tunes" href="/fine-tunes" beta />
<IconLink icon={RiFlaskLine} label="Experiments" href="/experiments" />
{env.NEXT_PUBLIC_SHOW_DATA && (
<IconLink icon={RiDatabase2Line} label="Data" href="/data" />
)}
<VStack w="full" alignItems="flex-start" spacing={0} pt={8}>
<Text
pl={2}
@@ -105,7 +96,7 @@ const NavSidebar = () => {
<NavSidebarOption>
<HStack
w="full"
p={4}
p={{ base: 2, md: 4 }}
as={ChakraLink}
justifyContent="start"
onClick={() => {
@@ -141,10 +132,12 @@ export default function AppShell({
children,
title,
requireAuth,
requireBeta,
}: {
children: React.ReactNode;
title?: string;
requireAuth?: boolean;
requireBeta?: boolean;
}) {
const [vh, setVh] = useState("100vh"); // Default height to prevent flicker on initial render
@@ -174,15 +167,21 @@ export default function AppShell({
}
}, [requireAuth, user, authLoading]);
const flags = useAppStore((s) => s.featureFlags.featureFlags);
const flagsLoaded = useAppStore((s) => s.featureFlags.flagsLoaded);
return (
<Flex h={vh} w="100vw">
<Head>
<title>{title ? `${title} | OpenPipe` : "OpenPipe"}</title>
</Head>
<NavSidebar />
<Box h="100%" flex={1} overflowY="auto" bgColor="gray.50">
{children}
</Box>
</Flex>
<>
<Flex h={vh} w="100vw">
<Head>
<title>{title ? `${title} | OpenPipe` : "OpenPipe"}</title>
</Head>
<NavSidebar />
<Box h="100%" flex={1} overflowY="auto" bgColor="gray.50">
{children}
</Box>
</Flex>
{requireBeta && flagsLoaded && !flags.betaAccess && <BetaModal />}
</>
);
}

View File

@@ -0,0 +1,67 @@
import {
Button,
Modal,
ModalBody,
ModalContent,
ModalFooter,
ModalHeader,
ModalOverlay,
VStack,
Text,
HStack,
Icon,
Link,
} from "@chakra-ui/react";
import { BsStars } from "react-icons/bs";
import { useRouter } from "next/router";
import { useSession } from "next-auth/react";
export const BetaModal = () => {
const router = useRouter();
const session = useSession();
const email = session.data?.user.email ?? "";
return (
<Modal
isOpen
onClose={router.back}
closeOnOverlayClick={false}
size={{ base: "xl", md: "2xl" }}
>
<ModalOverlay />
<ModalContent w={1200}>
<ModalHeader>
<HStack>
<Icon as={BsStars} />
<Text>Beta-Only Feature</Text>
</HStack>
</ModalHeader>
<ModalBody maxW="unset">
<VStack spacing={8} py={4} alignItems="flex-start">
<Text fontSize="md">
This feature is currently in beta. To receive early access to beta-only features, join
the waitlist. You'll receive an email at <b>{email}</b> when you're approved.
</Text>
</VStack>
</ModalBody>
<ModalFooter>
<HStack spacing={4}>
<Button
as={Link}
textDecoration="none !important"
colorScheme="orange"
target="_blank"
href={`https://ax3nafkw0jp.typeform.com/to/ZNpYqvAc#email=${email}`}
>
Join Waitlist
</Button>
<Button colorScheme="blue" onClick={router.back}>
Done
</Button>
</HStack>
</ModalFooter>
</ModalContent>
</Modal>
);
};

View File

@@ -14,6 +14,7 @@ import {
Link as ChakraLink,
Image,
Box,
Portal,
} from "@chakra-ui/react";
import { useEffect } from "react";
import Link from "next/link";
@@ -109,64 +110,66 @@ export default function ProjectMenu() {
</HStack>
</NavSidebarOption>
</PopoverTrigger>
<PopoverContent
_focusVisible={{ outline: "unset" }}
w={220}
ml={{ base: 2, md: 0 }}
boxShadow="0 0 40px 4px rgba(0, 0, 0, 0.1);"
fontSize="sm"
>
<VStack alignItems="flex-start" spacing={1} py={1}>
<Text px={3} py={2}>
{user?.user.email}
</Text>
<Divider />
<Text alignSelf="flex-start" fontWeight="bold" px={3} pt={2}>
Your Projects
</Text>
<VStack spacing={0} w="full" px={1}>
{projects?.map((proj) => (
<ProjectOption
key={proj.id}
proj={proj}
isActive={proj.id === selectedProjectId}
onClose={popover.onClose}
/>
))}
<HStack
as={Button}
variant="ghost"
colorScheme="blue"
color="blue.400"
fontSize="sm"
justifyContent="flex-start"
onClick={createProject}
w="full"
borderRadius={4}
spacing={0}
>
<Text>Add project</Text>
<Icon as={isLoading ? Spinner : BsPlus} boxSize={4} strokeWidth={0.5} />
</HStack>
</VStack>
<Portal>
<PopoverContent
_focusVisible={{ outline: "unset" }}
w={220}
ml={{ base: 2, md: 0 }}
boxShadow="0 0 40px 4px rgba(0, 0, 0, 0.1);"
fontSize="sm"
>
<VStack alignItems="flex-start" spacing={1} py={1}>
<Text px={3} py={2}>
{user?.user.email}
</Text>
<Divider />
<Text alignSelf="flex-start" fontWeight="bold" px={3} pt={2}>
Your Projects
</Text>
<VStack spacing={0} w="full" px={1}>
{projects?.map((proj) => (
<ProjectOption
key={proj.id}
proj={proj}
isActive={proj.id === selectedProjectId}
onClose={popover.onClose}
/>
))}
<HStack
as={Button}
variant="ghost"
colorScheme="blue"
color="blue.400"
fontSize="sm"
justifyContent="flex-start"
onClick={createProject}
w="full"
borderRadius={4}
spacing={0}
>
<Text>Add project</Text>
<Icon as={isLoading ? Spinner : BsPlus} boxSize={4} strokeWidth={0.5} />
</HStack>
</VStack>
<Divider />
<VStack w="full" px={1}>
<ChakraLink
onClick={() => {
signOut().catch(console.error);
}}
_hover={{ bgColor: "gray.200", textDecoration: "none" }}
w="full"
py={2}
px={2}
borderRadius={4}
>
<Text>Sign out</Text>
</ChakraLink>
<Divider />
<VStack w="full" px={1}>
<ChakraLink
onClick={() => {
signOut().catch(console.error);
}}
_hover={{ bgColor: "gray.200", textDecoration: "none" }}
w="full"
py={2}
px={2}
borderRadius={4}
>
<Text>Sign out</Text>
</ChakraLink>
</VStack>
</VStack>
</VStack>
</PopoverContent>
</PopoverContent>
</Portal>
</Popover>
</VStack>
);

View File

@@ -23,50 +23,48 @@ export default function UserMenu({ user, ...rest }: { user: Session } & StackPro
);
return (
<>
<Popover placement="right">
<PopoverTrigger>
<NavSidebarOption>
<HStack
// Weird values to make mobile look right; can clean up when we make the sidebar disappear on mobile
py={2}
px={1}
spacing={3}
{...rest}
>
{profileImage}
<VStack spacing={0} align="start" flex={1} flexShrink={1}>
<Text fontWeight="bold" fontSize="sm">
{user.user.name}
</Text>
<Text color="gray.500" fontSize="xs">
{/* {user.user.email} */}
</Text>
</VStack>
<Icon as={BsChevronRight} boxSize={4} color="gray.500" />
</HStack>
</NavSidebarOption>
</PopoverTrigger>
<PopoverContent _focusVisible={{ outline: "unset" }} ml={-1} minW={48} w="full">
<VStack align="stretch" spacing={0}>
{/* sign out */}
<HStack
as={Link}
onClick={() => {
signOut().catch(console.error);
}}
px={4}
py={2}
spacing={4}
color="gray.500"
fontSize="sm"
>
<Icon as={BsBoxArrowRight} boxSize={6} />
<Text>Sign out</Text>
</HStack>
</VStack>
</PopoverContent>
</Popover>
</>
<Popover placement="right">
<PopoverTrigger>
<NavSidebarOption>
<HStack
// Weird values to make mobile look right; can clean up when we make the sidebar disappear on mobile
py={2}
px={1}
spacing={3}
{...rest}
>
{profileImage}
<VStack spacing={0} align="start" flex={1} flexShrink={1}>
<Text fontWeight="bold" fontSize="sm">
{user.user.name}
</Text>
<Text color="gray.500" fontSize="xs">
{/* {user.user.email} */}
</Text>
</VStack>
<Icon as={BsChevronRight} boxSize={4} color="gray.500" />
</HStack>
</NavSidebarOption>
</PopoverTrigger>
<PopoverContent _focusVisible={{ outline: "unset" }} ml={-1} minW={48} w="full">
<VStack align="stretch" spacing={0}>
{/* sign out */}
<HStack
as={Link}
onClick={() => {
signOut().catch(console.error);
}}
px={4}
py={2}
spacing={4}
color="gray.500"
fontSize="sm"
>
<Icon as={BsBoxArrowRight} boxSize={6} />
<Text>Sign out</Text>
</HStack>
</VStack>
</PopoverContent>
</Popover>
);
}

View File

@@ -21,7 +21,7 @@ const ActionButton = ({
>
<HStack spacing={1}>
{icon && <Icon as={icon} />}
<Text>{label}</Text>
<Text display={{ base: "none", md: "flex" }}>{label}</Text>
</HStack>
</Button>
);

View File

@@ -0,0 +1,117 @@
import {
Icon,
Popover,
PopoverTrigger,
PopoverContent,
VStack,
HStack,
Button,
Text,
useDisclosure,
Box,
} from "@chakra-ui/react";
import { BiCheck } from "react-icons/bi";
import { BsToggles } from "react-icons/bs";
import { useMemo } from "react";
import { useIsClientRehydrated, useTagNames } from "~/utils/hooks";
import { useAppStore } from "~/state/store";
import { StaticColumnKeys } from "~/state/columnVisiblitySlice";
import ActionButton from "./ActionButton";
const ColumnVisiblityDropdown = () => {
const tagNames = useTagNames().data;
const visibleColumns = useAppStore((s) => s.columnVisibility.visibleColumns);
const toggleColumnVisibility = useAppStore((s) => s.columnVisibility.toggleColumnVisibility);
const totalColumns = Object.keys(StaticColumnKeys).length + (tagNames?.length ?? 0);
const popover = useDisclosure();
const columnVisiblityOptions = useMemo(() => {
const options: { label: string; key: string }[] = [
{
label: "Sent At",
key: StaticColumnKeys.SENT_AT,
},
{
label: "Model",
key: StaticColumnKeys.MODEL,
},
{
label: "Duration",
key: StaticColumnKeys.DURATION,
},
{
label: "Input Tokens",
key: StaticColumnKeys.INPUT_TOKENS,
},
{
label: "Output Tokens",
key: StaticColumnKeys.OUTPUT_TOKENS,
},
{
label: "Status Code",
key: StaticColumnKeys.STATUS_CODE,
},
];
for (const tagName of tagNames ?? []) {
options.push({
label: tagName,
key: tagName,
});
}
return options;
}, [tagNames]);
const isClientRehydrated = useIsClientRehydrated();
if (!isClientRehydrated) return null;
return (
<Popover
placement="bottom-start"
isOpen={popover.isOpen}
onOpen={popover.onOpen}
onClose={popover.onClose}
>
<PopoverTrigger>
<Box>
<ActionButton
label={`Columns (${visibleColumns.size}/${totalColumns})`}
icon={BsToggles}
/>
</Box>
</PopoverTrigger>
<PopoverContent boxShadow="0 0 40px 4px rgba(0, 0, 0, 0.1);" minW={0} w="auto">
<VStack spacing={0} maxH={400} overflowY="auto">
{columnVisiblityOptions?.map((option, index) => (
<HStack
key={index}
as={Button}
onClick={() => toggleColumnVisibility(option.key)}
w="full"
minH={10}
variant="ghost"
justifyContent="space-between"
fontWeight="semibold"
borderRadius={0}
colorScheme="blue"
color="black"
fontSize="sm"
borderBottomWidth={1}
>
<Text mr={16}>{option.label}</Text>
<Box w={5}>
{visibleColumns.has(option.key) && (
<Icon as={BiCheck} color="blue.500" boxSize={5} />
)}
</Box>
</HStack>
))}
</VStack>
</PopoverContent>
</Popover>
);
};
export default ColumnVisiblityDropdown;

View File

@@ -0,0 +1,210 @@
import { useState, useEffect } from "react";
import {
Modal,
ModalOverlay,
ModalContent,
ModalHeader,
ModalCloseButton,
ModalBody,
ModalFooter,
HStack,
VStack,
Icon,
Text,
Button,
Checkbox,
NumberInput,
NumberInputField,
NumberInputStepper,
NumberIncrementStepper,
NumberDecrementStepper,
Collapse,
Flex,
useDisclosure,
type UseDisclosureReturn,
} from "@chakra-ui/react";
import { BiExport } from "react-icons/bi";
import { useHandledAsyncCallback } from "~/utils/hooks";
import { api } from "~/utils/api";
import { useAppStore } from "~/state/store";
import ActionButton from "./ActionButton";
import InputDropdown from "../InputDropdown";
import { FiChevronUp, FiChevronDown } from "react-icons/fi";
import InfoCircle from "../InfoCircle";
const SUPPORTED_EXPORT_FORMATS = ["alpaca-finetune", "openai-fine-tune", "unformatted"];
const ExportButton = () => {
const selectedLogIds = useAppStore((s) => s.selectedLogs.selectedLogIds);
const disclosure = useDisclosure();
return (
<>
<ActionButton
onClick={disclosure.onOpen}
label="Export"
icon={BiExport}
isDisabled={selectedLogIds.size === 0}
/>
<ExportLogsModal disclosure={disclosure} />
</>
);
};
export default ExportButton;
const ExportLogsModal = ({ disclosure }: { disclosure: UseDisclosureReturn }) => {
const selectedProjectId = useAppStore((s) => s.selectedProjectId);
const selectedLogIds = useAppStore((s) => s.selectedLogs.selectedLogIds);
const clearSelectedLogIds = useAppStore((s) => s.selectedLogs.clearSelectedLogIds);
const [selectedExportFormat, setSelectedExportFormat] = useState(SUPPORTED_EXPORT_FORMATS[0]);
const [testingSplit, setTestingSplit] = useState(10);
const [removeDuplicates, setRemoveDuplicates] = useState(true);
const [showAdvancedOptions, setShowAdvancedOptions] = useState(false);
useEffect(() => {
if (disclosure.isOpen) {
setSelectedExportFormat(SUPPORTED_EXPORT_FORMATS[0]);
setTestingSplit(10);
setRemoveDuplicates(true);
}
}, [disclosure.isOpen]);
const exportLogsMutation = api.loggedCalls.export.useMutation();
const [exportLogs, exportInProgress] = useHandledAsyncCallback(async () => {
if (!selectedProjectId || !selectedLogIds.size || !testingSplit || !selectedExportFormat)
return;
const response = await exportLogsMutation.mutateAsync({
projectId: selectedProjectId,
selectedLogIds: Array.from(selectedLogIds),
testingSplit,
selectedExportFormat,
removeDuplicates,
});
const dataUrl = `data:application/pdf;base64,${response}`;
const blob = await fetch(dataUrl).then((res) => res.blob());
const url = URL.createObjectURL(blob);
const a = document.createElement("a");
a.href = url;
a.download = `data.zip`;
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
disclosure.onClose();
clearSelectedLogIds();
}, [
exportLogsMutation,
selectedProjectId,
selectedLogIds,
testingSplit,
selectedExportFormat,
removeDuplicates,
]);
return (
<Modal size={{ base: "xl", md: "2xl" }} {...disclosure}>
<ModalOverlay />
<ModalContent w={1200}>
<ModalHeader>
<HStack>
<Icon as={BiExport} />
<Text>Export Logs</Text>
</HStack>
</ModalHeader>
<ModalCloseButton />
<ModalBody maxW="unset">
<VStack w="full" spacing={8} pt={4} alignItems="flex-start">
<Text>
We'll export the <b>{selectedLogIds.size}</b> logs you have selected in the format of
your choice.
</Text>
<VStack alignItems="flex-start" spacing={4}>
<Flex
flexDir={{ base: "column", md: "row" }}
alignItems={{ base: "flex-start", md: "center" }}
>
<HStack w={48} alignItems="center" spacing={1}>
<Text fontWeight="bold">Format:</Text>
<InfoCircle tooltipText="Format logs for for fine tuning or export them without formatting." />
</HStack>
<InputDropdown
options={SUPPORTED_EXPORT_FORMATS}
selectedOption={selectedExportFormat}
onSelect={(option) => setSelectedExportFormat(option)}
inputGroupProps={{ w: 48 }}
/>
</Flex>
<Flex
flexDir={{ base: "column", md: "row" }}
alignItems={{ base: "flex-start", md: "center" }}
>
<HStack w={48} alignItems="center" spacing={1}>
<Text fontWeight="bold">Testing Split:</Text>
<InfoCircle tooltipText="The percent of your logs that will be reserved for testing and saved in another file. Logs are split randomly." />
</HStack>
<HStack>
<NumberInput
defaultValue={10}
onChange={(_, num) => setTestingSplit(num)}
min={1}
max={100}
w={48}
>
<NumberInputField />
<NumberInputStepper>
<NumberIncrementStepper />
<NumberDecrementStepper />
</NumberInputStepper>
</NumberInput>
</HStack>
</Flex>
</VStack>
<VStack alignItems="flex-start" spacing={0}>
<Button
variant="unstyled"
color="blue.600"
onClick={() => setShowAdvancedOptions(!showAdvancedOptions)}
>
<HStack>
<Text>Advanced Options</Text>
<Icon as={showAdvancedOptions ? FiChevronUp : FiChevronDown} />
</HStack>
</Button>
<Collapse in={showAdvancedOptions} unmountOnExit={true}>
<VStack align="stretch" pt={4}>
<HStack>
<Checkbox
colorScheme="blue"
isChecked={removeDuplicates}
onChange={(e) => setRemoveDuplicates(e.target.checked)}
>
<Text>Remove duplicates</Text>
</Checkbox>
<InfoCircle tooltipText="To avoid overfitting and speed up training, automatically deduplicate logs with matching input and output." />
</HStack>
</VStack>
</Collapse>
</VStack>
</VStack>
</ModalBody>
<ModalFooter>
<HStack>
<Button colorScheme="gray" onClick={disclosure.onClose} minW={24}>
Cancel
</Button>
<Button colorScheme="blue" onClick={exportLogs} isLoading={exportInProgress} minW={24}>
Export
</Button>
</HStack>
</ModalFooter>
</ModalContent>
</Modal>
);
};

View File

@@ -0,0 +1,161 @@
import { useState, useEffect } from "react";
import {
Modal,
ModalOverlay,
ModalContent,
ModalHeader,
ModalCloseButton,
ModalBody,
ModalFooter,
HStack,
VStack,
Icon,
Text,
Button,
useDisclosure,
type UseDisclosureReturn,
Input,
} from "@chakra-ui/react";
import { FaRobot } from "react-icons/fa";
import humanId from "human-id";
import { useRouter } from "next/router";
import { useHandledAsyncCallback } from "~/utils/hooks";
import { api } from "~/utils/api";
import { useAppStore } from "~/state/store";
import ActionButton from "./ActionButton";
import InputDropdown from "../InputDropdown";
import { FiChevronDown } from "react-icons/fi";
const SUPPORTED_BASE_MODELS = ["llama2-7b", "llama2-13b", "llama2-70b", "gpt-3.5-turbo"];
const FineTuneButton = () => {
const selectedLogIds = useAppStore((s) => s.selectedLogs.selectedLogIds);
const disclosure = useDisclosure();
return (
<>
<ActionButton
onClick={disclosure.onOpen}
label="Fine Tune"
icon={FaRobot}
isDisabled={selectedLogIds.size === 0}
/>
<FineTuneModal disclosure={disclosure} />
</>
);
};
export default FineTuneButton;
const FineTuneModal = ({ disclosure }: { disclosure: UseDisclosureReturn }) => {
const selectedProjectId = useAppStore((s) => s.selectedProjectId);
const selectedLogIds = useAppStore((s) => s.selectedLogs.selectedLogIds);
const clearSelectedLogIds = useAppStore((s) => s.selectedLogs.clearSelectedLogIds);
const [selectedBaseModel, setSelectedBaseModel] = useState(SUPPORTED_BASE_MODELS[0]);
const [modelSlug, setModelSlug] = useState(humanId({ separator: "-", capitalize: false }));
useEffect(() => {
if (disclosure.isOpen) {
setSelectedBaseModel(SUPPORTED_BASE_MODELS[0]);
setModelSlug(humanId({ separator: "-", capitalize: false }));
}
}, [disclosure.isOpen]);
const utils = api.useContext();
const router = useRouter();
const createFineTuneMutation = api.fineTunes.create.useMutation();
const [createFineTune, creationInProgress] = useHandledAsyncCallback(async () => {
if (!selectedProjectId || !modelSlug || !selectedBaseModel || !selectedLogIds.size) return;
await createFineTuneMutation.mutateAsync({
projectId: selectedProjectId,
slug: modelSlug,
baseModel: selectedBaseModel,
selectedLogIds: Array.from(selectedLogIds),
});
await utils.fineTunes.list.invalidate();
await router.push({ pathname: "/fine-tunes" });
clearSelectedLogIds();
disclosure.onClose();
}, [createFineTuneMutation, selectedProjectId, selectedLogIds, modelSlug, selectedBaseModel]);
return (
<Modal size={{ base: "xl", md: "2xl" }} {...disclosure}>
<ModalOverlay />
<ModalContent w={1200}>
<ModalHeader>
<HStack>
<Icon as={FaRobot} />
<Text>Fine Tune</Text>
</HStack>
</ModalHeader>
<ModalCloseButton />
<ModalBody maxW="unset">
<VStack w="full" spacing={8} pt={4} alignItems="flex-start">
<Text>
We'll train on the <b>{selectedLogIds.size}</b> logs you've selected.
</Text>
<VStack>
<HStack spacing={2} w="full">
<Text fontWeight="bold" w={36}>
Model ID:
</Text>
<Input
value={modelSlug}
onChange={(e) => setModelSlug(e.target.value)}
w={48}
placeholder="unique-id"
onKeyDown={(e) => {
// If the user types anything other than a-z, A-Z, or 0-9, replace it with -
if (!/[a-zA-Z0-9]/.test(e.key)) {
e.preventDefault();
setModelSlug((s) => s && `${s}-`);
}
}}
/>
</HStack>
<HStack spacing={2}>
<Text fontWeight="bold" w={36}>
Base model:
</Text>
<InputDropdown
options={SUPPORTED_BASE_MODELS}
selectedOption={selectedBaseModel}
onSelect={(option) => setSelectedBaseModel(option)}
inputGroupProps={{ w: 48 }}
/>
</HStack>
</VStack>
<Button variant="unstyled" color="blue.600">
<HStack>
<Text>Advanced Options</Text>
<Icon as={FiChevronDown} />
</HStack>
</Button>
</VStack>
</ModalBody>
<ModalFooter>
<HStack>
<Button colorScheme="gray" onClick={disclosure.onClose} minW={24}>
Cancel
</Button>
<Button
colorScheme="blue"
onClick={createFineTune}
isLoading={creationInProgress}
minW={24}
isDisabled={!modelSlug}
>
Start Training
</Button>
</HStack>
</ModalFooter>
</ModalContent>
</Modal>
);
};

View File

@@ -10,7 +10,7 @@ export default function LoggedCallsTable() {
return (
<Card width="100%" overflowX="auto">
<Table>
<TableHeader showCheckbox />
<TableHeader showOptions />
<Tbody>
{loggedCalls?.calls?.map((loggedCall) => {
return (
@@ -25,7 +25,7 @@ export default function LoggedCallsTable() {
setExpandedRow(loggedCall.id);
}
}}
showCheckbox
showOptions
/>
);
})}

View File

@@ -14,21 +14,19 @@ import {
Text,
Checkbox,
} from "@chakra-ui/react";
import dayjs from "dayjs";
import relativeTime from "dayjs/plugin/relativeTime";
import Link from "next/link";
import dayjs from "~/utils/dayjs";
import { type RouterOutputs } from "~/utils/api";
import { FormattedJson } from "./FormattedJson";
import { useAppStore } from "~/state/store";
import { useLoggedCalls, useTagNames } from "~/utils/hooks";
import { useIsClientRehydrated, useLoggedCalls, useTagNames } from "~/utils/hooks";
import { useMemo } from "react";
dayjs.extend(relativeTime);
import { StaticColumnKeys } from "~/state/columnVisiblitySlice";
type LoggedCall = RouterOutputs["loggedCalls"]["list"]["calls"][0];
export const TableHeader = ({ showCheckbox }: { showCheckbox?: boolean }) => {
export const TableHeader = ({ showOptions }: { showOptions?: boolean }) => {
const matchingLogIds = useLoggedCalls().data?.matchingLogIds;
const selectedLogIds = useAppStore((s) => s.selectedLogs.selectedLogIds);
const addAll = useAppStore((s) => s.selectedLogs.addSelectedLogIds);
@@ -38,10 +36,14 @@ export const TableHeader = ({ showCheckbox }: { showCheckbox?: boolean }) => {
return matchingLogIds.every((id) => selectedLogIds.has(id));
}, [selectedLogIds, matchingLogIds]);
const tagNames = useTagNames().data;
const visibleColumns = useAppStore((s) => s.columnVisibility.visibleColumns);
const isClientRehydrated = useIsClientRehydrated();
if (!isClientRehydrated) return null;
return (
<Thead>
<Tr>
{showCheckbox && (
{showOptions && (
<Th pr={0}>
<HStack minW={16}>
<Checkbox
@@ -57,13 +59,19 @@ export const TableHeader = ({ showCheckbox }: { showCheckbox?: boolean }) => {
</HStack>
</Th>
)}
<Th>Sent At</Th>
<Th>Model</Th>
{tagNames?.map((tagName) => <Th key={tagName}>{tagName}</Th>)}
<Th isNumeric>Duration</Th>
<Th isNumeric>Input tokens</Th>
<Th isNumeric>Output tokens</Th>
<Th isNumeric>Status</Th>
{visibleColumns.has(StaticColumnKeys.SENT_AT) && <Th>Sent At</Th>}
{visibleColumns.has(StaticColumnKeys.MODEL) && <Th>Model</Th>}
{tagNames
?.filter((tagName) => visibleColumns.has(tagName))
.map((tagName) => (
<Th key={tagName} textTransform={"none"}>
{tagName}
</Th>
))}
{visibleColumns.has(StaticColumnKeys.DURATION) && <Th isNumeric>Duration</Th>}
{visibleColumns.has(StaticColumnKeys.INPUT_TOKENS) && <Th isNumeric>Input tokens</Th>}
{visibleColumns.has(StaticColumnKeys.OUTPUT_TOKENS) && <Th isNumeric>Output tokens</Th>}
{visibleColumns.has(StaticColumnKeys.STATUS_CODE) && <Th isNumeric>Status</Th>}
</Tr>
</Thead>
);
@@ -73,12 +81,12 @@ export const TableRow = ({
loggedCall,
isExpanded,
onToggle,
showCheckbox,
showOptions,
}: {
loggedCall: LoggedCall;
isExpanded: boolean;
onToggle: () => void;
showCheckbox?: boolean;
showOptions?: boolean;
}) => {
const isError = loggedCall.modelResponse?.statusCode !== 200;
const requestedAt = dayjs(loggedCall.requestedAt).format("MMMM D h:mm A");
@@ -88,6 +96,14 @@ export const TableRow = ({
const toggleChecked = useAppStore((s) => s.selectedLogs.toggleSelectedLogId);
const tagNames = useTagNames().data;
const visibleColumns = useAppStore((s) => s.columnVisibility.visibleColumns);
const visibleTagNames = useMemo(() => {
return tagNames?.filter((tagName) => visibleColumns.has(tagName)) ?? [];
}, [tagNames, visibleColumns]);
const isClientRehydrated = useIsClientRehydrated();
if (!isClientRehydrated) return null;
return (
<>
@@ -100,50 +116,64 @@ export const TableRow = ({
}}
fontSize="sm"
>
{showCheckbox && (
{showOptions && (
<Td>
<Checkbox isChecked={isChecked} onChange={() => toggleChecked(loggedCall.id)} />
</Td>
)}
<Td>
<Tooltip label={fullTime} placement="top">
<Box whiteSpace="nowrap" minW="120px">
{requestedAt}
</Box>
</Tooltip>
</Td>
<Td>
<HStack justifyContent="flex-start">
<Text
colorScheme="purple"
color="purple.500"
borderColor="purple.500"
px={1}
borderRadius={4}
borderWidth={1}
fontSize="xs"
whiteSpace="nowrap"
>
{loggedCall.model}
</Text>
</HStack>
</Td>
{tagNames?.map((tagName) => <Td key={tagName}>{loggedCall.tags[tagName]}</Td>)}
<Td isNumeric>
{loggedCall.cacheHit ? (
<Text color="gray.500">Cached</Text>
) : (
((loggedCall.modelResponse?.durationMs ?? 0) / 1000).toFixed(2) + "s"
)}
</Td>
<Td isNumeric>{loggedCall.modelResponse?.inputTokens}</Td>
<Td isNumeric>{loggedCall.modelResponse?.outputTokens}</Td>
<Td sx={{ color: isError ? "red.500" : "green.500", fontWeight: "semibold" }} isNumeric>
{loggedCall.modelResponse?.statusCode ?? "No response"}
</Td>
{visibleColumns.has(StaticColumnKeys.SENT_AT) && (
<Td>
<Tooltip label={fullTime} placement="top">
<Box whiteSpace="nowrap" minW="120px">
{requestedAt}
</Box>
</Tooltip>
</Td>
)}
{visibleColumns.has(StaticColumnKeys.MODEL) && (
<Td>
<HStack justifyContent="flex-start">
<Text
colorScheme="purple"
color="purple.500"
borderColor="purple.500"
px={1}
borderRadius={4}
borderWidth={1}
fontSize="xs"
whiteSpace="nowrap"
>
{loggedCall.model}
</Text>
</HStack>
</Td>
)}
{visibleTagNames.map((tagName) => (
<Td key={tagName}>{loggedCall.tags[tagName]}</Td>
))}
{visibleColumns.has(StaticColumnKeys.DURATION) && (
<Td isNumeric>
{loggedCall.cacheHit ? (
<Text color="gray.500">Cached</Text>
) : (
((loggedCall.modelResponse?.durationMs ?? 0) / 1000).toFixed(2) + "s"
)}
</Td>
)}
{visibleColumns.has(StaticColumnKeys.INPUT_TOKENS) && (
<Td isNumeric>{loggedCall.modelResponse?.inputTokens}</Td>
)}
{visibleColumns.has(StaticColumnKeys.OUTPUT_TOKENS) && (
<Td isNumeric>{loggedCall.modelResponse?.outputTokens}</Td>
)}
{visibleColumns.has(StaticColumnKeys.STATUS_CODE) && (
<Td sx={{ color: isError ? "red.500" : "green.500", fontWeight: "semibold" }} isNumeric>
{loggedCall.modelResponse?.statusCode ?? "No response"}
</Td>
)}
</Tr>
<Tr>
<Td colSpan={8} p={0}>
<Td colSpan={visibleColumns.size + 1} w="full" p={0}>
<Collapse in={isExpanded} unmountOnExit={true}>
<VStack p={4} align="stretch">
<HStack align="stretch">

View File

@@ -46,8 +46,6 @@ export const env = createEnv({
NEXT_PUBLIC_SOCKET_URL: z.string().url().default("http://localhost:3318"),
NEXT_PUBLIC_HOST: z.string().url().default("http://localhost:3000"),
NEXT_PUBLIC_SENTRY_DSN: z.string().optional(),
NEXT_PUBLIC_SHOW_DATA: z.string().optional(),
NEXT_PUBLIC_FF_SHOW_LOGGED_CALLS: z.string().optional(),
},
/**
@@ -62,7 +60,6 @@ export const env = createEnv({
NEXT_PUBLIC_POSTHOG_KEY: process.env.NEXT_PUBLIC_POSTHOG_KEY,
NEXT_PUBLIC_SOCKET_URL: process.env.NEXT_PUBLIC_SOCKET_URL,
NEXT_PUBLIC_HOST: process.env.NEXT_PUBLIC_HOST,
NEXT_PUBLIC_SHOW_DATA: process.env.NEXT_PUBLIC_SHOW_DATA,
GITHUB_CLIENT_ID: process.env.GITHUB_CLIENT_ID,
GITHUB_CLIENT_SECRET: process.env.GITHUB_CLIENT_SECRET,
REPLICATE_API_TOKEN: process.env.REPLICATE_API_TOKEN,
@@ -70,7 +67,6 @@ export const env = createEnv({
NEXT_PUBLIC_SENTRY_DSN: process.env.NEXT_PUBLIC_SENTRY_DSN,
SENTRY_AUTH_TOKEN: process.env.SENTRY_AUTH_TOKEN,
OPENPIPE_API_KEY: process.env.OPENPIPE_API_KEY,
NEXT_PUBLIC_FF_SHOW_LOGGED_CALLS: process.env.NEXT_PUBLIC_FF_SHOW_LOGGED_CALLS,
SENDER_EMAIL: process.env.SENDER_EMAIL,
SMTP_HOST: process.env.SMTP_HOST,
SMTP_PORT: process.env.SMTP_PORT,

View File

@@ -33,7 +33,7 @@ export default function Dashboard() {
);
return (
<AppShell title="Dashboard" requireAuth>
<AppShell title="Dashboard" requireAuth requireBeta>
<VStack px={8} py={8} alignItems="flex-start" spacing={4}>
<Text fontSize="2xl" fontWeight="bold">
Dashboard

View File

@@ -1,97 +0,0 @@
import {
Box,
Breadcrumb,
BreadcrumbItem,
Center,
Flex,
Icon,
Input,
VStack,
} from "@chakra-ui/react";
import Link from "next/link";
import { useRouter } from "next/router";
import { useState, useEffect } from "react";
import { RiDatabase2Line } from "react-icons/ri";
import AppShell from "~/components/nav/AppShell";
import { api } from "~/utils/api";
import { useDataset, useHandledAsyncCallback } from "~/utils/hooks";
import DatasetEntriesTable from "~/components/datasets/DatasetEntriesTable";
import { DatasetHeaderButtons } from "~/components/datasets/DatasetHeaderButtons/DatasetHeaderButtons";
import PageHeaderContainer from "~/components/nav/PageHeaderContainer";
import ProjectBreadcrumbContents from "~/components/nav/ProjectBreadcrumbContents";
export default function Dataset() {
const router = useRouter();
const utils = api.useContext();
const dataset = useDataset();
const datasetId = router.query.id as string;
const [name, setName] = useState(dataset.data?.name || "");
useEffect(() => {
setName(dataset.data?.name || "");
}, [dataset.data?.name]);
const updateMutation = api.datasets.update.useMutation();
const [onSaveName] = useHandledAsyncCallback(async () => {
if (name && name !== dataset.data?.name && dataset.data?.id) {
await updateMutation.mutateAsync({
id: dataset.data.id,
updates: { name: name },
});
await Promise.all([utils.datasets.list.invalidate(), utils.datasets.get.invalidate()]);
}
}, [updateMutation, dataset.data?.id, dataset.data?.name, name]);
if (!dataset.isLoading && !dataset.data) {
return (
<AppShell title="Dataset not found">
<Center h="100%">
<div>Dataset not found 😕</div>
</Center>
</AppShell>
);
}
return (
<AppShell title={dataset.data?.name}>
<VStack h="full">
<PageHeaderContainer>
<Breadcrumb>
<BreadcrumbItem>
<ProjectBreadcrumbContents projectName={dataset.data?.project?.name} />
</BreadcrumbItem>
<BreadcrumbItem>
<Link href="/data">
<Flex alignItems="center" _hover={{ textDecoration: "underline" }}>
<Icon as={RiDatabase2Line} boxSize={4} mr={2} /> Datasets
</Flex>
</Link>
</BreadcrumbItem>
<BreadcrumbItem isCurrentPage>
<Input
size="sm"
value={name}
onChange={(e) => setName(e.target.value)}
onBlur={onSaveName}
borderWidth={1}
borderColor="transparent"
fontSize={16}
px={0}
minW={{ base: 100, lg: 300 }}
flex={1}
_hover={{ borderColor: "gray.300" }}
_focus={{ borderColor: "blue.500", outline: "none" }}
/>
</BreadcrumbItem>
</Breadcrumb>
<DatasetHeaderButtons />
</PageHeaderContainer>
<Box w="full" overflowX="auto" flex={1} px={8} pt={8} pb={16}>
{datasetId && <DatasetEntriesTable />}
</Box>
</VStack>
</AppShell>
);
}

View File

@@ -1,49 +0,0 @@
import { SimpleGrid, Icon, Breadcrumb, BreadcrumbItem, Flex } from "@chakra-ui/react";
import AppShell from "~/components/nav/AppShell";
import { RiDatabase2Line } from "react-icons/ri";
import {
DatasetCard,
DatasetCardSkeleton,
NewDatasetCard,
} from "~/components/datasets/DatasetCard";
import PageHeaderContainer from "~/components/nav/PageHeaderContainer";
import ProjectBreadcrumbContents from "~/components/nav/ProjectBreadcrumbContents";
import { useDatasets } from "~/utils/hooks";
export default function DatasetsPage() {
const datasets = useDatasets();
return (
<AppShell title="Data" requireAuth>
<PageHeaderContainer>
<Breadcrumb>
<BreadcrumbItem>
<ProjectBreadcrumbContents />
</BreadcrumbItem>
<BreadcrumbItem minH={8}>
<Flex alignItems="center">
<Icon as={RiDatabase2Line} boxSize={4} mr={2} /> Datasets
</Flex>
</BreadcrumbItem>
</Breadcrumb>
</PageHeaderContainer>
<SimpleGrid w="full" columns={{ base: 1, md: 2, lg: 3, xl: 4 }} spacing={8} py={4} px={8}>
<NewDatasetCard />
{datasets.data && !datasets.isLoading ? (
datasets?.data?.map((dataset) => (
<DatasetCard
key={dataset.id}
dataset={{ ...dataset, numEntries: dataset._count.datasetEntries }}
/>
))
) : (
<>
<DatasetCardSkeleton />
<DatasetCardSkeleton />
<DatasetCardSkeleton />
</>
)}
</SimpleGrid>
</AppShell>
);
}

View File

@@ -0,0 +1,18 @@
import { Text, VStack, Divider } from "@chakra-ui/react";
import FineTunesTable from "~/components/fineTunes/FineTunesTable";
import AppShell from "~/components/nav/AppShell";
export default function FineTunes() {
return (
<AppShell title="Fine Tunes" requireAuth requireBeta>
<VStack px={8} py={8} alignItems="flex-start" spacing={4} w="full">
<Text fontSize="2xl" fontWeight="bold">
Fine Tunes
</Text>
<Divider />
<FineTunesTable />
</VStack>
</AppShell>
);
}

View File

@@ -1,5 +1,5 @@
import { useState } from "react";
import { Text, VStack, Divider, HStack } from "@chakra-ui/react";
import { Text, VStack, Divider, HStack, Box } from "@chakra-ui/react";
import AppShell from "~/components/nav/AppShell";
import LoggedCallTable from "~/components/requestLogs/LoggedCallsTable";
@@ -9,6 +9,9 @@ import { useAppStore } from "~/state/store";
import { RiFlaskLine } from "react-icons/ri";
import { FiFilter } from "react-icons/fi";
import LogFilters from "~/components/requestLogs/LogFilters/LogFilters";
import ColumnVisiblityDropdown from "~/components/requestLogs/ColumnVisiblityDropdown";
import FineTuneButton from "~/components/requestLogs/FineTuneButton";
import ExportButton from "~/components/requestLogs/ExportButton";
export default function LoggedCalls() {
const selectedLogIds = useAppStore((s) => s.selectedLogs.selectedLogIds);
@@ -16,33 +19,38 @@ export default function LoggedCalls() {
const [filtersShown, setFiltersShown] = useState(true);
return (
<AppShell title="Request Logs" requireAuth>
<VStack px={8} py={8} alignItems="flex-start" spacing={4} w="full">
<Text fontSize="2xl" fontWeight="bold">
Request Logs
</Text>
<Divider />
<HStack w="full" justifyContent="flex-end">
<ActionButton
onClick={() => {
setFiltersShown(!filtersShown);
}}
label={filtersShown ? "Hide Filters" : "Show Filters"}
icon={FiFilter}
/>
<ActionButton
onClick={() => {
console.log("experimenting with these ids", selectedLogIds);
}}
label="Experiment"
icon={RiFlaskLine}
isDisabled={selectedLogIds.size === 0}
/>
</HStack>
{filtersShown && <LogFilters />}
<LoggedCallTable />
<LoggedCallsPaginator />
</VStack>
<AppShell title="Request Logs" requireAuth requireBeta>
<Box h="100vh" overflowY="scroll">
<VStack px={8} py={8} alignItems="flex-start" spacing={4} w="full">
<Text fontSize="2xl" fontWeight="bold">
Request Logs
</Text>
<Divider />
<HStack w="full" justifyContent="flex-end">
<FineTuneButton />
<ActionButton
onClick={() => {
console.log("experimenting with these ids", selectedLogIds);
}}
label="Experiment"
icon={RiFlaskLine}
isDisabled={selectedLogIds.size === 0}
/>
<ExportButton />
<ColumnVisiblityDropdown />
<ActionButton
onClick={() => {
setFiltersShown(!filtersShown);
}}
label={filtersShown ? "Hide Filters" : "Show Filters"}
icon={FiFilter}
/>
</HStack>
{filtersShown && <LogFilters />}
<LoggedCallTable />
<LoggedCallsPaginator />
</VStack>
</Box>
</AppShell>
);
}

View File

@@ -1,113 +0,0 @@
import { type ChatCompletion } from "openai/resources/chat";
import { openai } from "../../utils/openai";
import { isAxiosError } from "./utils";
import { type APIResponse } from "openai/core";
import { sleep } from "~/server/utils/sleep";
const MAX_AUTO_RETRIES = 50;
const MIN_DELAY = 500; // milliseconds
const MAX_DELAY = 15000; // milliseconds
function calculateDelay(numPreviousTries: number): number {
const baseDelay = Math.min(MAX_DELAY, MIN_DELAY * Math.pow(2, numPreviousTries));
const jitter = Math.random() * baseDelay;
return baseDelay + jitter;
}
const getCompletionWithBackoff = async (
getCompletion: () => Promise<APIResponse<ChatCompletion>>,
) => {
let completion;
let tries = 0;
while (tries < MAX_AUTO_RETRIES) {
try {
completion = await getCompletion();
break;
} catch (e) {
if (isAxiosError(e)) {
console.error(e?.response?.data?.error?.message);
} else {
await sleep(calculateDelay(tries));
console.error(e);
}
}
tries++;
}
return completion;
};
// TODO: Add seeds to ensure batches don't contain duplicate data
const MAX_BATCH_SIZE = 5;
export const autogenerateDatasetEntries = async (
numToGenerate: number,
inputDescription: string,
outputDescription: string,
): Promise<{ input: string; output: string }[]> => {
const batchSizes = Array.from({ length: Math.ceil(numToGenerate / MAX_BATCH_SIZE) }, (_, i) =>
i === Math.ceil(numToGenerate / MAX_BATCH_SIZE) - 1 && numToGenerate % MAX_BATCH_SIZE
? numToGenerate % MAX_BATCH_SIZE
: MAX_BATCH_SIZE,
);
const getCompletion = (batchSize: number) =>
openai.chat.completions.create({
model: "gpt-4",
messages: [
{
role: "system",
content: `The user needs ${batchSize} rows of data, each with an input and an output.\n---\n The input should follow these requirements: ${inputDescription}\n---\n The output should follow these requirements: ${outputDescription}`,
},
],
functions: [
{
name: "add_list_of_data",
description: "Add a list of data to the database",
parameters: {
type: "object",
properties: {
rows: {
type: "array",
description: "The rows of data that match the description",
items: {
type: "object",
properties: {
input: {
type: "string",
description: "The input for this row",
},
output: {
type: "string",
description: "The output for this row",
},
},
},
},
},
},
},
],
function_call: { name: "add_list_of_data" },
temperature: 0.5,
openpipe: {
tags: {
prompt_id: "autogenerateDatasetEntries",
},
},
});
const completionCallbacks = batchSizes.map((batchSize) =>
getCompletionWithBackoff(() => getCompletion(batchSize)),
);
const completions = await Promise.all(completionCallbacks);
const rows = completions.flatMap((completion) => {
const parsed = JSON.parse(
completion?.choices[0]?.message?.function_call?.arguments ?? "{rows: []}",
) as { rows: { input: string; output: string }[] };
return parsed.rows;
});
return rows;
};

View File

@@ -6,11 +6,10 @@ import { scenarioVariantCellsRouter } from "./routers/scenarioVariantCells.route
import { scenarioVarsRouter } from "./routers/scenarioVariables.router";
import { evaluationsRouter } from "./routers/evaluations.router";
import { worldChampsRouter } from "./routers/worldChamps.router";
import { datasetsRouter } from "./routers/datasets.router";
import { datasetEntries } from "./routers/datasetEntries.router";
import { projectsRouter } from "./routers/projects.router";
import { dashboardRouter } from "./routers/dashboard.router";
import { loggedCallsRouter } from "./routers/loggedCalls.router";
import { fineTunesRouter } from "./routers/fineTunes.router";
import { usersRouter } from "./routers/users.router";
import { adminJobsRouter } from "./routers/adminJobs.router";
@@ -27,11 +26,10 @@ export const appRouter = createTRPCRouter({
scenarioVars: scenarioVarsRouter,
evaluations: evaluationsRouter,
worldChamps: worldChampsRouter,
datasets: datasetsRouter,
datasetEntries: datasetEntries,
projects: projectsRouter,
dashboard: dashboardRouter,
loggedCalls: loggedCallsRouter,
fineTunes: fineTunesRouter,
users: usersRouter,
adminJobs: adminJobsRouter,
});

View File

@@ -1,145 +0,0 @@
import { z } from "zod";
import { createTRPCRouter, protectedProcedure } from "~/server/api/trpc";
import { prisma } from "~/server/db";
import { requireCanModifyDataset, requireCanViewDataset } from "~/utils/accessControl";
import { autogenerateDatasetEntries } from "../autogenerate/autogenerateDatasetEntries";
export const datasetEntries = createTRPCRouter({
list: protectedProcedure
.input(z.object({ datasetId: z.string(), page: z.number(), pageSize: z.number() }))
.query(async ({ input, ctx }) => {
await requireCanViewDataset(input.datasetId, ctx);
const { datasetId, page, pageSize } = input;
const entries = await prisma.datasetEntry.findMany({
where: {
datasetId,
},
orderBy: { createdAt: "desc" },
skip: (page - 1) * pageSize,
take: pageSize,
});
const count = await prisma.datasetEntry.count({
where: {
datasetId,
},
});
return {
entries,
count,
};
}),
createOne: protectedProcedure
.input(
z.object({
datasetId: z.string(),
input: z.string(),
output: z.string().optional(),
}),
)
.mutation(async ({ input, ctx }) => {
await requireCanModifyDataset(input.datasetId, ctx);
return await prisma.datasetEntry.create({
data: {
datasetId: input.datasetId,
input: input.input,
output: input.output,
},
});
}),
autogenerateEntries: protectedProcedure
.input(
z.object({
datasetId: z.string(),
numToGenerate: z.number(),
inputDescription: z.string(),
outputDescription: z.string(),
}),
)
.mutation(async ({ input, ctx }) => {
await requireCanModifyDataset(input.datasetId, ctx);
const dataset = await prisma.dataset.findUnique({
where: {
id: input.datasetId,
},
});
if (!dataset) {
throw new Error(`Dataset with id ${input.datasetId} does not exist`);
}
const entries = await autogenerateDatasetEntries(
input.numToGenerate,
input.inputDescription,
input.outputDescription,
);
const createdEntries = await prisma.datasetEntry.createMany({
data: entries.map((entry) => ({
datasetId: input.datasetId,
input: entry.input,
output: entry.output,
})),
});
return createdEntries;
}),
delete: protectedProcedure
.input(z.object({ id: z.string() }))
.mutation(async ({ input, ctx }) => {
const datasetId = (
await prisma.datasetEntry.findUniqueOrThrow({
where: { id: input.id },
})
).datasetId;
await requireCanModifyDataset(datasetId, ctx);
return await prisma.datasetEntry.delete({
where: {
id: input.id,
},
});
}),
update: protectedProcedure
.input(
z.object({
id: z.string(),
updates: z.object({
input: z.string(),
output: z.string().optional(),
}),
}),
)
.mutation(async ({ input, ctx }) => {
const existing = await prisma.datasetEntry.findUnique({
where: {
id: input.id,
},
});
if (!existing) {
throw new Error(`dataEntry with id ${input.id} does not exist`);
}
await requireCanModifyDataset(existing.datasetId, ctx);
return await prisma.datasetEntry.update({
where: {
id: input.id,
},
data: {
input: input.updates.input,
output: input.updates.output,
},
});
}),
});

View File

@@ -1,88 +0,0 @@
import { z } from "zod";
import { createTRPCRouter, protectedProcedure, publicProcedure } from "~/server/api/trpc";
import { prisma } from "~/server/db";
import {
requireCanModifyDataset,
requireCanModifyProject,
requireCanViewDataset,
requireCanViewProject,
} from "~/utils/accessControl";
export const datasetsRouter = createTRPCRouter({
list: protectedProcedure
.input(z.object({ projectId: z.string() }))
.query(async ({ input, ctx }) => {
await requireCanViewProject(input.projectId, ctx);
const datasets = await prisma.dataset.findMany({
where: {
projectId: input.projectId,
},
orderBy: {
createdAt: "desc",
},
include: {
_count: {
select: { datasetEntries: true },
},
},
});
return datasets;
}),
get: publicProcedure.input(z.object({ id: z.string() })).query(async ({ input, ctx }) => {
await requireCanViewDataset(input.id, ctx);
return await prisma.dataset.findFirstOrThrow({
where: { id: input.id },
include: {
project: true,
},
});
}),
create: protectedProcedure
.input(z.object({ projectId: z.string() }))
.mutation(async ({ input, ctx }) => {
await requireCanModifyProject(input.projectId, ctx);
const numDatasets = await prisma.dataset.count({
where: {
projectId: input.projectId,
},
});
return await prisma.dataset.create({
data: {
name: `Dataset ${numDatasets + 1}`,
projectId: input.projectId,
},
});
}),
update: protectedProcedure
.input(z.object({ id: z.string(), updates: z.object({ name: z.string() }) }))
.mutation(async ({ input, ctx }) => {
await requireCanModifyDataset(input.id, ctx);
return await prisma.dataset.update({
where: {
id: input.id,
},
data: {
name: input.updates.name,
},
});
}),
delete: protectedProcedure
.input(z.object({ id: z.string() }))
.mutation(async ({ input, ctx }) => {
await requireCanModifyDataset(input.id, ctx);
await prisma.dataset.delete({
where: {
id: input.id,
},
});
}),
});

View File

@@ -0,0 +1,113 @@
import { z } from "zod";
import { v4 as uuidv4 } from "uuid";
import { type Prisma } from "@prisma/client";
import { createTRPCRouter, protectedProcedure } from "~/server/api/trpc";
import { prisma } from "~/server/db";
import { requireCanViewProject, requireCanModifyProject } from "~/utils/accessControl";
import { error, success } from "~/utils/errorHandling/standardResponses";
export const fineTunesRouter = createTRPCRouter({
list: protectedProcedure
.input(
z.object({
projectId: z.string(),
page: z.number(),
pageSize: z.number(),
}),
)
.query(async ({ input, ctx }) => {
const { projectId, page, pageSize } = input;
await requireCanViewProject(projectId, ctx);
const fineTunes = await prisma.fineTune.findMany({
where: {
projectId,
},
include: {
dataset: {
include: {
_count: {
select: {
datasetEntries: true,
},
},
},
},
},
orderBy: { createdAt: "asc" },
skip: (page - 1) * pageSize,
take: pageSize,
});
const count = await prisma.fineTune.count({
where: {
projectId,
},
});
return {
fineTunes,
count,
};
}),
create: protectedProcedure
.input(
z.object({
projectId: z.string(),
selectedLogIds: z.array(z.string()),
slug: z.string(),
baseModel: z.string(),
}),
)
.mutation(async ({ input, ctx }) => {
await requireCanModifyProject(input.projectId, ctx);
const existingFineTune = await prisma.fineTune.findFirst({
where: {
slug: input.slug,
},
});
if (existingFineTune) {
return error("A fine tune with that slug already exists");
}
const newDatasetId = uuidv4();
const datasetEntriesToCreate: Prisma.DatasetEntryCreateManyDatasetInput[] =
input.selectedLogIds.map((loggedCallId) => ({
loggedCallId,
}));
await prisma.$transaction([
prisma.dataset.create({
data: {
id: newDatasetId,
name: input.slug,
project: {
connect: {
id: input.projectId,
},
},
datasetEntries: {
createMany: {
data: datasetEntriesToCreate,
},
},
},
}),
prisma.fineTune.create({
data: {
projectId: input.projectId,
slug: input.slug,
baseModel: input.baseModel,
datasetId: newDatasetId,
},
}),
]);
return success();
}),
});

View File

@@ -1,11 +1,16 @@
import { z } from "zod";
import { type Expression, type SqlBool, sql, type RawBuilder } from "kysely";
import { jsonArrayFrom } from "kysely/helpers/postgres";
import archiver from "archiver";
import { WritableStreamBuffer } from "stream-buffers";
import { type JsonValue } from "type-fest";
import { shuffle } from "lodash-es";
import { createTRPCRouter, protectedProcedure } from "~/server/api/trpc";
import { kysely, prisma } from "~/server/db";
import { comparators, defaultFilterableFields } from "~/state/logFiltersSlice";
import { requireCanViewProject } from "~/utils/accessControl";
import hashObject from "~/server/utils/hashObject";
// create comparator type based off of comparators
const comparatorToSqlExpression = (comparator: (typeof comparators)[number], value: string) => {
@@ -180,4 +185,102 @@ export const loggedCallsRouter = createTRPCRouter({
return tags.map((tag) => tag.name);
}),
export: protectedProcedure
.input(
z.object({
projectId: z.string(),
selectedLogIds: z.string().array(),
testingSplit: z.number(),
selectedExportFormat: z.string(),
removeDuplicates: z.boolean(),
}),
)
.mutation(async ({ input, ctx }) => {
await requireCanViewProject(input.projectId, ctx);
// Fetch the real data using Prisma
const loggedCallsFromDb = await ctx.prisma.loggedCallModelResponse.findMany({
where: {
originalLoggedCall: {
projectId: input.projectId,
id: { in: input.selectedLogIds },
},
statusCode: 200,
},
});
// Convert the database data into the desired format
let formattedLoggedCalls: { instruction: JsonValue[]; output: JsonValue }[] =
loggedCallsFromDb.map((call) => ({
instruction: (call.reqPayload as unknown as Record<string, unknown>)
.messages as JsonValue[],
output: (call.respPayload as unknown as { choices: { message: unknown }[] }).choices[0]
?.message as JsonValue,
}));
if (input.removeDuplicates) {
const deduplicatedLoggedCalls = [];
const loggedCallHashSet = new Set<string>();
for (const loggedCall of formattedLoggedCalls) {
const loggedCallHash = hashObject(loggedCall);
if (!loggedCallHashSet.has(loggedCallHash)) {
loggedCallHashSet.add(loggedCallHash);
deduplicatedLoggedCalls.push(loggedCall);
}
}
formattedLoggedCalls = deduplicatedLoggedCalls;
}
// Remove duplicate messages from instructions
const instructionMessageHashMap = new Map<string, number>();
for (const loggedCall of formattedLoggedCalls) {
for (const message of loggedCall.instruction) {
const hash = hashObject(message);
if (instructionMessageHashMap.has(hash)) {
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
instructionMessageHashMap.set(hash, instructionMessageHashMap.get(hash)! + 1);
} else {
instructionMessageHashMap.set(hash, 0);
}
}
}
for (const loggedCall of formattedLoggedCalls) {
loggedCall.instruction = loggedCall.instruction.filter((message) => {
const hash = hashObject(message);
// If the same message appears in a single instruction multiple times, there is some danger of
// it being removed from all logged calls. This is enough of an edge case that we don't
// need to worry about it for now.
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
return instructionMessageHashMap.get(hash)! < formattedLoggedCalls.length;
});
}
// Stringify instructions and outputs
const stringifiedLoggedCalls = shuffle(formattedLoggedCalls).map((loggedCall) => ({
instruction: JSON.stringify(loggedCall.instruction),
output: JSON.stringify(loggedCall.output),
}));
const splitIndex = Math.floor((stringifiedLoggedCalls.length * input.testingSplit) / 100);
const testingData = stringifiedLoggedCalls.slice(0, splitIndex);
const trainingData = stringifiedLoggedCalls.slice(splitIndex);
// Convert arrays to JSONL format
const trainingDataJSONL = trainingData.map((item) => JSON.stringify(item)).join("\n");
const testingDataJSONL = testingData.map((item) => JSON.stringify(item)).join("\n");
const output = new WritableStreamBuffer();
const archive = archiver("zip");
archive.pipe(output);
archive.append(trainingDataJSONL, { name: "train.jsonl" });
archive.append(testingDataJSONL, { name: "test.jsonl" });
await archive.finalize();
// Convert buffer to base64
const base64 = output.getContents().toString("base64");
return base64;
}),
});

View File

@@ -41,7 +41,7 @@ const requestUpdatedPromptFunction = async (
) => {
const originalModelProvider = modelProviders[originalVariant.modelProvider as SupportedProvider];
const originalModel = originalModelProvider.models[originalVariant.model] as Model;
let newContructionFn = "";
let newConstructionFn = "";
for (let i = 0; i < NUM_RETRIES; i++) {
try {
const messages: CreateChatCompletionRequestMessage[] = [
@@ -137,7 +137,7 @@ const requestUpdatedPromptFunction = async (
const args = await contructPromptFunctionArgs.copy(); // Get the actual value from the isolate
if (args && isObject(args) && "new_prompt_function" in args) {
newContructionFn = await formatPromptConstructor(args.new_prompt_function as string);
newConstructionFn = await formatPromptConstructor(args.new_prompt_function as string);
break;
}
} catch (e) {
@@ -145,5 +145,5 @@ const requestUpdatedPromptFunction = async (
}
}
return newContructionFn;
return newConstructionFn;
};

View File

@@ -17,13 +17,7 @@ try {
// Set a dummy key so it doesn't fail at build time
config = {
apiKey: env.OPENAI_API_KEY ?? "dummy-key",
openpipe: {
apiKey: env.OPENPIPE_API_KEY,
baseUrl: "http://localhost:3000/api/v1",
},
};
}
// export const openai = env.OPENPIPE_API_KEY ? new OpenAI.OpenAI(config) : new OriginalOpenAI(config);
export const openai = new OpenAI(config);

View File

@@ -0,0 +1,37 @@
import { type SliceCreator } from "./store";
export const comparators = ["=", "!=", "CONTAINS", "NOT_CONTAINS"] as const;
export const defaultFilterableFields = ["Request", "Response", "Model", "Status Code"] as const;
export enum StaticColumnKeys {
SENT_AT = "sentAt",
MODEL = "model",
DURATION = "duration",
INPUT_TOKENS = "inputTokens",
OUTPUT_TOKENS = "outputTokens",
STATUS_CODE = "statusCode",
}
export type ColumnVisibilitySlice = {
visibleColumns: Set<string>;
toggleColumnVisibility: (columnKey: string) => void;
showAllColumns: (columnKeys: string[]) => void;
};
export const createColumnVisibilitySlice: SliceCreator<ColumnVisibilitySlice> = (set, get) => ({
// initialize with all static columns visible
visibleColumns: new Set(Object.values(StaticColumnKeys)),
toggleColumnVisibility: (columnKey: string) =>
set((state) => {
if (state.columnVisibility.visibleColumns.has(columnKey)) {
state.columnVisibility.visibleColumns.delete(columnKey);
} else {
state.columnVisibility.visibleColumns.add(columnKey);
}
}),
showAllColumns: (columnKeys: string[]) =>
set((state) => {
state.columnVisibility.visibleColumns = new Set(columnKeys);
}),
});

View File

@@ -0,0 +1,23 @@
import { type SliceCreator } from "./store";
export type FeatureFlagsSlice = {
flagsLoaded: boolean;
featureFlags: {
betaAccess: boolean;
};
setFeatureFlags: (flags: string[] | undefined) => void;
};
export const createFeatureFlagsSlice: SliceCreator<FeatureFlagsSlice> = (set) => ({
flagsLoaded: false,
featureFlags: {
betaAccess: false,
},
setFeatureFlags: (flags) =>
set((state) => {
state.featureFlags.featureFlags = {
betaAccess: flags?.includes("betaAccess") ?? false,
};
state.featureFlags.flagsLoaded = true;
}),
});

View File

@@ -1,13 +1,27 @@
import { type PersistOptions } from "zustand/middleware/persist";
import { type State } from "./store";
import SuperJSON from "superjson";
import { merge, pick } from "lodash-es";
import { type PartialDeep } from "type-fest";
export const stateToPersist = {
selectedProjectId: null as string | null,
};
export type PersistedState = PartialDeep<State>;
export const persistOptions: PersistOptions<State, typeof stateToPersist> = {
export const persistOptions: PersistOptions<State, PersistedState> = {
name: "persisted-app-store",
partialize: (state) => ({
selectedProjectId: state.selectedProjectId,
columnVisibility: pick(state.columnVisibility, ["visibleColumns"]),
}),
merge: (saved, state) => merge(state, saved),
storage: {
getItem: (key) => {
const data = localStorage.getItem(key);
return data ? SuperJSON.parse(data) : null;
},
setItem: (key, value) => localStorage.setItem(key, SuperJSON.stringify(value)),
removeItem: (key) => localStorage.removeItem(key),
},
onRehydrateStorage: (state) => {
if (state) state.isRehydrated = true;
},
};

View File

@@ -8,13 +8,16 @@ import {
createVariantEditorSlice,
} from "./sharedVariantEditor.slice";
import { type APIClient } from "~/utils/api";
import { persistOptions, type stateToPersist } from "./persist";
import { type PersistedState, persistOptions } from "./persist";
import { type SelectedLogsSlice, createSelectedLogsSlice } from "./selectedLogsSlice";
import { type LogFiltersSlice, createLogFiltersSlice } from "./logFiltersSlice";
import { type ColumnVisibilitySlice, createColumnVisibilitySlice } from "./columnVisiblitySlice";
import { type FeatureFlagsSlice, createFeatureFlagsSlice } from "./featureFlags";
enableMapSet();
export type State = {
isRehydrated: boolean;
drawerOpen: boolean;
openDrawer: () => void;
closeDrawer: () => void;
@@ -25,6 +28,8 @@ export type State = {
setSelectedProjectId: (id: string) => void;
selectedLogs: SelectedLogsSlice;
logFilters: LogFiltersSlice;
columnVisibility: ColumnVisibilitySlice;
featureFlags: FeatureFlagsSlice;
};
export type SliceCreator<T> = StateCreator<State, [["zustand/immer", never]], [], T>;
@@ -32,18 +37,15 @@ export type SliceCreator<T> = StateCreator<State, [["zustand/immer", never]], []
export type SetFn = Parameters<SliceCreator<unknown>>[0];
export type GetFn = Parameters<SliceCreator<unknown>>[1];
const useBaseStore = create<
State,
[["zustand/persist", typeof stateToPersist], ["zustand/immer", never]]
>(
const useBaseStore = create<State, [["zustand/persist", PersistedState], ["zustand/immer", never]]>(
persist(
immer((set, get, ...rest) => ({
isRehydrated: false,
api: null,
setApi: (api) =>
set((state) => {
state.api = api;
}),
drawerOpen: false,
openDrawer: () =>
set((state) => {
@@ -61,6 +63,8 @@ const useBaseStore = create<
}),
selectedLogs: createSelectedLogsSlice(set, get, ...rest),
logFilters: createLogFiltersSlice(set, get, ...rest),
columnVisibility: createColumnVisibilitySlice(set, get, ...rest),
featureFlags: createFeatureFlagsSlice(set, get, ...rest),
})),
persistOptions,
),

View File

@@ -78,33 +78,6 @@ export const requireCanModifyProject = async (projectId: string, ctx: TRPCContex
}
};
export const requireCanViewDataset = async (datasetId: string, ctx: TRPCContext) => {
ctx.markAccessControlRun();
const dataset = await prisma.dataset.findFirst({
where: {
id: datasetId,
project: {
projectUsers: {
some: {
role: { in: [ProjectUserRole.ADMIN, ProjectUserRole.MEMBER] },
userId: ctx.session?.user.id,
},
},
},
},
});
if (!dataset) {
throw new TRPCError({ code: "UNAUTHORIZED" });
}
};
export const requireCanModifyDataset = async (datasetId: string, ctx: TRPCContext) => {
// Right now all users who can view a dataset can also modify it
await requireCanViewDataset(datasetId, ctx);
};
export const requireCanViewExperiment = (experimentId: string, ctx: TRPCContext): Promise<void> => {
// Right now all experiments are publicly viewable, so this is a no-op.
ctx.markAccessControlRun();

View File

@@ -1,11 +1,12 @@
"use client";
import { useSession } from "next-auth/react";
import React, { type ReactNode, useEffect } from "react";
import { PostHogProvider } from "posthog-js/react";
import { PostHogProvider, useActiveFeatureFlags } from "posthog-js/react";
import posthog from "posthog-js";
import { env } from "~/env.mjs";
import { useRouter } from "next/router";
import { useAppStore } from "~/state/store";
// Make sure we're in the browser
const inBrowser = typeof window !== "undefined";
@@ -24,6 +25,14 @@ export const PosthogAppProvider = ({ children }: { children: ReactNode }) => {
};
}, [router.events]);
const setFeatureFlags = useAppStore((s) => s.featureFlags.setFeatureFlags);
const activeFlags = useActiveFeatureFlags();
useEffect(() => {
if (activeFlags) {
setFeatureFlags(activeFlags);
}
}, [activeFlags, setFeatureFlags]);
useEffect(() => {
if (env.NEXT_PUBLIC_POSTHOG_KEY && inBrowser && session && session.user) {
posthog.init(env.NEXT_PUBLIC_POSTHOG_KEY, {

View File

@@ -26,34 +26,6 @@ export const useExperimentAccess = () => {
return useExperiment().data?.access ?? { canView: false, canModify: false };
};
export const useDatasets = () => {
const selectedProjectId = useAppStore((state) => state.selectedProjectId);
return api.datasets.list.useQuery(
{ projectId: selectedProjectId ?? "" },
{ enabled: !!selectedProjectId },
);
};
export const useDataset = () => {
const router = useRouter();
const dataset = api.datasets.get.useQuery(
{ id: router.query.id as string },
{ enabled: !!router.query.id },
);
return dataset;
};
export const useDatasetEntries = () => {
const dataset = useDataset();
const { page, pageSize } = usePageParams();
return api.datasetEntries.list.useQuery(
{ datasetId: dataset.data?.id ?? "", page, pageSize },
{ enabled: dataset.data?.id != null },
);
};
type AsyncFunction<T extends unknown[], U> = (...args: T) => Promise<U>;
export function useHandledAsyncCallback<T extends unknown[], U>(
@@ -205,3 +177,22 @@ export const useTagNames = () => {
{ enabled: !!selectedProjectId },
);
};
export const useFineTunes = () => {
const selectedProjectId = useAppStore((state) => state.selectedProjectId);
const { page, pageSize } = usePageParams();
return api.fineTunes.list.useQuery(
{ projectId: selectedProjectId ?? "", page, pageSize },
{ enabled: !!selectedProjectId },
);
};
export const useIsClientRehydrated = () => {
const isRehydrated = useAppStore((state) => state.isRehydrated);
const [isMounted, setIsMounted] = useState(false);
useEffect(() => {
setIsMounted(true);
}, []);
return isRehydrated && isMounted;
};

View File

@@ -0,0 +1,40 @@
# OpenPipe Python Client
This client allows you automatically report your OpenAI calls to [OpenPipe](https://openpipe.ai/). OpenPipe
## Installation
`pip install openpipe`
## Usage
1. Create a project at https://app.openpipe.ai
2. Find your project's API key at https://app.openpipe.ai/project/settings
3. Configure the OpenPipe client as shown below.
```python
from openpipe import openai, configure_openpipe
import os
# Set the OpenPipe API key you got in step (3) above.
# If you have the `OPENPIPE_API_KEY` environment variable set we'll read from it by default.
configure_openpipe(api_key=os.getenv("OPENPIPE_API_KEY"))
# Configure OpenAI the same way you would normally
openai.api_key = os.getenv("OPENAI_API_KEY")
```
You can use the OpenPipe client for normal
## Special Features
### Tagging
OpenPipe has a concept of "tagging." This is very useful for grouping a certain set of completions together. When you're using a dataset for fine-tuning, you can select all the prompts that match a certain set of tags. Here's how you can use the tagging feature:
```python
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "system", "content": "count to 10"}],
openpipe={"tags": {"prompt_id": "counting"}},
)
```

View File

@@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -4,7 +4,7 @@ import time
import inspect
from openpipe.merge_openai_chunks import merge_openai_chunks
from openpipe.openpipe_meta import OpenPipeMeta
from openpipe.openpipe_meta import openpipe_meta
from .shared import (
_should_check_cache,
@@ -41,9 +41,11 @@ class WrappedChatCompletion(original_openai.ChatCompletion):
)
cache_status = (
"MISS" if _should_check_cache(openpipe_options) else "SKIP"
"MISS"
if _should_check_cache(openpipe_options, kwargs)
else "SKIP"
)
chunk.openpipe = OpenPipeMeta(cache_status=cache_status)
chunk.openpipe = openpipe_meta(cache_status=cache_status)
yield chunk
@@ -72,9 +74,9 @@ class WrappedChatCompletion(original_openai.ChatCompletion):
)
cache_status = (
"MISS" if _should_check_cache(openpipe_options) else "SKIP"
"MISS" if _should_check_cache(openpipe_options, kwargs) else "SKIP"
)
chat_completion["openpipe"] = OpenPipeMeta(cache_status=cache_status)
chat_completion["openpipe"] = openpipe_meta(cache_status=cache_status)
return chat_completion
except Exception as e:
received_at = int(time.time() * 1000)
@@ -126,9 +128,11 @@ class WrappedChatCompletion(original_openai.ChatCompletion):
assembled_completion, chunk
)
cache_status = (
"MISS" if _should_check_cache(openpipe_options) else "SKIP"
"MISS"
if _should_check_cache(openpipe_options, kwargs)
else "SKIP"
)
chunk.openpipe = OpenPipeMeta(cache_status=cache_status)
chunk.openpipe = openpipe_meta(cache_status=cache_status)
yield chunk
@@ -157,9 +161,9 @@ class WrappedChatCompletion(original_openai.ChatCompletion):
)
cache_status = (
"MISS" if _should_check_cache(openpipe_options) else "SKIP"
"MISS" if _should_check_cache(openpipe_options, kwargs) else "SKIP"
)
chat_completion["openpipe"] = OpenPipeMeta(cache_status=cache_status)
chat_completion["openpipe"] = openpipe_meta(cache_status=cache_status)
return chat_completion
except Exception as e:

View File

@@ -1,7 +1,2 @@
from attr import dataclass
@dataclass
class OpenPipeMeta:
# Cache status. One of 'HIT', 'MISS', 'SKIP'
cache_status: str
def openpipe_meta(cache_status: str):
return {"cache_status": cache_status}

View File

@@ -8,6 +8,7 @@ from openpipe.api_client.models.report_json_body_tags import (
)
import toml
import time
import os
version = toml.load("pyproject.toml")["tool"]["poetry"]["version"]
@@ -15,6 +16,9 @@ configured_client = AuthenticatedClient(
base_url="https://app.openpipe.ai/api/v1", token=""
)
if os.environ.get("OPENPIPE_API_KEY"):
configured_client.token = os.environ["OPENPIPE_API_KEY"]
def _get_tags(openpipe_options):
tags = openpipe_options.get("tags") or {}

View File

@@ -27,12 +27,14 @@ def last_logged_call():
return local_testing_only_get_latest_logged_call.sync(client=configured_client)
@pytest.mark.focus
def test_sync():
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "system", "content": "count to 3"}],
)
print("completion is", completion)
last_logged = last_logged_call()
assert (
last_logged.model_response.resp_payload["choices"][0]["message"]["content"]
@@ -42,7 +44,7 @@ def test_sync():
last_logged.model_response.req_payload["messages"][0]["content"] == "count to 3"
)
assert completion.openpipe.cache_status == "SKIP"
assert completion.openpipe["cache_status"] == "SKIP"
def test_streaming():
@@ -75,7 +77,7 @@ async def test_async():
== "count down from 5"
)
assert completion.openpipe.cache_status == "SKIP"
assert completion.openpipe["cache_status"] == "SKIP"
async def test_async_streaming():
@@ -87,7 +89,7 @@ async def test_async_streaming():
merged = None
async for chunk in completion:
assert chunk.openpipe.cache_status == "SKIP"
assert chunk.openpipe["cache_status"] == "SKIP"
merged = merge_openai_chunks(merged, chunk)
last_logged = last_logged_call()
@@ -100,7 +102,7 @@ async def test_async_streaming():
last_logged.model_response.req_payload["messages"][0]["content"]
== "count down from 5"
)
assert merged["openpipe"].cache_status == "SKIP"
assert merged["openpipe"]["cache_status"] == "SKIP"
def test_sync_with_tags():
@@ -146,7 +148,7 @@ async def test_caching():
messages=messages,
openpipe={"cache": True},
)
assert completion.openpipe.cache_status == "MISS"
assert completion.openpipe["cache_status"] == "MISS"
first_logged = last_logged_call()
assert (
@@ -159,4 +161,4 @@ async def test_caching():
messages=messages,
openpipe={"cache": True},
)
assert completion2.openpipe.cache_status == "HIT"
assert completion2.openpipe["cache_status"] == "HIT"

View File

@@ -1,9 +1,12 @@
[tool.poetry]
name = "openpipe"
version = "0.1.0"
description = ""
authors = ["Kyle Corbitt <kyle@corbt.com>"]
version = "3.0.1"
description = "Python client library for the OpenPipe service"
authors = ["Kyle Corbitt <kyle@openpipe.ai>"]
license = "Apache-2.0"
readme = "README.md"
homepage = "https://github.com/OpenPipe/OpenPipe"
repository = "https://github.com/OpenPipe/OpenPipe"
[tool.poetry.dependencies]
python = "^3.9"

6
examples/.gitignore vendored Normal file
View File

@@ -0,0 +1,6 @@
axolotl/
models/
data/
wandb/
cache/
.ipynb_checkpoints/

View File

@@ -0,0 +1,7 @@
OPENAI_API_KEY="[your OpenAI API key]"
OPENPIPE_API_KEY="[your OpenPipe API key from https://app.openpipe.ai/project/settings]"
# You'll need this to download the Llama 2 weights from Hugging Face
HUGGING_FACE_HUB_TOKEN="[Your Hugging Face Hub token]"
WANDB_API_KEY="[Optionally, you can set a Weights & Biases API key to track your training run. Create it at https://wandb.ai/settings]"

View File

@@ -0,0 +1,317 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this notebook I'm using the OpenPipe client to capture a set of calls to the OpenAI API.\n",
"\n",
"For this example I'll blithely throw engineering best practices to the wind and use the notebook itself to manage dependencies. 😁\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%%capture\n",
"%pip install openpipe==3.0.3 python-dotenv==1.0.0 datasets==2.14.4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When working with remote datasets (or any data, really), it's a good idea to visually inspect some samples to make sure it looks like you expect. I'll print a recipe.\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recipe dataset shape:\n",
"------------------\n"
]
},
{
"data": {
"text/plain": [
"Dataset({\n",
" features: ['recipe'],\n",
" num_rows: 5000\n",
"})"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"First recipe:\n",
"------------------ Shrimp Creole\n",
"\n",
"Ingredients:\n",
"- 20 shrimp (8 oz.)\n",
"- 2 c. (16 oz. can) tomato sauce\n",
"- 1 small onion, chopped\n",
"- 1 celery stalk, chopped\n",
"- 1/4 green bell pepper, diced\n",
"- 1/4 c. sliced mushrooms\n",
"- 3 Tbsp. parsley\n",
"- 1/2 tsp. pepper\n",
"- 1 to 1-1/2 c. brown rice, prepared according to pkg. directions (not included in exchanges)\n",
"\n",
"Directions:\n",
"- Peel, devein and wash shrimp; set aside.\n",
"- (If shrimp are frozen, let thaw first in the refrigerator.)\n",
"- Simmer tomato sauce, onion, celery, green pepper, mushrooms, parsley and pepper in skillet for 30 minutes.\n",
"- Add shrimp and cook 10 to 15 minutes more, until shrimp are tender.\n",
"- Serve over brown rice.\n",
"- Serves 2.\n"
]
}
],
"source": [
"from datasets import load_dataset\n",
"\n",
"recipes = load_dataset(\"corbt/unlabeled-recipes\")[\"train\"]\n",
"print(\"Recipe dataset shape:\\n------------------\")\n",
"display(recipes)\n",
"print(\"First recipe:\\n------------------\", recipes[\"recipe\"][0])\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mm, delicious. Anyway, we need to generate a training dataset. We'll call GPT-4 on each of our examples.\n",
"\n",
"In this case, I'll ask GPT-4 to classify each recipe along 5 dimensions:\n",
"\n",
"- has_non_fish_meat\n",
"- requires_oven\n",
"- requires_stove\n",
"- cook_time_over_30_mins\n",
"- main_dish\n",
"\n",
"That looks like a pretty random list, but there's actually an important unifying thread: I'm looking for meals that my pescatarian brother/co-founder can make in his kitchen-less, near-window-less basement apartment in San Francisco! (If you haven't tried to get an apartment in SF you probably think I'm joking 😂.)\n",
"\n",
"I'll use [OpenPipe](https://github.com/openpipe/openpipe) to track the API calls and form a training dataset. To follow along you'll need to create a free OpenPipe account, then copy your API key from https://app.openpipe.ai/project/settings into a file called `.env`. You can see an example in [./.env.example](./.env.example).\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Classifying first recipe:\n",
"------------------\n",
"{'has_non_fish_meat': False, 'requires_oven': False, 'requires_stove': True, 'cook_time_over_30_mins': True, 'main_dish': True}\n"
]
}
],
"source": [
"from openpipe import openai, configure_openpipe\n",
"import json\n",
"import os\n",
"import dotenv\n",
"\n",
"# Use `dotenv` to load the contents of the `.env` file into the environment\n",
"dotenv.load_dotenv()\n",
"\n",
"# Configure OpenPipe using the API key from the environment\n",
"configure_openpipe(api_key=os.environ[\"OPENPIPE_API_KEY\"])\n",
"\n",
"# Configure OpenAI using the API key from the environment\n",
"openai.api_key = os.environ[\"OPENAI_API_KEY\"]\n",
"\n",
"\n",
"def classify_recipe(recipe: str):\n",
" completion = openai.ChatCompletion.create(\n",
" model=\"gpt-4\",\n",
" messages=[\n",
" {\n",
" \"role\": \"system\",\n",
" \"content\": \"Your goal is to classify a recipe along several dimensions.Pay attention to the instructions.\",\n",
" },\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": recipe,\n",
" },\n",
" ],\n",
" functions=[\n",
" {\n",
" \"name\": \"classify\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"has_non_fish_meat\": {\n",
" \"type\": \"boolean\",\n",
" \"description\": \"True if the recipe contains any meat or meat products (eg. chicken broth) besides fish\",\n",
" },\n",
" \"requires_oven\": {\n",
" \"type\": \"boolean\",\n",
" \"description\": \"True if the recipe requires an oven\",\n",
" },\n",
" \"requires_stove\": {\n",
" \"type\": \"boolean\",\n",
" \"description\": \"True if the recipe requires a stove\",\n",
" },\n",
" \"cook_time_over_30_mins\": {\n",
" \"type\": \"boolean\",\n",
" \"description\": \"True if the recipe takes over 30 minutes to prepare and cook, including waiting time\",\n",
" },\n",
" \"main_dish\": {\n",
" \"type\": \"boolean\",\n",
" \"description\": \"True if the recipe can be served as a main dish\",\n",
" },\n",
" },\n",
" \"required\": [\n",
" \"has_non_fish_meat\",\n",
" \"requires_oven\",\n",
" \"requires_stove\",\n",
" \"cook_time_over_30_mins\",\n",
" \"main_dish\",\n",
" ],\n",
" },\n",
" }\n",
" ],\n",
" function_call={\n",
" \"name\": \"classify\",\n",
" },\n",
" openpipe={\"tags\": {\"prompt_id\": \"classify-recipe\"}, \"cache\": True},\n",
" )\n",
" return json.loads(completion.choices[0].message.function_call.arguments)\n",
"\n",
"\n",
"print(\"Classifying first recipe:\\n------------------\")\n",
"print(classify_recipe(recipes[\"recipe\"][0]))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That's working, so I'll go ahead and classify all 5000 recipes with GPT-4. Using GPT-4 for this is slowwww and costs about $40. The model I'm fine-tuning will be much faster -- we'll see if we can make it as good!\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Classifying recipe 0/5000: Shrimp Creole\n",
"Classifying recipe 100/5000: Spoon Bread\n",
"Classifying recipe 200/5000: Quadrangle Grille'S Pumpkin-Walnut Cheesecake\n",
"Classifying recipe 300/5000: Broccoli Casserole\n",
"Classifying recipe 400/5000: Paal Payasam (3-Ingredient Rice Pudding)\n",
"Classifying recipe 500/5000: Dirt Dessert\n",
"Classifying recipe 600/5000: Dolma, Stuffed Dried Peppers And Eggplants\n",
"Classifying recipe 700/5000: Party Pecan Pies\n",
"Classifying recipe 800/5000: Pie Crust\n",
"Classifying recipe 900/5000: Russian Dressing(Salad Dressing) \n",
"Classifying recipe 1000/5000: O'Brien Potatoes\n",
"Classifying recipe 1100/5000: Monster Cookies\n",
"Classifying recipe 1200/5000: Striped Fruit Pops\n",
"Classifying recipe 1300/5000: Cute Heart-Shaped Fried Egg\n",
"Classifying recipe 1400/5000: Steak Marinade\n",
"Classifying recipe 1500/5000: Bbq Sauce For Fish Recipe\n",
"Classifying recipe 1600/5000: Barbecue Ranch Salad\n",
"Classifying recipe 1700/5000: White Fudge\n",
"Classifying recipe 1800/5000: Seaton Chocolate Chip Cookies\n",
"Classifying recipe 1900/5000: Beef Stroganoff\n",
"Classifying recipe 2000/5000: Lemon Delight\n",
"Classifying recipe 2100/5000: Cream Cheese Chicken Chili\n",
"Classifying recipe 2200/5000: Bean Salad\n",
"Classifying recipe 2300/5000: Green Beans Almondine\n",
"Classifying recipe 2400/5000: Radish-And-Avocado Salad\n",
"Classifying recipe 2500/5000: Salsa Rojo\n",
"Classifying recipe 2600/5000: Pepperoni Bread\n",
"Classifying recipe 2700/5000: Sabzi Polow\n",
"Classifying recipe 2800/5000: Italian Vegetable Pizzas\n",
"Classifying recipe 2900/5000: Hot Fudge Sauce, Soda Shop Style\n",
"Classifying recipe 3000/5000: Meatball Soup With Vegetables And Brown Rice\n",
"Classifying recipe 3100/5000: Herbed Potatoes And Onions\n",
"Classifying recipe 3200/5000: Apple Crunch Pie (2 Extra Servings)\n",
"Classifying recipe 3300/5000: Pineapple-Orange Punch\n",
"Classifying recipe 3400/5000: Turkey Veggie Burgers With Avocado Mayo\n",
"Classifying recipe 3500/5000: Pear & Goat Cheese Salad\n",
"Classifying recipe 3600/5000: Triple Chocolate Cookies\n",
"Classifying recipe 3700/5000: Strawberry Banana Yogurt Pops\n",
"Classifying recipe 3800/5000: Chicken Croquettes\n",
"Classifying recipe 3900/5000: Mushroom Casserole\n",
"Classifying recipe 4000/5000: Vegetarian Summer Roll\n",
"Classifying recipe 4100/5000: Prune Cake\n",
"Classifying recipe 4200/5000: Strawberry Sorbet\n",
"Classifying recipe 4300/5000: Lemonade Chicken\n",
"Classifying recipe 4400/5000: Crock-Pot Vegetarian Chili\n",
"Classifying recipe 4500/5000: Grandma Dickrell'S Molasses Cake - 1936\n",
"Classifying recipe 4600/5000: Creamed Corn Casserole\n",
"Classifying recipe 4700/5000: Homemade Croutons\n",
"Classifying recipe 4800/5000: Potatoes With Leeks And Gruyere\n",
"Classifying recipe 4900/5000: Chocolate Oatmeal Cookie\n"
]
}
],
"source": [
"for i, recipe in enumerate(recipes[\"recipe\"]):\n",
" if i % 100 == 0:\n",
" recipe_title = recipe.split(\"\\n\")[0]\n",
" print(f\"Classifying recipe {i}/{len(recipes)}: {recipe_title}\")\n",
" try:\n",
" classify_recipe(recipe)\n",
" except Exception as e:\n",
" print(f\"Error classifying recipe {i}: {e}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ok, now that my recipes are classified I'll download the training data.\n",
"\n",
"Next up I'll train the model -- check out [./train.ipynb](./train.ipynb) for details! Just go to https://app.openpipe.ai/request-logs, select all the logs you created, and click \"Export\". The default 10% testing split is fine for this dataset size.\n",
"\n",
"I got two files from that: `train.jsonl` and `test.jsonl`. I moved both of them into this repository under `./data/`.\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,947 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's get to the fun part -- training a model. I'll start by installing the dependencies.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%%capture\n",
"%pip install peft==0.5.0 python-dotenv==2.0.0\n",
"\n",
"!git clone https://github.com/OpenAccess-AI-Collective/axolotl\n",
"%pip install -e \"./axolotl[flash-attn]\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note to the reader: since we'll be basing our fine-tuned model on Meta's Llama 2, you need to apply for access to the weights (which will be automatically granted). Follow the steps on [HuggingFace](https://huggingface.co/meta-llama/Llama-2-7b-hf), then create a read-only access token [here](https://huggingface.co/settings/tokens) and copy it into your .env file.\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hugging Face token set: True\n"
]
}
],
"source": [
"import dotenv\n",
"import os\n",
"\n",
"dotenv.load_dotenv()\n",
"\n",
"has_token = os.getenv(\"HUGGING_FACE_HUB_TOKEN\") is not None\n",
"\n",
"print(f\"Hugging Face token set: {has_token}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I'll use the [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) library to manage this training run. It includes a lot of neat tricks that speed up training without sacrificing quality.\n",
"\n",
"In this case I'm using 8-bit training to use less GPU RAM, and sample packing to maximize GPU utilization. You can read more about the available options at https://github.com/OpenAccess-AI-Collective/axolotl.\n",
"\n",
"The training run options are defined in [training-config.yaml](./training-config.yaml).\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The following values were not passed to `accelerate launch` and had defaults used instead:\n",
"\t`--num_processes` was set to a value of `1`\n",
"\t`--num_machines` was set to a value of `1`\n",
"\t`--mixed_precision` was set to a value of `'no'`\n",
"\t`--dynamo_backend` was set to a value of `'no'`\n",
"To avoid this warning pass in values for each of the problematic parameters or run `accelerate config`.\n",
"\n",
" dP dP dP\n",
" 88 88 88\n",
".d8888b. dP. .dP .d8888b. 88 .d8888b. d8888P 88\n",
"88' `88 `8bd8' 88' `88 88 88' `88 88 88\n",
"88. .88 .d88b. 88. .88 88 88. .88 88 88\n",
"`88888P8 dP' `dP `88888P' dP `88888P' dP dP\n",
"\n",
"[2023-08-24 20:18:54,867] [INFO] [axolotl.normalize_config:72] [PID:125016] GPU memory usage baseline: 0.000GB (+0.674GB misc)\u001b[39m\n",
"[2023-08-24 20:18:54,867] [INFO] [axolotl.scripts.train:189] [PID:125016] loading tokenizer... meta-llama/Llama-2-7b-hf\u001b[39m\n",
"[2023-08-24 20:18:55,078] [DEBUG] [axolotl.load_tokenizer:64] [PID:125016] EOS: 2 / </s>\u001b[39m\n",
"[2023-08-24 20:18:55,078] [DEBUG] [axolotl.load_tokenizer:65] [PID:125016] BOS: 1 / <s>\u001b[39m\n",
"[2023-08-24 20:18:55,078] [DEBUG] [axolotl.load_tokenizer:66] [PID:125016] PAD: 0 / [PAD]\u001b[39m\n",
"[2023-08-24 20:18:55,078] [DEBUG] [axolotl.load_tokenizer:67] [PID:125016] UNK: 0 / <unk>\u001b[39m\n",
"[2023-08-24 20:18:55,079] [INFO] [axolotl.load_tokenized_prepared_datasets:126] [PID:125016] Unable to find prepared dataset in data/last_run_prepared/82cd9d58e34e0db98296199248c92d0d\u001b[39m\n",
"[2023-08-24 20:18:55,079] [INFO] [axolotl.load_tokenized_prepared_datasets:127] [PID:125016] Loading raw datasets...\u001b[39m\n",
"[2023-08-24 20:18:55,079] [INFO] [axolotl.load_tokenized_prepared_datasets:132] [PID:125016] No seed provided, using default seed of 42\u001b[39m\n",
"/usr/local/lib/python3.10/dist-packages/datasets/load.py:2072: FutureWarning: 'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n",
"You can remove this warning by passing 'token=None' instead.\n",
" warnings.warn(\n",
"Downloading data files: 100%|███████████████████| 1/1 [00:00<00:00, 1909.97it/s]\n",
"Extracting data files: 100%|█████████████████████| 1/1 [00:00<00:00, 130.16it/s]\n",
"Generating train split: 4501 examples [00:00, 72594.78 examples/s]\n",
"Map (num_proc=64): 100%|███████████| 4501/4501 [00:01<00:00, 3465.17 examples/s]\n",
"[2023-08-24 20:18:58,085] [INFO] [axolotl.load_tokenized_prepared_datasets:330] [PID:125016] merging datasets\u001b[39m\n",
"[2023-08-24 20:18:58,092] [INFO] [axolotl.load_tokenized_prepared_datasets:337] [PID:125016] Saving merged prepared dataset to disk... data/last_run_prepared/82cd9d58e34e0db98296199248c92d0d\u001b[39m\n",
"Saving the dataset (1/1 shards): 100%|█| 4501/4501 [00:00<00:00, 63380.02 exampl\n",
"Filter (num_proc=255): 100%|███████| 4275/4275 [00:01<00:00, 3385.29 examples/s]\n",
"Filter (num_proc=226): 100%|██████████| 226/226 [00:01<00:00, 196.38 examples/s]\n",
"Map (num_proc=255): 100%|██████████| 4275/4275 [00:02<00:00, 1480.29 examples/s]\n",
"Map (num_proc=226): 100%|██████████████| 226/226 [00:05<00:00, 44.33 examples/s]\n",
"[2023-08-24 20:19:33,527] [INFO] [axolotl.calculate_total_num_steps:346] [PID:125016] calculating total_num_tokens\u001b[39m\n",
"[2023-08-24 20:19:33,536] [INFO] [axolotl.calculate_total_num_steps:353] [PID:125016] 📝 UPDATE CONFIG WITH: `total_num_tokens: 1514815`\u001b[39m\n",
"[2023-08-24 20:19:33,552] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 20:19:33,590] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] 2ae1e19cb9bd6022bcc024ba552b1341f4c424a75595ff3419969cc2f838c2ba\u001b[39m\n",
"[2023-08-24 20:19:40,094] [INFO] [axolotl.utils.dataloader.len_w_stats:293] [PID:125016] packing_efficiency_estimate: 1.0 actual packing efficiency: 0.9732312654194079\u001b[39m\n",
"[2023-08-24 20:19:40,094] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 1.0 total_num_tokens per device: 1514815\u001b[39m\n",
"[2023-08-24 20:19:40,094] [INFO] [axolotl.calculate_total_num_steps:393] [PID:125016] data_loader_len: 182\u001b[39m\n",
"[2023-08-24 20:19:40,094] [INFO] [axolotl.calculate_total_num_steps:402] [PID:125016] 📝 UPDATE CONFIG WITH: `sample_packing_eff_est: 0.98`\u001b[39m\n",
"[2023-08-24 20:19:40,094] [INFO] [axolotl.calculate_total_num_steps:410] [PID:125016] total_num_steps: 227\u001b[39m\n",
"[2023-08-24 20:19:40,094] [INFO] [axolotl.scripts.train:211] [PID:125016] loading model and (optionally) peft_config...\u001b[39m\n",
"[2023-08-24 20:19:40,114] [INFO] [axolotl.load_model:106] [PID:125016] patching with flash attention\u001b[39m\n",
"[2023-08-24 20:19:40,117] [INFO] [axolotl.load_model:147] [PID:125016] patching _expand_mask\u001b[39m\n",
"Loading checkpoint shards: 100%|██████████████████| 2/2 [00:17<00:00, 8.60s/it]\n",
"\u001b[33m[2023-08-24 20:19:58,136] [WARNING] [axolotl.load_model:337] [PID:125016] increasing model.config.max_position_embeddings to 4096\u001b[39m\n",
"[2023-08-24 20:19:58,136] [INFO] [axolotl.load_model:343] [PID:125016] GPU memory usage after model load: 6.681GB (+0.364GB cache, +1.159GB misc)\u001b[39m\n",
"[2023-08-24 20:19:58,136] [INFO] [axolotl.load_model:349] [PID:125016] converting PEFT model w/ prepare_model_for_kbit_training\u001b[39m\n",
"[2023-08-24 20:19:58,146] [INFO] [axolotl.load_lora:473] [PID:125016] found linear modules: ['k_proj', 'q_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj', 'v_proj']\u001b[39m\n",
"trainable params: 79,953,920 || all params: 6,818,369,536 || trainable%: 1.172625208678628\n",
"[2023-08-24 20:20:53,348] [INFO] [axolotl.load_model:394] [PID:125016] GPU memory usage after adapters: 6.830GB (+1.365GB cache, +1.159GB misc)\u001b[39m\n",
"[2023-08-24 20:20:53,380] [INFO] [axolotl.scripts.train:267] [PID:125016] Compiling torch model\u001b[39m\n",
"[2023-08-24 20:20:53,544] [INFO] [axolotl.scripts.train:272] [PID:125016] Pre-saving adapter config to ./models/run1\u001b[39m\n",
"[2023-08-24 20:20:53,548] [INFO] [axolotl.scripts.train:288] [PID:125016] Starting trainer...\u001b[39m\n",
"[2023-08-24 20:20:53,747] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 1514815\u001b[39m\n",
"[2023-08-24 20:20:53,747] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 1514815\u001b[39m\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mopenpipe\u001b[0m (\u001b[33mopenpipe-team\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Tracking run with wandb version 0.15.8\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Run data is saved locally in \u001b[35m\u001b[1m/workspace/OpenPipe/examples/classify-recipes/wandb/run-20230824_202055-run1\u001b[0m\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Run \u001b[1m`wandb offline`\u001b[0m to turn off syncing.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Syncing run \u001b[33mrun1\u001b[0m\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: ⭐️ View project at \u001b[34m\u001b[4mhttps://wandb.ai/openpipe-team/classify-recipes\u001b[0m\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: 🚀 View run at \u001b[34m\u001b[4mhttps://wandb.ai/openpipe-team/classify-recipes/runs/run1\u001b[0m\n",
" 0%| | 0/230 [00:00<?, ?it/s][2023-08-24 20:20:56,099] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 1514815\u001b[39m\n",
"[2023-08-24 20:20:56,099] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 20:20:56,102] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] ac74b20cc92d80020bfc11a9bed8f0bf75dfc745b23630320c27a53a549d7cae\u001b[39m\n",
"[2023-08-24 20:20:56,106] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 1514815\u001b[39m\n",
"/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"{'loss': 1.7489, 'learning_rate': 2e-05, 'epoch': 0.02} \n",
" 0%|▏ | 1/230 [00:19<1:13:24, 19.24s/it][2023-08-24 20:21:34,307] [INFO] [axolotl.callbacks.on_step_end:96] [PID:125016] GPU memory usage while training: 7.107GB (+10.436GB cache, +1.190GB misc)\u001b[39m\n",
"{'loss': 1.7393, 'learning_rate': 4e-05, 'epoch': 0.04} \n",
"{'loss': 1.7469, 'learning_rate': 6e-05, 'epoch': 0.06} \n",
"{'loss': 1.7368, 'learning_rate': 8e-05, 'epoch': 0.09} \n",
"{'loss': 1.6956, 'learning_rate': 0.0001, 'epoch': 0.11} \n",
"{'loss': 1.6289, 'learning_rate': 0.00012, 'epoch': 0.13} \n",
"{'loss': 1.4673, 'learning_rate': 0.00014, 'epoch': 0.15} \n",
"{'loss': 1.2552, 'learning_rate': 0.00016, 'epoch': 0.17} \n",
"{'loss': 0.9807, 'learning_rate': 0.00018, 'epoch': 0.19} \n",
"{'loss': 0.7046, 'learning_rate': 0.0002, 'epoch': 0.22} \n",
"{'loss': 0.4783, 'learning_rate': 0.00019998952044849376, 'epoch': 0.24} \n",
"{'loss': 0.3099, 'learning_rate': 0.00019995808399039496, 'epoch': 0.26} \n",
"{'loss': 0.2095, 'learning_rate': 0.00019990569721450326, 'epoch': 0.28} \n",
"{'loss': 0.0851, 'learning_rate': 0.00019983237110061697, 'epoch': 0.3} \n",
"{'loss': 0.0949, 'learning_rate': 0.00019973812101723188, 'epoch': 0.32} \n",
"{'loss': 0.0496, 'learning_rate': 0.00019962296671832003, 'epoch': 0.35} \n",
"{'loss': 0.0415, 'learning_rate': 0.00019948693233918952, 'epoch': 0.37} \n",
"{'loss': 0.0405, 'learning_rate': 0.00019933004639142605, 'epoch': 0.39} \n",
"{'loss': 0.0451, 'learning_rate': 0.000199152341756917, 'epoch': 0.41} \n",
"{'loss': 0.0326, 'learning_rate': 0.00019895385568095982, 'epoch': 0.43} \n",
" 9%|███▍ | 20/230 [06:15<1:05:47, 18.80s/it][2023-08-24 20:27:11,801] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 20:27:11,810] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 20:27:11,810] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] c0ef04db402ba917eb072daff58b8c0ef38c662600f92eee3292e60918d59b78\u001b[39m\n",
"[2023-08-24 20:27:11,810] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"[2023-08-24 20:27:13,176] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:27:13,176] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 20:27:13,177] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 0%| | 0/8 [00:00<?, ?it/s]\u001b[A[2023-08-24 20:27:14,581] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:27:14,582] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 25%|███████████▎ | 2/8 [00:01<00:04, 1.42it/s]\u001b[A[2023-08-24 20:27:16,012] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:27:16,013] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 38%|████████████████▉ | 3/8 [00:02<00:05, 1.01s/it]\u001b[A[2023-08-24 20:27:17,381] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:27:17,381] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 50%|██████████████████████▌ | 4/8 [00:04<00:04, 1.14s/it]\u001b[A[2023-08-24 20:27:18,789] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:27:18,789] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 62%|████████████████████████████▏ | 5/8 [00:05<00:03, 1.23s/it]\u001b[A[2023-08-24 20:27:20,178] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:27:20,178] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 75%|█████████████████████████████████▊ | 6/8 [00:07<00:02, 1.29s/it]\u001b[A[2023-08-24 20:27:21,602] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:27:21,602] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 88%|███████████████████████████████████████▍ | 7/8 [00:08<00:01, 1.33s/it]\u001b[A[2023-08-24 20:27:22,986] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:27:22,986] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" \u001b[A\n",
"\u001b[A{'eval_loss': 0.03450942039489746, 'eval_runtime': 11.2098, 'eval_samples_per_second': 20.161, 'eval_steps_per_second': 10.08, 'epoch': 0.43}\n",
" 9%|███▍ | 20/230 [06:26<1:05:47, 18.80s/it]\n",
"100%|█████████████████████████████████████████████| 8/8 [00:09<00:00, 1.35s/it]\u001b[A\n",
"{'loss': 0.0336, 'learning_rate': 0.00019873462976445553, 'epoch': 0.45} \u001b[A\n",
"{'loss': 0.0329, 'learning_rate': 0.00019849470995518992, 'epoch': 0.48} \n",
"{'loss': 0.0317, 'learning_rate': 0.0001982341465382029, 'epoch': 0.5} \n",
"{'loss': 0.0319, 'learning_rate': 0.00019795299412524945, 'epoch': 0.52} \n",
"{'loss': 0.0258, 'learning_rate': 0.00019765131164335345, 'epoch': 0.54} \n",
"{'loss': 0.024, 'learning_rate': 0.000197329162322457, 'epoch': 0.56} \n",
"{'loss': 0.0251, 'learning_rate': 0.00019698661368216817, 'epoch': 0.58} \n",
"{'loss': 0.025, 'learning_rate': 0.00019662373751760934, 'epoch': 0.61} \n",
"{'loss': 0.0258, 'learning_rate': 0.00019624060988436966, 'epoch': 0.63} \n",
"{'loss': 0.0225, 'learning_rate': 0.0001958373110825644, 'epoch': 0.65} \n",
"{'loss': 0.0252, 'learning_rate': 0.00019541392564000488, 'epoch': 0.67} \n",
"{'loss': 0.0233, 'learning_rate': 0.00019497054229448223, 'epoch': 0.69} \n",
"{'loss': 0.0231, 'learning_rate': 0.0001945072539751685, 'epoch': 0.71} \n",
"{'loss': 0.0208, 'learning_rate': 0.00019402415778313977, 'epoch': 0.74} \n",
"{'loss': 0.0221, 'learning_rate': 0.00019352135497102463, 'epoch': 0.76} \n",
"{'loss': 0.0251, 'learning_rate': 0.0001929989509217824, 'epoch': 0.78} \n",
"{'loss': 0.0192, 'learning_rate': 0.0001924570551266159, 'epoch': 0.8} \n",
"{'loss': 0.021, 'learning_rate': 0.00019189578116202307, 'epoch': 0.82} \n",
"{'loss': 0.017, 'learning_rate': 0.00019131524666599233, 'epoch': 0.84} \n",
"{'loss': 0.0235, 'learning_rate': 0.00019071557331334669, 'epoch': 0.86} \n",
" 17%|███████▎ | 40/230 [12:42<59:13, 18.70s/it][2023-08-24 20:33:38,317] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 20:33:38,326] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 20:33:38,326] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] c0ef04db402ba917eb072daff58b8c0ef38c662600f92eee3292e60918d59b78\u001b[39m\n",
"[2023-08-24 20:33:38,327] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"[2023-08-24 20:33:39,687] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:33:39,688] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 20:33:39,688] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 0%| | 0/8 [00:00<?, ?it/s]\u001b[A[2023-08-24 20:33:41,085] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:33:41,085] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 25%|███████████▎ | 2/8 [00:01<00:04, 1.43it/s]\u001b[A[2023-08-24 20:33:42,510] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:33:42,511] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 38%|████████████████▉ | 3/8 [00:02<00:05, 1.00s/it]\u001b[A[2023-08-24 20:33:43,870] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:33:43,870] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 50%|██████████████████████▌ | 4/8 [00:04<00:04, 1.13s/it]\u001b[A[2023-08-24 20:33:45,268] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:33:45,268] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 62%|████████████████████████████▏ | 5/8 [00:05<00:03, 1.23s/it]\u001b[A[2023-08-24 20:33:46,650] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:33:46,650] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 75%|█████████████████████████████████▊ | 6/8 [00:06<00:02, 1.28s/it]\u001b[A[2023-08-24 20:33:48,071] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:33:48,072] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 88%|███████████████████████████████████████▍ | 7/8 [00:08<00:01, 1.32s/it]\u001b[A[2023-08-24 20:33:49,455] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:33:49,455] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" \u001b[A\n",
"\u001b[A{'eval_loss': 0.018499867990612984, 'eval_runtime': 11.1626, 'eval_samples_per_second': 20.246, 'eval_steps_per_second': 10.123, 'epoch': 0.86}\n",
" 17%|███████▎ | 40/230 [12:53<59:13, 18.70s/it]\n",
"100%|█████████████████████████████████████████████| 8/8 [00:09<00:00, 1.34s/it]\u001b[A\n",
"{'loss': 0.0207, 'learning_rate': 0.0001900968867902419, 'epoch': 0.89} \u001b[A\n",
"{'loss': 0.0188, 'learning_rate': 0.00018945931676782373, 'epoch': 0.91} \n",
"{'loss': 0.0169, 'learning_rate': 0.0001888029968750498, 'epoch': 0.93} \n",
"{'loss': 0.0176, 'learning_rate': 0.00018812806467068268, 'epoch': 0.95} \n",
"{'loss': 0.0162, 'learning_rate': 0.00018743466161445823, 'epoch': 0.97} \n",
"{'loss': 0.0204, 'learning_rate': 0.00018672293303743738, 'epoch': 0.99} \n",
" 20%|████████▍ | 46/230 [14:46<59:16, 19.33s/it][2023-08-24 20:35:47,036] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 1514815\u001b[39m\n",
"[2023-08-24 20:35:47,036] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 20:35:47,038] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] 6076f9186c2a908489c30feee8b4739eb4ac652346e4a07ad9ea9efc2cefc22f\u001b[39m\n",
"[2023-08-24 20:35:47,040] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 1514815\u001b[39m\n",
"{'loss': 0.0158, 'learning_rate': 0.00018599302811154572, 'epoch': 1.02} \n",
"{'loss': 0.0182, 'learning_rate': 0.00018524509981830852, 'epoch': 1.04} \n",
"{'loss': 0.0185, 'learning_rate': 0.00018447930491678733, 'epoch': 1.06} \n",
"{'loss': 0.0169, 'learning_rate': 0.00018369580391072433, 'epoch': 1.08} \n",
"{'loss': 0.0167, 'learning_rate': 0.00018289476101490256, 'epoch': 1.1} \n",
"{'loss': 0.0177, 'learning_rate': 0.00018207634412072764, 'epoch': 1.12} \n",
"{'loss': 0.0196, 'learning_rate': 0.00018124072476103956, 'epoch': 1.15} \n",
"{'loss': 0.0165, 'learning_rate': 0.00018038807807416068, 'epoch': 1.17} \n",
"{'loss': 0.0148, 'learning_rate': 0.00017951858276718844, 'epoch': 1.19} \n",
"{'loss': 0.0149, 'learning_rate': 0.00017863242107853995, 'epoch': 1.21} \n",
"{'loss': 0.0161, 'learning_rate': 0.0001777297787397563, 'epoch': 1.23} \n",
"{'loss': 0.0165, 'learning_rate': 0.00017681084493657525, 'epoch': 1.25} \n",
"{'loss': 0.0169, 'learning_rate': 0.0001758758122692791, 'epoch': 1.28} \n",
"{'loss': 0.0183, 'learning_rate': 0.00017492487671232784, 'epoch': 1.3} \n",
" 26%|██████████▉ | 60/230 [19:07<52:41, 18.59s/it][2023-08-24 20:40:03,988] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 20:40:03,996] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 20:40:03,996] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] c0ef04db402ba917eb072daff58b8c0ef38c662600f92eee3292e60918d59b78\u001b[39m\n",
"[2023-08-24 20:40:03,996] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"[2023-08-24 20:40:05,357] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:40:05,357] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 20:40:05,357] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 0%| | 0/8 [00:00<?, ?it/s]\u001b[A[2023-08-24 20:40:06,753] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:40:06,753] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 25%|███████████▎ | 2/8 [00:01<00:04, 1.43it/s]\u001b[A[2023-08-24 20:40:08,176] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:40:08,177] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 38%|████████████████▉ | 3/8 [00:02<00:05, 1.00s/it]\u001b[A[2023-08-24 20:40:09,534] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:40:09,534] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 50%|██████████████████████▌ | 4/8 [00:04<00:04, 1.13s/it]\u001b[A[2023-08-24 20:40:10,931] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:40:10,931] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 62%|████████████████████████████▏ | 5/8 [00:05<00:03, 1.23s/it]\u001b[A[2023-08-24 20:40:12,312] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:40:12,312] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 75%|█████████████████████████████████▊ | 6/8 [00:06<00:02, 1.28s/it]\u001b[A[2023-08-24 20:40:13,734] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:40:13,735] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 88%|███████████████████████████████████████▍ | 7/8 [00:08<00:01, 1.32s/it]\u001b[A[2023-08-24 20:40:15,118] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:40:15,118] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" \u001b[A\n",
"\u001b[A{'eval_loss': 0.016062971204519272, 'eval_runtime': 11.1551, 'eval_samples_per_second': 20.26, 'eval_steps_per_second': 10.13, 'epoch': 1.3}\n",
" 26%|██████████▉ | 60/230 [19:19<52:41, 18.59s/it]\n",
"100%|█████████████████████████████████████████████| 8/8 [00:09<00:00, 1.34s/it]\u001b[A\n",
" \u001b[A/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"{'loss': 0.0161, 'learning_rate': 0.00017395823757328444, 'epoch': 1.32} \n",
"{'loss': 0.0153, 'learning_rate': 0.00017297609745104184, 'epoch': 1.34} \n",
"{'loss': 0.018, 'learning_rate': 0.0001719786621933599, 'epoch': 1.36} \n",
"{'loss': 0.0128, 'learning_rate': 0.00017096614085372185, 'epoch': 1.38} \n",
"{'loss': 0.0156, 'learning_rate': 0.00016993874564751822, 'epoch': 1.41} \n",
"{'loss': 0.0139, 'learning_rate': 0.00016889669190756868, 'epoch': 1.43} \n",
"{'loss': 0.0205, 'learning_rate': 0.00016784019803899, 'epoch': 1.45} \n",
"{'loss': 0.0151, 'learning_rate': 0.0001667694854734204, 'epoch': 1.47} \n",
"{'loss': 0.0148, 'learning_rate': 0.0001656847786226095, 'epoch': 1.49} \n",
"{'loss': 0.0142, 'learning_rate': 0.00016458630483138356, 'epoch': 1.51} \n",
"{'loss': 0.0159, 'learning_rate': 0.00016347429432999602, 'epoch': 1.54} \n",
"{'loss': 0.018, 'learning_rate': 0.00016234898018587337, 'epoch': 1.56} \n",
"{'loss': 0.0149, 'learning_rate': 0.0001612105982547663, 'epoch': 1.58} \n",
"{'loss': 0.0147, 'learning_rate': 0.00016005938713131642, 'epoch': 1.6} \n",
"{'loss': 0.0138, 'learning_rate': 0.00015889558809904902, 'epoch': 1.62} \n",
"{'loss': 0.0146, 'learning_rate': 0.00015771944507980207, 'epoch': 1.64} \n",
"{'loss': 0.0156, 'learning_rate': 0.00015653120458260263, 'epoch': 1.66} \n",
"{'loss': 0.0159, 'learning_rate': 0.00015533111565200044, 'epoch': 1.69} \n",
"{'loss': 0.0152, 'learning_rate': 0.0001541194298158708, 'epoch': 1.71} \n",
"{'loss': 0.0179, 'learning_rate': 0.00015289640103269625, 'epoch': 1.73} \n",
" 35%|██████████████▌ | 80/230 [25:36<46:59, 18.80s/it][2023-08-24 20:46:32,302] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 20:46:32,310] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 20:46:32,311] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] c0ef04db402ba917eb072daff58b8c0ef38c662600f92eee3292e60918d59b78\u001b[39m\n",
"[2023-08-24 20:46:32,311] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"[2023-08-24 20:46:33,670] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:46:33,670] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 20:46:33,670] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 0%| | 0/8 [00:00<?, ?it/s]\u001b[A[2023-08-24 20:46:35,068] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:46:35,068] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 25%|███████████▎ | 2/8 [00:01<00:04, 1.43it/s]\u001b[A[2023-08-24 20:46:36,491] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:46:36,491] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 38%|████████████████▉ | 3/8 [00:02<00:05, 1.00s/it]\u001b[A[2023-08-24 20:46:37,849] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:46:37,849] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 50%|██████████████████████▌ | 4/8 [00:04<00:04, 1.13s/it]\u001b[A[2023-08-24 20:46:39,247] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:46:39,247] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 62%|████████████████████████████▏ | 5/8 [00:05<00:03, 1.23s/it]\u001b[A[2023-08-24 20:46:40,629] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:46:40,629] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 75%|█████████████████████████████████▊ | 6/8 [00:06<00:02, 1.28s/it]\u001b[A[2023-08-24 20:46:42,051] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:46:42,051] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 88%|███████████████████████████████████████▍ | 7/8 [00:08<00:01, 1.32s/it]\u001b[A[2023-08-24 20:46:43,434] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:46:43,435] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" \u001b[A\n",
"\u001b[A{'eval_loss': 0.015303226187825203, 'eval_runtime': 11.157, 'eval_samples_per_second': 20.256, 'eval_steps_per_second': 10.128, 'epoch': 1.73}\n",
" 35%|██████████████▌ | 80/230 [25:47<46:59, 18.80s/it]\n",
"100%|█████████████████████████████████████████████| 8/8 [00:09<00:00, 1.34s/it]\u001b[A\n",
"{'loss': 0.016, 'learning_rate': 0.00015166228563833934, 'epoch': 1.75} \u001b[A\n",
"{'loss': 0.0149, 'learning_rate': 0.00015041734229231688, 'epoch': 1.77} \n",
"{'loss': 0.0159, 'learning_rate': 0.00014916183192358718, 'epoch': 1.79} \n",
"{'loss': 0.0181, 'learning_rate': 0.00014789601767586173, 'epoch': 1.82} \n",
"{'loss': 0.0126, 'learning_rate': 0.00014662016485245274, 'epoch': 1.84} \n",
"{'loss': 0.0195, 'learning_rate': 0.00014533454086066772, 'epoch': 1.86} \n",
"{'loss': 0.0134, 'learning_rate': 0.00014403941515576344, 'epoch': 1.88} \n",
"{'loss': 0.0131, 'learning_rate': 0.00014273505918447054, 'epoch': 1.9} \n",
"{'loss': 0.0126, 'learning_rate': 0.00014142174632810072, 'epoch': 1.92} \n",
"{'loss': 0.013, 'learning_rate': 0.0001400997518452484, 'epoch': 1.95} \n",
"{'loss': 0.0177, 'learning_rate': 0.00013876935281409907, 'epoch': 1.97} \n",
"{'loss': 0.0148, 'learning_rate': 0.00013743082807435615, 'epoch': 1.99} \n",
" 40%|████████████████▊ | 92/230 [29:32<43:20, 18.85s/it][2023-08-24 20:50:38,268] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 1514815\u001b[39m\n",
"[2023-08-24 20:50:38,269] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 20:50:38,271] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] 066d0afd59aa1c812e1335cead6076c131869d6997468e47f96e2f7244232bfe\u001b[39m\n",
"[2023-08-24 20:50:38,273] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 1514815\u001b[39m\n",
"{'loss': 0.0145, 'learning_rate': 0.00013608445816879866, 'epoch': 2.01} \n",
"{'loss': 0.0151, 'learning_rate': 0.00013473052528448201, 'epoch': 2.03} \n",
"{'loss': 0.0128, 'learning_rate': 0.00013336931319359426, 'epoch': 2.05} \n",
"{'loss': 0.0163, 'learning_rate': 0.00013200110719397968, 'epoch': 2.08} \n",
"{'loss': 0.016, 'learning_rate': 0.00013062619404934317, 'epoch': 2.1} \n",
"{'loss': 0.015, 'learning_rate': 0.00012924486192914705, 'epoch': 2.12} \n",
"{'loss': 0.0124, 'learning_rate': 0.00012785740034821329, 'epoch': 2.14} \n",
"{'loss': 0.0134, 'learning_rate': 0.00012646410010604397, 'epoch': 2.16} \n",
" 43%|█████████████████▊ | 100/230 [32:02<40:34, 18.73s/it][2023-08-24 20:52:58,789] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 20:52:58,797] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 20:52:58,797] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] c0ef04db402ba917eb072daff58b8c0ef38c662600f92eee3292e60918d59b78\u001b[39m\n",
"[2023-08-24 20:52:58,798] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"[2023-08-24 20:53:00,162] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:53:00,163] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 20:53:00,163] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 0%| | 0/8 [00:00<?, ?it/s]\u001b[A[2023-08-24 20:53:01,560] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:53:01,561] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 25%|███████████▎ | 2/8 [00:01<00:04, 1.43it/s]\u001b[A[2023-08-24 20:53:02,985] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:53:02,985] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 38%|████████████████▉ | 3/8 [00:02<00:05, 1.00s/it]\u001b[A[2023-08-24 20:53:04,343] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:53:04,344] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 50%|██████████████████████▌ | 4/8 [00:04<00:04, 1.13s/it]\u001b[A[2023-08-24 20:53:05,742] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:53:05,742] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 62%|████████████████████████████▏ | 5/8 [00:05<00:03, 1.23s/it]\u001b[A[2023-08-24 20:53:07,122] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:53:07,123] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 75%|█████████████████████████████████▊ | 6/8 [00:06<00:02, 1.28s/it]\u001b[A[2023-08-24 20:53:08,545] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:53:08,545] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 88%|███████████████████████████████████████▍ | 7/8 [00:08<00:01, 1.32s/it]\u001b[A[2023-08-24 20:53:09,929] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:53:09,929] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" \u001b[A\n",
"\u001b[A{'eval_loss': 0.01423712819814682, 'eval_runtime': 11.165, 'eval_samples_per_second': 20.242, 'eval_steps_per_second': 10.121, 'epoch': 2.16}\n",
" 43%|█████████████████▊ | 100/230 [32:13<40:34, 18.73s/it]\n",
"100%|█████████████████████████████████████████████| 8/8 [00:09<00:00, 1.34s/it]\u001b[A\n",
"{'loss': 0.0148, 'learning_rate': 0.00012506525322587207, 'epoch': 2.18} \u001b[A\n",
"{'loss': 0.0163, 'learning_rate': 0.0001236611528934562, 'epoch': 2.21} \n",
"{'loss': 0.0145, 'learning_rate': 0.00012225209339563145, 'epoch': 2.23} \n",
"{'loss': 0.0166, 'learning_rate': 0.00012083837005862946, 'epoch': 2.25} \n",
"{'loss': 0.0115, 'learning_rate': 0.00011942027918618074, 'epoch': 2.27} \n",
"{'loss': 0.0107, 'learning_rate': 0.0001179981179974121, 'epoch': 2.29} \n",
"{'loss': 0.012, 'learning_rate': 0.00011657218456455206, 'epoch': 2.31} \n",
"{'loss': 0.0129, 'learning_rate': 0.00011514277775045768, 'epoch': 2.34} \n",
"{'loss': 0.0118, 'learning_rate': 0.00011371019714597562, 'epoch': 2.36} \n",
"{'loss': 0.0138, 'learning_rate': 0.00011227474300715055, 'epoch': 2.38} \n",
"{'loss': 0.013, 'learning_rate': 0.00011083671619229408, 'epoch': 2.4} \n",
"{'loss': 0.0119, 'learning_rate': 0.00010939641809892767, 'epoch': 2.42} \n",
"{'loss': 0.0139, 'learning_rate': 0.00010795415060061243, 'epoch': 2.44} \n",
"{'loss': 0.0159, 'learning_rate': 0.00010651021598367906, 'epoch': 2.46} \n",
"{'loss': 0.0143, 'learning_rate': 0.00010506491688387127, 'epoch': 2.49} \n",
"{'loss': 0.0154, 'learning_rate': 0.00010361855622291637, 'epoch': 2.51} \n",
"{'loss': 0.0131, 'learning_rate': 0.00010217143714503508, 'epoch': 2.53} \n",
"{'loss': 0.0124, 'learning_rate': 0.00010072386295340572, 'epoch': 2.55} \n",
"{'loss': 0.0127, 'learning_rate': 9.927613704659429e-05, 'epoch': 2.57} \n",
"{'loss': 0.0141, 'learning_rate': 9.782856285496495e-05, 'epoch': 2.59} \n",
" 52%|█████████████████████▍ | 120/230 [38:28<34:16, 18.69s/it][2023-08-24 20:59:24,312] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 20:59:24,320] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 20:59:24,320] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] c0ef04db402ba917eb072daff58b8c0ef38c662600f92eee3292e60918d59b78\u001b[39m\n",
"[2023-08-24 20:59:24,320] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"[2023-08-24 20:59:25,678] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:59:25,679] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 20:59:25,679] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 0%| | 0/8 [00:00<?, ?it/s]\u001b[A[2023-08-24 20:59:27,076] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:59:27,076] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 25%|███████████▎ | 2/8 [00:01<00:04, 1.43it/s]\u001b[A[2023-08-24 20:59:28,499] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:59:28,499] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 38%|████████████████▉ | 3/8 [00:02<00:05, 1.00s/it]\u001b[A[2023-08-24 20:59:29,857] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:59:29,857] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 50%|██████████████████████▌ | 4/8 [00:04<00:04, 1.13s/it]\u001b[A[2023-08-24 20:59:31,255] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:59:31,255] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 62%|████████████████████████████▏ | 5/8 [00:05<00:03, 1.23s/it]\u001b[A[2023-08-24 20:59:32,636] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:59:32,636] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 75%|█████████████████████████████████▊ | 6/8 [00:06<00:02, 1.28s/it]\u001b[A[2023-08-24 20:59:34,057] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:59:34,057] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 88%|███████████████████████████████████████▍ | 7/8 [00:08<00:01, 1.32s/it]\u001b[A[2023-08-24 20:59:35,441] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 20:59:35,441] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" \u001b[A\n",
"\u001b[A{'eval_loss': 0.01440380234271288, 'eval_runtime': 11.1537, 'eval_samples_per_second': 20.262, 'eval_steps_per_second': 10.131, 'epoch': 2.59}\n",
" 52%|█████████████████████▍ | 120/230 [38:39<34:16, 18.69s/it]\n",
"100%|█████████████████████████████████████████████| 8/8 [00:09<00:00, 1.34s/it]\u001b[A\n",
" \u001b[A/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"{'loss': 0.0133, 'learning_rate': 9.638144377708367e-05, 'epoch': 2.62} \n",
"{'loss': 0.0151, 'learning_rate': 9.493508311612874e-05, 'epoch': 2.64} \n",
"{'loss': 0.0136, 'learning_rate': 9.348978401632101e-05, 'epoch': 2.66} \n",
"{'loss': 0.0129, 'learning_rate': 9.204584939938762e-05, 'epoch': 2.68} \n",
"{'loss': 0.0141, 'learning_rate': 9.060358190107234e-05, 'epoch': 2.7} \n",
"{'loss': 0.0131, 'learning_rate': 8.916328380770595e-05, 'epoch': 2.72} \n",
"{'loss': 0.0154, 'learning_rate': 8.772525699284946e-05, 'epoch': 2.75} \n",
"{'loss': 0.0119, 'learning_rate': 8.628980285402439e-05, 'epoch': 2.77} \n",
"{'loss': 0.0104, 'learning_rate': 8.485722224954237e-05, 'epoch': 2.79} \n",
"{'loss': 0.013, 'learning_rate': 8.342781543544798e-05, 'epoch': 2.81} \n",
"{'loss': 0.0112, 'learning_rate': 8.200188200258791e-05, 'epoch': 2.83} \n",
"{'loss': 0.0112, 'learning_rate': 8.057972081381927e-05, 'epoch': 2.85} \n",
"{'loss': 0.0127, 'learning_rate': 7.916162994137056e-05, 'epoch': 2.88} \n",
"{'loss': 0.0149, 'learning_rate': 7.774790660436858e-05, 'epoch': 2.9} \n",
"{'loss': 0.0178, 'learning_rate': 7.633884710654383e-05, 'epoch': 2.92} \n",
"{'loss': 0.0119, 'learning_rate': 7.493474677412794e-05, 'epoch': 2.94} \n",
"{'loss': 0.0137, 'learning_rate': 7.353589989395604e-05, 'epoch': 2.96} \n",
"{'loss': 0.0145, 'learning_rate': 7.214259965178674e-05, 'epoch': 2.98} \n",
" 60%|████████████████████████▌ | 138/230 [44:18<28:53, 18.84s/it][2023-08-24 21:05:28,422] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 1514815\u001b[39m\n",
"[2023-08-24 21:05:28,423] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 21:05:28,424] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] b60ca8a353f86b08d0005489b946fc3b062142d53d2ef59949adfba0b078763f\u001b[39m\n",
"[2023-08-24 21:05:28,427] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 1514815\u001b[39m\n",
"{'loss': 0.0133, 'learning_rate': 7.075513807085299e-05, 'epoch': 3.01} \n",
"{'loss': 0.0128, 'learning_rate': 6.937380595065685e-05, 'epoch': 3.03} \n",
" 61%|████████████████████████▉ | 140/230 [44:55<28:12, 18.81s/it][2023-08-24 21:05:51,811] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 21:05:51,819] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 21:05:51,820] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] c0ef04db402ba917eb072daff58b8c0ef38c662600f92eee3292e60918d59b78\u001b[39m\n",
"[2023-08-24 21:05:51,820] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"[2023-08-24 21:05:53,181] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:05:53,181] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 21:05:53,181] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 0%| | 0/8 [00:00<?, ?it/s]\u001b[A[2023-08-24 21:05:54,578] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:05:54,578] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 25%|███████████▎ | 2/8 [00:01<00:04, 1.43it/s]\u001b[A[2023-08-24 21:05:56,002] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:05:56,002] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 38%|████████████████▉ | 3/8 [00:02<00:05, 1.00s/it]\u001b[A[2023-08-24 21:05:57,363] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:05:57,363] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 50%|██████████████████████▌ | 4/8 [00:04<00:04, 1.14s/it]\u001b[A[2023-08-24 21:05:58,762] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:05:58,762] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 62%|████████████████████████████▏ | 5/8 [00:05<00:03, 1.23s/it]\u001b[A[2023-08-24 21:06:00,145] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:06:00,145] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 75%|█████████████████████████████████▊ | 6/8 [00:06<00:02, 1.28s/it]\u001b[A[2023-08-24 21:06:01,569] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:06:01,569] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 88%|███████████████████████████████████████▍ | 7/8 [00:08<00:01, 1.33s/it]\u001b[A[2023-08-24 21:06:02,956] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:06:02,956] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" \u001b[A\n",
"\u001b[A{'eval_loss': 0.01361126359552145, 'eval_runtime': 11.1696, 'eval_samples_per_second': 20.233, 'eval_steps_per_second': 10.117, 'epoch': 3.03}\n",
" 61%|████████████████████████▉ | 140/230 [45:06<28:12, 18.81s/it]\n",
"100%|█████████████████████████████████████████████| 8/8 [00:09<00:00, 1.34s/it]\u001b[A\n",
"{'loss': 0.0129, 'learning_rate': 6.799889280602031e-05, 'epoch': 3.05} \u001b[A\n",
"{'loss': 0.0133, 'learning_rate': 6.663068680640574e-05, 'epoch': 3.07} \n",
"{'loss': 0.0142, 'learning_rate': 6.526947471551798e-05, 'epoch': 3.09} \n",
"{'loss': 0.0118, 'learning_rate': 6.391554183120138e-05, 'epoch': 3.11} \n",
"{'loss': 0.0144, 'learning_rate': 6.25691719256439e-05, 'epoch': 3.14} \n",
"{'loss': 0.0142, 'learning_rate': 6.123064718590099e-05, 'epoch': 3.16} \n",
"{'loss': 0.013, 'learning_rate': 5.9900248154751616e-05, 'epoch': 3.18} \n",
"{'loss': 0.0123, 'learning_rate': 5.857825367189931e-05, 'epoch': 3.2} \n",
"{'loss': 0.0109, 'learning_rate': 5.7264940815529485e-05, 'epoch': 3.22} \n",
"{'loss': 0.0107, 'learning_rate': 5.596058484423656e-05, 'epoch': 3.24} \n",
"{'loss': 0.0104, 'learning_rate': 5.46654591393323e-05, 'epoch': 3.26} \n",
"{'loss': 0.0139, 'learning_rate': 5.337983514754723e-05, 'epoch': 3.29} \n",
"{'loss': 0.0138, 'learning_rate': 5.2103982324138244e-05, 'epoch': 3.31} \n",
"{'loss': 0.0155, 'learning_rate': 5.083816807641284e-05, 'epoch': 3.33} \n",
"{'loss': 0.0129, 'learning_rate': 4.958265770768316e-05, 'epoch': 3.35} \n",
"{'loss': 0.0143, 'learning_rate': 4.833771436166069e-05, 'epoch': 3.37} \n",
"{'loss': 0.0146, 'learning_rate': 4.710359896730379e-05, 'epoch': 3.39} \n",
"{'loss': 0.0112, 'learning_rate': 4.5880570184129215e-05, 'epoch': 3.42} \n",
"{'loss': 0.0105, 'learning_rate': 4.466888434799958e-05, 'epoch': 3.44} \n",
"{'loss': 0.0121, 'learning_rate': 4.34687954173974e-05, 'epoch': 3.46} \n",
" 70%|████████████████████████████▌ | 160/230 [51:23<21:52, 18.75s/it][2023-08-24 21:12:19,255] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 21:12:19,264] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 21:12:19,264] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] c0ef04db402ba917eb072daff58b8c0ef38c662600f92eee3292e60918d59b78\u001b[39m\n",
"[2023-08-24 21:12:19,264] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"[2023-08-24 21:12:20,628] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:12:20,628] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 21:12:20,628] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 0%| | 0/8 [00:00<?, ?it/s]\u001b[A[2023-08-24 21:12:22,028] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:12:22,028] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 25%|███████████▎ | 2/8 [00:01<00:04, 1.43it/s]\u001b[A[2023-08-24 21:12:23,454] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:12:23,454] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 38%|████████████████▉ | 3/8 [00:02<00:05, 1.00s/it]\u001b[A[2023-08-24 21:12:24,814] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:12:24,814] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 50%|██████████████████████▌ | 4/8 [00:04<00:04, 1.14s/it]\u001b[A[2023-08-24 21:12:26,214] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:12:26,215] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 62%|████████████████████████████▏ | 5/8 [00:05<00:03, 1.23s/it]\u001b[A[2023-08-24 21:12:27,598] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:12:27,598] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 75%|█████████████████████████████████▊ | 6/8 [00:06<00:02, 1.28s/it]\u001b[A[2023-08-24 21:12:29,021] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:12:29,021] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 88%|███████████████████████████████████████▍ | 7/8 [00:08<00:01, 1.33s/it]\u001b[A[2023-08-24 21:12:30,407] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:12:30,407] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" \u001b[A\n",
"\u001b[A{'eval_loss': 0.013194510713219643, 'eval_runtime': 11.1763, 'eval_samples_per_second': 20.221, 'eval_steps_per_second': 10.111, 'epoch': 3.46}\n",
" 70%|████████████████████████████▌ | 160/230 [51:34<21:52, 18.75s/it]\n",
"100%|█████████████████████████████████████████████| 8/8 [00:09<00:00, 1.34s/it]\u001b[A\n",
"{'loss': 0.0126, 'learning_rate': 4.2280554920197936e-05, 'epoch': 3.48} \u001b[A\n",
"{'loss': 0.0139, 'learning_rate': 4.1104411900951015e-05, 'epoch': 3.5} \n",
"{'loss': 0.0094, 'learning_rate': 3.994061286868361e-05, 'epoch': 3.52} \n",
"{'loss': 0.0144, 'learning_rate': 3.878940174523371e-05, 'epoch': 3.55} \n",
"{'loss': 0.0119, 'learning_rate': 3.7651019814126654e-05, 'epoch': 3.57} \n",
"{'loss': 0.0128, 'learning_rate': 3.652570567000402e-05, 'epoch': 3.59} \n",
"{'loss': 0.0141, 'learning_rate': 3.541369516861648e-05, 'epoch': 3.61} \n",
"{'loss': 0.0118, 'learning_rate': 3.431522137739049e-05, 'epoch': 3.63} \n",
"{'loss': 0.0142, 'learning_rate': 3.323051452657961e-05, 'epoch': 3.65} \n",
"{'loss': 0.0149, 'learning_rate': 3.215980196101002e-05, 'epoch': 3.68} \n",
"{'loss': 0.0106, 'learning_rate': 3.110330809243134e-05, 'epoch': 3.7} \n",
"{'loss': 0.0112, 'learning_rate': 3.0061254352481804e-05, 'epoch': 3.72} \n",
"{'loss': 0.0103, 'learning_rate': 2.9033859146278197e-05, 'epoch': 3.74} \n",
"{'loss': 0.0133, 'learning_rate': 2.8021337806640135e-05, 'epoch': 3.76} \n",
"{'loss': 0.0138, 'learning_rate': 2.702390254895819e-05, 'epoch': 3.78} \n",
"{'loss': 0.0095, 'learning_rate': 2.6041762426715566e-05, 'epoch': 3.81} \n",
"{'loss': 0.0152, 'learning_rate': 2.5075123287672175e-05, 'epoch': 3.83} \n",
"{'loss': 0.0126, 'learning_rate': 2.4124187730720917e-05, 'epoch': 3.85} \n",
"{'loss': 0.0106, 'learning_rate': 2.3189155063424782e-05, 'epoch': 3.87} \n",
"{'loss': 0.0135, 'learning_rate': 2.2270221260243673e-05, 'epoch': 3.89} \n",
" 78%|████████████████████████████████ | 180/230 [57:52<15:42, 18.85s/it][2023-08-24 21:18:48,116] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 21:18:48,124] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 21:18:48,124] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] c0ef04db402ba917eb072daff58b8c0ef38c662600f92eee3292e60918d59b78\u001b[39m\n",
"[2023-08-24 21:18:48,125] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"[2023-08-24 21:18:49,486] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:18:49,486] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 21:18:49,486] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 0%| | 0/8 [00:00<?, ?it/s]\u001b[A[2023-08-24 21:18:50,888] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:18:50,888] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 25%|███████████▎ | 2/8 [00:01<00:04, 1.43it/s]\u001b[A[2023-08-24 21:18:52,314] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:18:52,314] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 38%|████████████████▉ | 3/8 [00:02<00:05, 1.00s/it]\u001b[A[2023-08-24 21:18:53,675] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:18:53,676] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 50%|██████████████████████▌ | 4/8 [00:04<00:04, 1.14s/it]\u001b[A[2023-08-24 21:18:55,074] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:18:55,074] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 62%|████████████████████████████▏ | 5/8 [00:05<00:03, 1.23s/it]\u001b[A[2023-08-24 21:18:56,457] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:18:56,457] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 75%|█████████████████████████████████▊ | 6/8 [00:06<00:02, 1.28s/it]\u001b[A[2023-08-24 21:18:57,881] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:18:57,881] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 88%|███████████████████████████████████████▍ | 7/8 [00:08<00:01, 1.33s/it]\u001b[A[2023-08-24 21:18:59,267] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:18:59,267] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" \u001b[A\n",
"\u001b[A{'eval_loss': 0.013087373226881027, 'eval_runtime': 11.1759, 'eval_samples_per_second': 20.222, 'eval_steps_per_second': 10.111, 'epoch': 3.89}\n",
" 78%|████████████████████████████████ | 180/230 [58:03<15:42, 18.85s/it]\n",
"100%|█████████████████████████████████████████████| 8/8 [00:09<00:00, 1.34s/it]\u001b[A\n",
" \u001b[A/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"{'loss': 0.0128, 'learning_rate': 2.1367578921460074e-05, 'epoch': 3.91} \n",
"{'loss': 0.0103, 'learning_rate': 2.0481417232811573e-05, 'epoch': 3.94} \n",
"{'loss': 0.0099, 'learning_rate': 1.961192192583934e-05, 'epoch': 3.96} \n",
"{'loss': 0.0112, 'learning_rate': 1.8759275238960473e-05, 'epoch': 3.98} \n",
"{'loss': 0.0132, 'learning_rate': 1.7923655879272393e-05, 'epoch': 4.0} \n",
" 80%|████████████████████████████████▉ | 185/230 [59:38<14:45, 19.68s/it][2023-08-24 21:20:34,361] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 1514815\u001b[39m\n",
"[2023-08-24 21:20:34,361] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 21:20:34,363] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] b61d2abf3bc15c84376d0af3386cd5fac907d76f1a3fd6fec08d54c6b52d49cb\u001b[39m\n",
"[2023-08-24 21:20:34,365] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 1514815\u001b[39m\n",
"{'loss': 0.0102, 'learning_rate': 1.7105238985097472e-05, 'epoch': 4.02} \n",
"{'loss': 0.0113, 'learning_rate': 1.6304196089275658e-05, 'epoch': 4.04} \n",
"{'loss': 0.0117, 'learning_rate': 1.5520695083212678e-05, 'epoch': 4.06} \n",
"{'loss': 0.012, 'learning_rate': 1.4754900181691467e-05, 'epoch': 4.09} \n",
"{'loss': 0.0144, 'learning_rate': 1.4006971888454323e-05, 'epoch': 4.11} \n",
"{'loss': 0.0102, 'learning_rate': 1.3277066962562645e-05, 'epoch': 4.13} \n",
"{'loss': 0.0132, 'learning_rate': 1.2565338385541792e-05, 'epoch': 4.15} \n",
"{'loss': 0.013, 'learning_rate': 1.1871935329317363e-05, 'epoch': 4.17} \n",
"{'loss': 0.0137, 'learning_rate': 1.1197003124950222e-05, 'epoch': 4.19} \n",
"{'loss': 0.0114, 'learning_rate': 1.0540683232176307e-05, 'epoch': 4.22} \n",
"{'loss': 0.0119, 'learning_rate': 9.903113209758096e-06, 'epoch': 4.24} \n",
"{'loss': 0.0126, 'learning_rate': 9.284426686653303e-06, 'epoch': 4.26} \n",
"{'loss': 0.0137, 'learning_rate': 8.68475333400769e-06, 'epoch': 4.28} \n",
"{'loss': 0.0132, 'learning_rate': 8.10421883797694e-06, 'epoch': 4.3} \n",
"{'loss': 0.0111, 'learning_rate': 7.542944873384106e-06, 'epoch': 4.32} \n",
" 87%|█████████████████████████████████▉ | 200/230 [1:04:20<09:26, 18.88s/it][2023-08-24 21:25:17,008] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 21:25:17,016] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 21:25:17,016] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] c0ef04db402ba917eb072daff58b8c0ef38c662600f92eee3292e60918d59b78\u001b[39m\n",
"[2023-08-24 21:25:17,017] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"[2023-08-24 21:25:18,378] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:25:18,378] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 21:25:18,378] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 0%| | 0/8 [00:00<?, ?it/s]\u001b[A[2023-08-24 21:25:19,776] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:25:19,776] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 25%|███████████▎ | 2/8 [00:01<00:04, 1.43it/s]\u001b[A[2023-08-24 21:25:21,199] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:25:21,199] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 38%|████████████████▉ | 3/8 [00:02<00:05, 1.00s/it]\u001b[A[2023-08-24 21:25:22,559] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:25:22,559] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 50%|██████████████████████▌ | 4/8 [00:04<00:04, 1.13s/it]\u001b[A[2023-08-24 21:25:23,958] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:25:23,958] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 62%|████████████████████████████▏ | 5/8 [00:05<00:03, 1.23s/it]\u001b[A[2023-08-24 21:25:25,341] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:25:25,341] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 75%|█████████████████████████████████▊ | 6/8 [00:06<00:02, 1.28s/it]\u001b[A[2023-08-24 21:25:26,764] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:25:26,764] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 88%|███████████████████████████████████████▍ | 7/8 [00:08<00:01, 1.32s/it]\u001b[A[2023-08-24 21:25:28,152] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:25:28,152] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" \u001b[A\n",
"\u001b[A{'eval_loss': 0.013082703575491905, 'eval_runtime': 11.1685, 'eval_samples_per_second': 20.235, 'eval_steps_per_second': 10.118, 'epoch': 4.32}\n",
" 87%|█████████████████████████████████▉ | 200/230 [1:04:32<09:26, 18.88s/it]\n",
"100%|█████████████████████████████████████████████| 8/8 [00:09<00:00, 1.34s/it]\u001b[A\n",
"{'loss': 0.0109, 'learning_rate': 7.0010490782176145e-06, 'epoch': 4.35} \u001b[A\n",
"{'loss': 0.0151, 'learning_rate': 6.4786450289753715e-06, 'epoch': 4.37} \n",
"{'loss': 0.016, 'learning_rate': 5.975842216860239e-06, 'epoch': 4.39} \n",
"{'loss': 0.0119, 'learning_rate': 5.492746024831541e-06, 'epoch': 4.41} \n",
"{'loss': 0.0132, 'learning_rate': 5.029457705517793e-06, 'epoch': 4.43} \n",
"{'loss': 0.0109, 'learning_rate': 4.586074359995119e-06, 'epoch': 4.45} \n",
"{'loss': 0.01, 'learning_rate': 4.162688917435631e-06, 'epoch': 4.48} \n",
"{'loss': 0.0125, 'learning_rate': 3.7593901156303566e-06, 'epoch': 4.5} \n",
"{'loss': 0.0137, 'learning_rate': 3.3762624823906573e-06, 'epoch': 4.52} \n",
"{'loss': 0.0122, 'learning_rate': 3.0133863178318232e-06, 'epoch': 4.54} \n",
"{'loss': 0.0125, 'learning_rate': 2.6708376775430033e-06, 'epoch': 4.56} \n",
"{'loss': 0.0132, 'learning_rate': 2.3486883566465777e-06, 'epoch': 4.58} \n",
"{'loss': 0.0118, 'learning_rate': 2.0470058747505516e-06, 'epoch': 4.61} \n",
"{'loss': 0.0124, 'learning_rate': 1.7658534617971067e-06, 'epoch': 4.63} \n",
"{'loss': 0.0121, 'learning_rate': 1.5052900448100815e-06, 'epoch': 4.65} \n",
"{'loss': 0.0145, 'learning_rate': 1.2653702355444608e-06, 'epoch': 4.67} \n",
"{'loss': 0.0133, 'learning_rate': 1.0461443190402099e-06, 'epoch': 4.69} \n",
"{'loss': 0.0132, 'learning_rate': 8.476582430830049e-07, 'epoch': 4.71} \n",
"{'loss': 0.0106, 'learning_rate': 6.699536085739588e-07, 'epoch': 4.74} \n",
"{'loss': 0.0106, 'learning_rate': 5.130676608104845e-07, 'epoch': 4.76} \n",
" 96%|█████████████████████████████████████▎ | 220/230 [1:10:47<03:08, 18.85s/it][2023-08-24 21:31:44,045] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 21:31:44,053] [INFO] [axolotl.utils.dataloader.generate_batches:181] [PID:125016] generating packed batches\u001b[39m\n",
"[2023-08-24 21:31:44,053] [INFO] [axolotl.utils.dataloader.generate_batches:187] [PID:125016] c0ef04db402ba917eb072daff58b8c0ef38c662600f92eee3292e60918d59b78\u001b[39m\n",
"[2023-08-24 21:31:44,054] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
"[2023-08-24 21:31:45,414] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:31:45,415] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"[2023-08-24 21:31:45,415] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 0%| | 0/8 [00:00<?, ?it/s]\u001b[A[2023-08-24 21:31:46,811] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:31:46,811] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 25%|███████████▎ | 2/8 [00:01<00:04, 1.43it/s]\u001b[A[2023-08-24 21:31:48,235] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:31:48,235] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 38%|████████████████▉ | 3/8 [00:02<00:05, 1.00s/it]\u001b[A[2023-08-24 21:31:49,595] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:31:49,596] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 50%|██████████████████████▌ | 4/8 [00:04<00:04, 1.13s/it]\u001b[A[2023-08-24 21:31:50,994] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:31:50,994] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 62%|████████████████████████████▏ | 5/8 [00:05<00:03, 1.23s/it]\u001b[A[2023-08-24 21:31:52,376] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:31:52,377] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 75%|█████████████████████████████████▊ | 6/8 [00:06<00:02, 1.28s/it]\u001b[A[2023-08-24 21:31:53,798] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:31:53,799] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" 88%|███████████████████████████████████████▍ | 7/8 [00:08<00:01, 1.32s/it]\u001b[A[2023-08-24 21:31:55,183] [INFO] [accelerate.accelerator.log:60] [PID:125016] The used dataset had no length, returning gathered tensors. You should drop the remainder yourself.\n",
"[2023-08-24 21:31:55,183] [INFO] [axolotl.utils.dataloader._len_est:262] [PID:125016] packing_efficiency_estimate: 0.98 total_num_tokens per device: 79978\u001b[39m\n",
"\n",
" \u001b[A\n",
"\u001b[A{'eval_loss': 0.01321522518992424, 'eval_runtime': 11.1631, 'eval_samples_per_second': 20.245, 'eval_steps_per_second': 10.123, 'epoch': 4.76}\n",
" 96%|█████████████████████████████████████▎ | 220/230 [1:10:59<03:08, 18.85s/it]\n",
"100%|█████████████████████████████████████████████| 8/8 [00:09<00:00, 1.34s/it]\u001b[A\n",
"{'loss': 0.013, 'learning_rate': 3.7703328167999485e-07, 'epoch': 4.78} \u001b[A\n",
"{'loss': 0.0115, 'learning_rate': 2.6187898276813784e-07, 'epoch': 4.8} \n",
"{'loss': 0.0091, 'learning_rate': 1.6762889938303217e-07, 'epoch': 4.82} \n",
"{'loss': 0.0112, 'learning_rate': 9.430278549675819e-08, 'epoch': 4.84} \n",
"{'loss': 0.0111, 'learning_rate': 4.191600960505859e-08, 'epoch': 4.86} \n",
"{'loss': 0.0109, 'learning_rate': 1.0479551506259456e-08, 'epoch': 4.89} \n",
"{'loss': 0.0148, 'learning_rate': 0.0, 'epoch': 4.91} \n",
"{'loss': 0.0152, 'learning_rate': 1.0479551506270558e-08, 'epoch': 4.93} \n",
"{'loss': 0.0119, 'learning_rate': 4.191600960505859e-08, 'epoch': 4.95} \n",
"{'loss': 0.0092, 'learning_rate': 9.430278549675819e-08, 'epoch': 4.97} \n",
"{'train_runtime': 4450.2443, 'train_samples_per_second': 4.803, 'train_steps_per_second': 0.052, 'train_loss': 0.08349336267084531, 'epoch': 4.97}\n",
"100%|███████████████████████████████████████| 230/230 [1:14:07<00:00, 19.34s/it]\n",
"[2023-08-24 21:35:04,013] [INFO] [axolotl.scripts.train:303] [PID:125016] Training Completed!!! Saving pre-trained model to ./models/run1\u001b[39m\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Waiting for W&B process to finish... \u001b[32m(success).\u001b[0m\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Run history:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: eval/loss █▃▂▂▁▁▁▁▁▁▁\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: eval/runtime █▂▁▁▂▁▃▄▄▃▂\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: eval/samples_per_second ▁▇██▇█▆▅▅▆▇\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: eval/steps_per_second ▁▇██▇█▆▅▅▆▇\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/epoch ▁▁▁▂▂▂▂▂▂▃▃▃▃▃▄▄▄▄▄▄▅▅▅▅▅▅▆▆▆▆▆▇▇▇▇▇▇███\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/global_step ▁▁▁▂▂▂▂▂▂▃▃▃▃▃▄▄▄▄▄▄▅▅▅▅▅▅▆▆▆▆▆▇▇▇▇▇▇███\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/learning_rate ▂▅██████▇▇▇▇▇▆▆▆▆▅▅▅▅▄▄▄▃▃▃▃▂▂▂▂▂▁▁▁▁▁▁▁\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/loss ██▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/total_flos ▁\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/train_loss ▁\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/train_runtime ▁\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/train_samples_per_second ▁\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/train_steps_per_second ▁\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Run summary:\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: eval/loss 0.01322\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: eval/runtime 11.1631\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: eval/samples_per_second 20.245\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: eval/steps_per_second 10.123\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/epoch 4.97\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/global_step 230\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/learning_rate 0.0\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/loss 0.0092\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/total_flos 2.966052920056873e+17\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/train_loss 0.08349\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/train_runtime 4450.2443\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/train_samples_per_second 4.803\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: train/train_steps_per_second 0.052\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: \n",
"\u001b[34m\u001b[1mwandb\u001b[0m: 🚀 View run \u001b[33mrun1\u001b[0m at: \u001b[34m\u001b[4mhttps://wandb.ai/openpipe-team/classify-recipes/runs/run1\u001b[0m\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: ️⚡ View job at \u001b[34m\u001b[4mhttps://wandb.ai/openpipe-team/classify-recipes/jobs/QXJ0aWZhY3RDb2xsZWN0aW9uOjkyNjYwODUw/version_details/v0\u001b[0m\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Synced 5 W&B file(s), 0 media file(s), 2 artifact file(s) and 0 other file(s)\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Find logs at: \u001b[35m\u001b[1m./wandb/run-20230824_202055-run1/logs\u001b[0m\n",
"Exception in thread NetStatThr:\n",
"Traceback (most recent call last):\n",
" File \"/usr/lib/python3.10/threading.py\", line 1016, in _bootstrap_inner\n",
" self.run()\n",
" File \"/usr/lib/python3.10/threading.py\", line 953, in run\n",
" self._target(*self._args, **self._kwargs)\n",
" File \"/usr/local/lib/python3.10/dist-packages/wandb/sdk/wandb_run.py\", line 256, in check_network_status\n",
" self._loop_check_status(\n",
" File \"/usr/local/lib/python3.10/dist-packages/wandb/sdk/wandb_run.py\", line 212, in _loop_check_status\n",
" local_handle = request()\n",
" File \"/usr/local/lib/python3.10/dist-packages/wandb/sdk/interface/interface.py\", line 864, in deliver_network_status\n",
" return self._deliver_network_status(status)\n",
" File \"/usr/local/lib/python3.10/dist-packages/wandb/sdk/interface/interface_shared.py\", line 610, in _deliver_network_status\n",
" return self._deliver_record(record)\n",
" File \"/usr/local/lib/python3.10/dist-packages/wandb/sdk/interface/interface_shared.py\", line 569, in _deliver_record\n",
" handle = mailbox._deliver_record(record, interface=self)\n",
" File \"/usr/local/lib/python3.10/dist-packages/wandb/sdk/lib/mailbox.py\", line 455, in _deliver_record\n",
" interface._publish(record)\n",
" File \"/usr/local/lib/python3.10/dist-packages/wandb/sdk/interface/interface_sock.py\", line 51, in _publish\n",
" self._sock_client.send_record_publish(record)\n",
" File \"/usr/local/lib/python3.10/dist-packages/wandb/sdk/lib/sock_client.py\", line 221, in send_record_publish\n",
" self.send_server_request(server_req)\n",
" File \"/usr/local/lib/python3.10/dist-packages/wandb/sdk/lib/sock_client.py\", line 155, in send_server_request\n",
" self._send_message(msg)\n",
" File \"/usr/local/lib/python3.10/dist-packages/wandb/sdk/lib/sock_client.py\", line 152, in _send_message\n",
" self._sendall_with_error_handle(header + data)\n",
" File \"/usr/local/lib/python3.10/dist-packages/wandb/sdk/lib/sock_client.py\", line 130, in _sendall_with_error_handle\n",
" sent = self._sock.send(data)\n",
"BrokenPipeError: [Errno 32] Broken pipe\n",
"\u001b[0m"
]
}
],
"source": [
"!accelerate launch ./axolotl/scripts/finetune.py training-config.yaml"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sweet! I now have a new directory `./models/run1`. This contains my trained model, which I can use to classify more recipes.\n",
"\n",
"There's one more step though. I trained our model using [LoRA](https://huggingface.co/docs/peft/conceptual_guides/lora), which is a memory-efficient training method. But the inference library we'll use for testing doesn't support LoRA models directly yet, so we need to \"merge\" our LoRA model to transform it into a standard Llama2-shaped model. I've defined a small helper to do that called `merge_lora_model` that I'll use below.\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Merging model (this could take a while)\n",
"Loading base model\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "13b36646399a45eab184327f17165046",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading PEFT model\n",
"Running merge_and_unload\n",
"Model saved to ./models/run1/merged\n",
"Final model saved to './models/run1/merged'\n"
]
}
],
"source": [
"from utils import merge_lora_model\n",
"\n",
"print(\"Merging model (this could take a while)\")\n",
"final_model_dir = merge_lora_model(\"training-config.yaml\")\n",
"print(f\"Final model saved to '{final_model_dir}'\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ok, I have a model, but is it actually any good? I'll run some evaluations in [./evaluate.ipynb](./evaluate.ipynb) to check.\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,905 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I have a model in `./models/run1/merged` that was trained on GPT-4's outputs to classify recipes. I need to figure out whether it does a good job at classifying recipes. I'll install dependencies first.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%%capture\n",
"%pip install vllm==0.1.3 pandas==2.0.3 joblib==1.3.2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Remember I got a \"test.jsonl\" file from OpenPipe back in [./prepare.ipynb](./prepare.ipynb)? That's data from our dataset that we didn't use in training, so we can use it to check our model's performance.\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"test_data = pd.read_json(\"./data/test.jsonl\", lines=True)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"During the training process Axolotl transformed our data into an instruction/response format known as the \"Alpaca format\" based on [the project that introduced it](https://github.com/tatsu-lab/stanford_alpaca). I need to transform my test data into the same format for best results.\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample prompt:\n",
"--------------\n",
"### Instruction:\n",
"[{\"role\":\"system\",\"content\":\"Your goal is to classify a recipe along several dimensions.Pay attention to the instructions.\"},{\"role\":\"user\",\"content\":\"Pan Gravy\\n\\nIngredients:\\n- 1/3 cup all purpose flour\\n- 1/3 cup turkey drippings\\n- 3 cup water or broth\\n- 1/8 to 1/4 teaspoon salt\\n- 1/8 tsp pepper\\n\\nDirections:\\n- In a skillet or roasting pan, add flour to drippings; blend well.\\n- Cook over medium heat 2 to 3 minutes until smooth and light brown, stirring constantly.\\n- Add water; cook until mixture boils and thickens, stirring constantly.\\n- Stir in salt and pepper.\\n- *Flour and drippings can be decreased to 1/4 cup each for thinner gravy.\\n- *\"}]\n",
"\n",
"### Response:\n",
"\n"
]
}
],
"source": [
"from axolotl.prompters import UnpromptedPrompter\n",
"\n",
"prompter = UnpromptedPrompter()\n",
"\n",
"\n",
"def format_prompt(input: str) -> str:\n",
" return next(prompter.build_prompt(input))\n",
"\n",
"\n",
"prompts = test_data[\"instruction\"].apply(format_prompt)\n",
"\n",
"print(f\"Sample prompt:\\n--------------\\n{prompts[0]}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next up, I'll use [vLLM](https://vllm.readthedocs.io/en/latest/) to efficiently process all the prompts in our test data with our own model.\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO 08-28 00:26:23 llm_engine.py:70] Initializing an LLM engine with config: model='./models/run1/merged', tokenizer='./models/run1/merged', tokenizer_mode=auto, trust_remote_code=False, dtype=torch.float16, use_dummy_weights=False, download_dir=None, use_np_weights=False, tensor_parallel_size=1, seed=0)\n",
"INFO 08-28 00:27:26 llm_engine.py:196] # GPU blocks: 3419, # CPU blocks: 512\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Processed prompts: 100%|██████████| 500/500 [00:37<00:00, 13.34it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample output:\n",
"--------------\n",
"{\"role\":\"assistant\",\"content\":null,\"function_call\":{\"name\":\"classify\",\"arguments\":\"{\\n\\\"has_non_fish_meat\\\": true,\\n\\\"requires_oven\\\": false,\\n\\\"requires_stove\\\": true,\\n\\\"cook_time_over_30_mins\\\": false,\\n\\\"main_dish\\\": false\\n}\"}}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"from vllm import LLM, SamplingParams\n",
"\n",
"llm = LLM(model=\"./models/run1/merged\", max_num_batched_tokens=4096)\n",
"\n",
"sampling_params = SamplingParams(\n",
" # 120 should be fine for the work we're doing here.\n",
" max_tokens=120,\n",
" # This is a deterministic task so temperature=0 is best.\n",
" temperature=0,\n",
")\n",
"\n",
"my_outputs = llm.generate(prompts, sampling_params=sampling_params)\n",
"my_outputs = [o.outputs[0].text for o in my_outputs]\n",
"\n",
"test_data[\"my_outputs\"] = my_outputs\n",
"\n",
"print(f\"Sample output:\\n--------------\\n{my_outputs[0]}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ok, we have our outputs! There are 5 categories we classify each recipe on, so let's check what percentage of the time our model's output matches GPT-4's. I'll write a quick eval function for that:\n"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overall accuracy: 0.95\n"
]
}
],
"source": [
"import json\n",
"\n",
"\n",
"def parse_fn_call(str):\n",
" \"\"\"Parse the function call arguments from the response\"\"\"\n",
" response_dict = json.loads(str)\n",
" args_dict = json.loads(response_dict[\"function_call\"][\"arguments\"])\n",
"\n",
" return args_dict\n",
"\n",
"\n",
"test_data[\"output_parsed\"] = test_data[\"output\"].apply(parse_fn_call)\n",
"test_data[\"my_outputs_parsed\"] = test_data[\"my_outputs\"].apply(parse_fn_call)\n",
"\n",
"\n",
"def calculate_accuracy(row, labels_col):\n",
" \"\"\"Calculate the fraction of my model's outputs that match the reference outputs\"\"\"\n",
" true_outputs = row[\"output_parsed\"]\n",
" labels_outputs = row[labels_col]\n",
"\n",
" # print(f\"true_outputs: {true_outputs}\")\n",
" # print(f\"my_outputs: {row[labels_col]}\")\n",
"\n",
" num_matching_outputs = 0\n",
" for key in true_outputs.keys():\n",
" if key in labels_outputs and true_outputs[key] == labels_outputs[key]:\n",
" num_matching_outputs += 1\n",
"\n",
" return num_matching_outputs / len(true_outputs)\n",
"\n",
"\n",
"test_data[\"accuracy\"] = test_data.apply(\n",
" calculate_accuracy, axis=1, labels_col=\"my_outputs_parsed\"\n",
")\n",
"\n",
"print(f\"Overall accuracy: {test_data['accuracy'].mean():.2f}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"95% seems good! However, we don't have much to compare it to. Let's see how GPT-3.5 would do on the same task as a baseline. We'll use the same prompt we used with GPT-4 to generate the labels.\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample recipe:\n",
"--------------\n",
"Pan Gravy\n",
"\n",
"Ingredients:\n",
"- 1/3 cup all purpose flour\n",
"- 1/3 cup turkey drippings\n",
"- 3 cup water or broth\n",
"- 1/8 to 1/4 teaspoon salt\n",
"- 1/8 tsp pepper\n",
"\n",
"Directions:\n",
"- In a skillet or roasting pan, add flour to drippings; blend well.\n",
"- Cook over medium heat 2 to 3 minutes until smooth and light brown, stirring constantly.\n",
"- Add water; cook until mixture boils and thickens, stirring constantly.\n",
"- Stir in salt and pepper.\n",
"- *Flour and drippings can be decreased to 1/4 cup each for thinner gravy.\n",
"- *\n"
]
}
],
"source": [
"import json\n",
"\n",
"\n",
"def extract_recipe(row):\n",
" \"\"\"Extract the recipe from the instruction\"\"\"\n",
" return json.loads(row[\"instruction\"])[1][\"content\"]\n",
"\n",
"\n",
"recipes = test_data.apply(extract_recipe, axis=1)\n",
"print(f\"Sample recipe:\\n--------------\\n{recipes[0]}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Classifying first recipe:\n",
"------------------\n",
"{'has_non_fish_meat': False, 'requires_oven': False, 'requires_stove': True, 'cook_time_over_30_mins': False, 'main_dish': False}\n"
]
}
],
"source": [
"import joblib\n",
"import openai\n",
"import os\n",
"import dotenv\n",
"\n",
"dotenv.load_dotenv()\n",
"openai.api_key = os.getenv(\"OPENAI_API_KEY\")\n",
"\n",
"memory = joblib.Memory(\"./cache\", verbose=0)\n",
"\n",
"\n",
"@memory.cache\n",
"def classify_recipe_35(recipe: str):\n",
" completion = openai.ChatCompletion.create(\n",
" model=\"gpt-3.5-turbo\",\n",
" messages=[\n",
" {\n",
" \"role\": \"system\",\n",
" \"content\": \"Your goal is to classify a recipe along several dimensions.Pay attention to the instructions.\",\n",
" },\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": recipe,\n",
" },\n",
" ],\n",
" functions=[\n",
" {\n",
" \"name\": \"classify\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"has_non_fish_meat\": {\n",
" \"type\": \"boolean\",\n",
" \"description\": \"True if the recipe contains any meat or meat products (eg. chicken broth) besides fish\",\n",
" },\n",
" \"requires_oven\": {\n",
" \"type\": \"boolean\",\n",
" \"description\": \"True if the recipe requires an oven\",\n",
" },\n",
" \"requires_stove\": {\n",
" \"type\": \"boolean\",\n",
" \"description\": \"True if the recipe requires a stove\",\n",
" },\n",
" \"cook_time_over_30_mins\": {\n",
" \"type\": \"boolean\",\n",
" \"description\": \"True if the recipe takes over 30 minutes to prepare and cook, including waiting time\",\n",
" },\n",
" \"main_dish\": {\n",
" \"type\": \"boolean\",\n",
" \"description\": \"True if the recipe can be served as a main dish\",\n",
" },\n",
" },\n",
" \"required\": [\n",
" \"has_non_fish_meat\",\n",
" \"requires_oven\",\n",
" \"requires_stove\",\n",
" \"cook_time_over_30_mins\",\n",
" \"main_dish\",\n",
" ],\n",
" },\n",
" }\n",
" ],\n",
" function_call={\n",
" \"name\": \"classify\",\n",
" },\n",
" )\n",
" return json.loads(completion.choices[0].message.function_call.arguments)\n",
"\n",
"\n",
"print(\"Classifying first recipe:\\n------------------\")\n",
"print(classify_recipe_35(recipes[0]))\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"100%|██████████| 500/500 [00:31<00:00, 15.77it/s]\n"
]
}
],
"source": [
"from tqdm import tqdm\n",
"\n",
"test_data[\"gpt_3.5\"] = [classify_recipe_35(r) for r in tqdm(recipes)]\n"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"GPT-3.5 accuracy: 0.91\n"
]
}
],
"source": [
"test_data[\"gpt_3.5_accuracy\"] = test_data.apply(\n",
" calculate_accuracy, axis=1, labels_col=\"gpt_3.5\"\n",
")\n",
"\n",
"print(f\"GPT-3.5 accuracy: {test_data['gpt_3.5_accuracy'].mean():.2f}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And for completeness, let's try a fine-tuned GPT-3.5 model. You can find the fine-tuning code in [finetune-gpt-3.5.ipynb](./finetune-gpt-3.5.ipynb)\n"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'has_non_fish_meat': True,\n",
" 'requires_oven': False,\n",
" 'requires_stove': True,\n",
" 'cook_time_over_30_mins': False,\n",
" 'main_dish': False}"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@memory.cache\n",
"def classify_recipe_35_ft(recipe: str):\n",
" completion = openai.ChatCompletion.create(\n",
" model=\"ft:gpt-3.5-turbo-0613:openpipe::7rZpPqYn\",\n",
" messages=[\n",
" {\n",
" \"role\": \"system\",\n",
" \"content\": \"Your goal is to classify a recipe along several \"\n",
" \"dimensions.Pay attention to the instructions.\",\n",
" },\n",
" {\"role\": \"user\", \"content\": recipe},\n",
" ],\n",
" )\n",
"\n",
" return json.loads(completion.choices[0].message.content)\n",
"\n",
"\n",
"classify_recipe_35_ft(recipes[0])\n"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 500/500 [07:31<00:00, 1.11it/s]\n"
]
}
],
"source": [
"test_data[\"gpt_3.5_ft\"] = [classify_recipe_35_ft(r) for r in tqdm(recipes)]\n"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"GPT-3.5 FT accuracy: 0.94\n"
]
}
],
"source": [
"test_data[\"gpt_3.5_ft_accuracy\"] = test_data.apply(\n",
" calculate_accuracy, axis=1, labels_col=\"gpt_3.5_ft\"\n",
")\n",
"\n",
"print(f\"GPT-3.5 FT accuracy: {test_data['gpt_3.5_ft_accuracy'].mean():.2f}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Not bad! However, there are still a few rows where the model outputs don't match. Let's take a closer look.\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Alligator Sauce Piquant\n",
"\n",
"Ingredients:\n",
"- 2 lb. alligator, boneless and cubed *\n",
"- 4 onions, diced\n",
"- 1 c. parsley, chopped\n",
"- 4 stalks celery, chopped\n",
"- 1 bell pepper, diced\n",
"- 1 c. catsup\n",
"- 2 Tbsp. Heinz steak sauce\n",
"- 2 Tbsp. soy sauce\n",
"- 2 Tbsp. Louisiana hot sauce\n",
"- 2 Tbsp. cornstarch\n",
"- 1 tsp. salt\n",
"- 2 tsp. red pepper (ground)\n",
"- 1/4 c. cooking oil\n",
"\n",
"Directions:\n",
"- *Alligator must be free of all fat; also dark meat is the best (leg and body meat), boneless.\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>GPT-4</th>\n",
" <th>My model</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>cook_time_over_30_mins</th>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>main_dish</th>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" GPT-4 My model\n",
"cook_time_over_30_mins True False\n",
"main_dish True False"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Veggie Casserole\n",
"\n",
"Ingredients:\n",
"- 1 (8 oz.) bag mixed veggies (corn, peas, carrots, green beans), steamed\n",
"- 1 c. celery\n",
"- 1 c. onions\n",
"- 1 c. Cheddar cheese\n",
"- 1 c. mayonnaise\n",
"\n",
"Directions:\n",
"- Mix above ingredients.\n",
"- Bake at 350° for 30 minutes, until bubbly.\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>GPT-4</th>\n",
" <th>My model</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>main_dish</th>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" GPT-4 My model\n",
"main_dish False True"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rhonda'S Butter Chess Pie\n",
"\n",
"Ingredients:\n",
"- 5 eggs\n",
"- 1 stick melted butter\n",
"- 2 c. sugar\n",
"- 1 tsp. vanilla\n",
"- 1 Tbsp. cornstarch\n",
"- 1/2 c. buttermilk\n",
"- unbaked 9-inch deep dish pie shell\n",
"\n",
"Directions:\n",
"- Mix eggs with sugar and cornstarch until smooth.\n",
"- Add melted butter, vanilla and buttermilk.\n",
"- Bake at 350° for 30 minutes or until done.\n",
"- Let cool and chill.\n",
"- Similar to Furr's Butter Chess Pie.\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>GPT-4</th>\n",
" <th>My model</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>cook_time_over_30_mins</th>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" GPT-4 My model\n",
"cook_time_over_30_mins False True"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Broccoli Gorgonzola Cream Soup\n",
"\n",
"Ingredients:\n",
"- 2 heads Broccoli\n",
"- 700 milliliters Water\n",
"- 1 Onion, Peeled And Cut Into Chunks\n",
"- 1 pinch Salt\n",
"- 1 teaspoon Oregano\n",
"- 1 Potato, Peeled And Cut Into Chunks\n",
"- 200 grams Crumbled Gorgonzola\n",
"- 1 Tablespoon Finely Grated Parmesan\n",
"\n",
"Directions:\n",
"- Cut off the hard trunks of the broccoli and cut it into small pieces. Prepare a pot with water, add broccoli, onion, salt and oregano and boil for about 30 minutes.\n",
"- Add the peeled potato and boil for another 20 minutes. When vegetables are cooked, strain and save the stock.\n",
"- Using a hand blender, puree vegetables, adding as much stock as desired. Bring soup back to heat over low heat, and sir in gorgonzola. Remove from heat and add Parmesan.\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>GPT-4</th>\n",
" <th>My model</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>main_dish</th>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" GPT-4 My model\n",
"main_dish False True"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wild Rice With Cucumber And Feta\n",
"\n",
"Ingredients:\n",
"- 1 (8.5-ounce) package precooked wild rice (such as Archer Farms)\n",
"- 1 cup diced English cucumber\n",
"- 1 1/2 tablespoons olive oil\n",
"- 1 tablespoon fresh lemon juice\n",
"- 2 ounces crumbled feta cheese\n",
"- 1/2 teaspoon pepper\n",
"- 1/4 teaspoon salt\n",
"\n",
"Directions:\n",
"- Prepare rice according to the package directions.\n",
"- Combine cooked rice, cucumber, olive oil, lemon juice, and crumbled feta cheese in a medium bowl; toss to coat. Stir in pepper and salt.\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>GPT-4</th>\n",
" <th>My model</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>main_dish</th>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" GPT-4 My model\n",
"main_dish True False"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"\n",
"np.random.seed(42)\n",
"\n",
"for row in test_data[test_data.accuracy < 1].sample(5).itertuples():\n",
" print(json.loads(row.instruction)[1][\"content\"])\n",
"\n",
" gpt4_output = parse_fn_call(row.output)\n",
" my_output = parse_fn_call(row.my_outputs)\n",
"\n",
" table = pd.DataFrame(\n",
" {\n",
" \"GPT-4\": gpt4_output,\n",
" \"My model\": my_output,\n",
" }\n",
" )\n",
"\n",
" table = table[table[\"GPT-4\"] != table[\"My model\"]]\n",
" display(table)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looking at the outputs, it's clear that our model still makes some mistakes. But at the same time, there are plenty of examples like \"Rhonda's Butter Chess Pie\" where our model gets it right, even though GPT-4 got it wrong! And there are also cases like the \"Veggie Casserole\", where the \"right\" answer is truly ambiguous and really both answers are defensible.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A realistic point of comparison here might be GPT-3.5. Let's try to classify the same set of recipes using GPT-3.5 and see how it does. We'll use the same prompt that we used with GPT-4 to generate the initial training data.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Interested in cost/latency benchmarking? You can check out [./benchmarking.ipynb](./benchmarking.ipynb) for an overview of my findings!\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,349 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I'm pretty happy with my model's accuracy relative to GPT-4. How does it compare cost-wise?\n",
"\n",
"I'll really push this to its limits -- let's see how quickly our poor model can classify the [full 2-million-recipe dataset](https://huggingface.co/datasets/corbt/all-recipes) 😈.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%%capture\n",
"%pip install datasets==2.14.4 vllm==0.1.3"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of recipes: 2,147,248\n"
]
}
],
"source": [
"from datasets import load_dataset\n",
"\n",
"all_recipes = load_dataset(\"corbt/all-recipes\")[\"train\"][\"input\"]\n",
"\n",
"print(f\"Number of recipes: {len(all_recipes):,}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO 08-24 19:38:29 llm_engine.py:70] Initializing an LLM engine with config: model='./models/run1/merged', tokenizer='./models/run1/merged', tokenizer_mode=auto, trust_remote_code=False, dtype=torch.float16, use_dummy_weights=False, download_dir=None, use_np_weights=False, tensor_parallel_size=1, seed=0)\n",
"INFO 08-24 19:39:48 llm_engine.py:196] # GPU blocks: 3419, # CPU blocks: 512\n"
]
}
],
"source": [
"from vllm import LLM, SamplingParams\n",
"\n",
"llm = LLM(model=\"./models/run1/merged\", max_num_batched_tokens=4096)\n",
"\n",
"sampling_params = SamplingParams(\n",
" # 120 should be fine for the work we're doing here.\n",
" max_tokens=120,\n",
" # This is a deterministic task so temperature=0 is best.\n",
" temperature=0,\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Start time: 1692906050.3340027\n",
"Processing recipes 0 to 10,000...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Processed prompts: 100%|██████████| 10000/10000 [04:51<00:00, 34.30it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing recipes 10,000 to 20,000...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Processed prompts: 100%|██████████| 10000/10000 [04:54<00:00, 33.98it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing recipes 20,000 to 30,000...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Processed prompts: 100%|██████████| 10000/10000 [04:53<00:00, 34.11it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing recipes 30,000 to 40,000...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Processed prompts: 100%|██████████| 10000/10000 [04:53<00:00, 34.11it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing recipes 40,000 to 50,000...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Processed prompts: 48%|████▊ | 4796/10000 [02:21<03:18, 26.22it/s]"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[6], line 12\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(\u001b[39m0\u001b[39m, \u001b[39mlen\u001b[39m(all_recipes), BATCH_SIZE):\n\u001b[1;32m 11\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mProcessing recipes \u001b[39m\u001b[39m{\u001b[39;00mi\u001b[39m:\u001b[39;00m\u001b[39m,\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m to \u001b[39m\u001b[39m{\u001b[39;00mi\u001b[39m+\u001b[39mBATCH_SIZE\u001b[39m:\u001b[39;00m\u001b[39m,\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m...\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m---> 12\u001b[0m outputs \u001b[39m=\u001b[39m llm\u001b[39m.\u001b[39;49mgenerate(all_recipes[i:i\u001b[39m+\u001b[39;49mBATCH_SIZE], sampling_params\u001b[39m=\u001b[39;49msampling_params)\n\u001b[1;32m 14\u001b[0m all_outputs\u001b[39m.\u001b[39mextend([o\u001b[39m.\u001b[39moutputs[\u001b[39m0\u001b[39m]\u001b[39m.\u001b[39mtext \u001b[39mfor\u001b[39;00m o \u001b[39min\u001b[39;00m outputs])\n\u001b[1;32m 16\u001b[0m end_time \u001b[39m=\u001b[39m time\u001b[39m.\u001b[39mtime()\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/vllm/entrypoints/llm.py:130\u001b[0m, in \u001b[0;36mLLM.generate\u001b[0;34m(self, prompts, sampling_params, prompt_token_ids, use_tqdm)\u001b[0m\n\u001b[1;32m 128\u001b[0m token_ids \u001b[39m=\u001b[39m prompt_token_ids[i]\n\u001b[1;32m 129\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_add_request(prompt, sampling_params, token_ids)\n\u001b[0;32m--> 130\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_run_engine(use_tqdm)\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/vllm/entrypoints/llm.py:150\u001b[0m, in \u001b[0;36mLLM._run_engine\u001b[0;34m(self, use_tqdm)\u001b[0m\n\u001b[1;32m 148\u001b[0m outputs: List[RequestOutput] \u001b[39m=\u001b[39m []\n\u001b[1;32m 149\u001b[0m \u001b[39mwhile\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mllm_engine\u001b[39m.\u001b[39mhas_unfinished_requests():\n\u001b[0;32m--> 150\u001b[0m step_outputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mllm_engine\u001b[39m.\u001b[39;49mstep()\n\u001b[1;32m 151\u001b[0m \u001b[39mfor\u001b[39;00m output \u001b[39min\u001b[39;00m step_outputs:\n\u001b[1;32m 152\u001b[0m \u001b[39mif\u001b[39;00m output\u001b[39m.\u001b[39mfinished:\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py:313\u001b[0m, in \u001b[0;36mLLMEngine.step\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 307\u001b[0m \u001b[39mreturn\u001b[39;00m [\n\u001b[1;32m 308\u001b[0m RequestOutput\u001b[39m.\u001b[39mfrom_seq_group(seq_group)\n\u001b[1;32m 309\u001b[0m \u001b[39mfor\u001b[39;00m seq_group \u001b[39min\u001b[39;00m scheduler_outputs\u001b[39m.\u001b[39mignored_seq_groups\n\u001b[1;32m 310\u001b[0m ]\n\u001b[1;32m 312\u001b[0m \u001b[39m# Execute the model.\u001b[39;00m\n\u001b[0;32m--> 313\u001b[0m output \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_run_workers(\n\u001b[1;32m 314\u001b[0m \u001b[39m\"\u001b[39;49m\u001b[39mexecute_model\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m 315\u001b[0m seq_group_metadata_list\u001b[39m=\u001b[39;49mseq_group_metadata_list,\n\u001b[1;32m 316\u001b[0m blocks_to_swap_in\u001b[39m=\u001b[39;49mscheduler_outputs\u001b[39m.\u001b[39;49mblocks_to_swap_in,\n\u001b[1;32m 317\u001b[0m blocks_to_swap_out\u001b[39m=\u001b[39;49mscheduler_outputs\u001b[39m.\u001b[39;49mblocks_to_swap_out,\n\u001b[1;32m 318\u001b[0m blocks_to_copy\u001b[39m=\u001b[39;49mscheduler_outputs\u001b[39m.\u001b[39;49mblocks_to_copy,\n\u001b[1;32m 319\u001b[0m )\n\u001b[1;32m 320\u001b[0m \u001b[39m# Update the scheduler with the model outputs.\u001b[39;00m\n\u001b[1;32m 321\u001b[0m seq_groups \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mscheduler\u001b[39m.\u001b[39mupdate(output)\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py:470\u001b[0m, in \u001b[0;36mLLMEngine._run_workers\u001b[0;34m(self, method, get_all_outputs, *args, **kwargs)\u001b[0m\n\u001b[1;32m 467\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 468\u001b[0m executor \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(worker, method)\n\u001b[0;32m--> 470\u001b[0m output \u001b[39m=\u001b[39m executor(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 471\u001b[0m all_outputs\u001b[39m.\u001b[39mappend(output)\n\u001b[1;32m 473\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mparallel_config\u001b[39m.\u001b[39mworker_use_ray:\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py:115\u001b[0m, in \u001b[0;36mcontext_decorator.<locals>.decorate_context\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[39m@functools\u001b[39m\u001b[39m.\u001b[39mwraps(func)\n\u001b[1;32m 113\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mdecorate_context\u001b[39m(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m 114\u001b[0m \u001b[39mwith\u001b[39;00m ctx_factory():\n\u001b[0;32m--> 115\u001b[0m \u001b[39mreturn\u001b[39;00m func(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/vllm/worker/worker.py:293\u001b[0m, in \u001b[0;36mWorker.execute_model\u001b[0;34m(self, seq_group_metadata_list, blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy)\u001b[0m\n\u001b[1;32m 289\u001b[0m input_tokens, input_positions, input_metadata \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_prepare_inputs(\n\u001b[1;32m 290\u001b[0m seq_group_metadata_list)\n\u001b[1;32m 292\u001b[0m \u001b[39m# Execute the model.\u001b[39;00m\n\u001b[0;32m--> 293\u001b[0m output \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mmodel(\n\u001b[1;32m 294\u001b[0m input_ids\u001b[39m=\u001b[39;49minput_tokens,\n\u001b[1;32m 295\u001b[0m positions\u001b[39m=\u001b[39;49minput_positions,\n\u001b[1;32m 296\u001b[0m kv_caches\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mgpu_cache,\n\u001b[1;32m 297\u001b[0m input_metadata\u001b[39m=\u001b[39;49minput_metadata,\n\u001b[1;32m 298\u001b[0m cache_events\u001b[39m=\u001b[39;49mcache_events,\n\u001b[1;32m 299\u001b[0m )\n\u001b[1;32m 300\u001b[0m \u001b[39mreturn\u001b[39;00m output\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1497\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1498\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_pre_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1499\u001b[0m \u001b[39mor\u001b[39;00m _global_backward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1500\u001b[0m \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 1502\u001b[0m \u001b[39m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[39m=\u001b[39m [], []\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/llama.py:255\u001b[0m, in \u001b[0;36mLlamaForCausalLM.forward\u001b[0;34m(self, input_ids, positions, kv_caches, input_metadata, cache_events)\u001b[0m\n\u001b[1;32m 245\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mforward\u001b[39m(\n\u001b[1;32m 246\u001b[0m \u001b[39mself\u001b[39m,\n\u001b[1;32m 247\u001b[0m input_ids: torch\u001b[39m.\u001b[39mTensor,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 251\u001b[0m cache_events: Optional[List[torch\u001b[39m.\u001b[39mcuda\u001b[39m.\u001b[39mEvent]],\n\u001b[1;32m 252\u001b[0m ) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m Dict[\u001b[39mint\u001b[39m, SequenceOutputs]:\n\u001b[1;32m 253\u001b[0m hidden_states \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmodel(input_ids, positions, kv_caches,\n\u001b[1;32m 254\u001b[0m input_metadata, cache_events)\n\u001b[0;32m--> 255\u001b[0m next_tokens \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49msampler(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mlm_head\u001b[39m.\u001b[39;49mweight, hidden_states,\n\u001b[1;32m 256\u001b[0m input_metadata)\n\u001b[1;32m 257\u001b[0m \u001b[39mreturn\u001b[39;00m next_tokens\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1497\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1498\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_pre_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1499\u001b[0m \u001b[39mor\u001b[39;00m _global_backward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1500\u001b[0m \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 1502\u001b[0m \u001b[39m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[39m=\u001b[39m [], []\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/vllm/model_executor/layers/sampler.py:44\u001b[0m, in \u001b[0;36mSampler.forward\u001b[0;34m(self, embedding, hidden_states, input_metadata, embedding_bias)\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mforward\u001b[39m(\n\u001b[1;32m 37\u001b[0m \u001b[39mself\u001b[39m,\n\u001b[1;32m 38\u001b[0m embedding: torch\u001b[39m.\u001b[39mTensor,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 42\u001b[0m ) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m Dict[\u001b[39mint\u001b[39m, SequenceOutputs]:\n\u001b[1;32m 43\u001b[0m \u001b[39m# Get the hidden states that we use for sampling.\u001b[39;00m\n\u001b[0;32m---> 44\u001b[0m hidden_states \u001b[39m=\u001b[39m _prune_hidden_states(hidden_states, input_metadata)\n\u001b[1;32m 46\u001b[0m \u001b[39m# Get the logits for the next tokens.\u001b[39;00m\n\u001b[1;32m 47\u001b[0m logits \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39mmatmul(hidden_states, embedding\u001b[39m.\u001b[39mt())\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"# We'll process our recipes in batches of 10,000.\n",
"\n",
"import time\n",
"\n",
"BATCH_SIZE = 10000\n",
"all_outputs = []\n",
"\n",
"start_time = time.time()\n",
"print(f\"Start time: {start_time}\")\n",
"for i in range(0, len(all_recipes), BATCH_SIZE):\n",
" print(f\"Processing recipes {i:,} to {i+BATCH_SIZE:,}...\")\n",
" outputs = llm.generate(\n",
" all_recipes[i : i + BATCH_SIZE], sampling_params=sampling_params\n",
" )\n",
"\n",
" all_outputs.extend([o.outputs[0].text for o in outputs])\n",
"\n",
"end_time = time.time()\n",
"print(f\"End time: {end_time}\")\n",
"print(f\"Total hours: {((end_time - start_time) / 3600):.2f}\")\n",
"\n",
"# Ended up running this in a separate script to leave it running in the background.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nice! I've processed all 2,147,248 recipes in under 17 hours. Let's do a cost comparison with GPT-3.5 and GPT-4. I'll use the GPT-4 latency/cost numbers based on the 5000 samples used to generate our model's training data.\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Model</th>\n",
" <th>Cost to Classify One Recipe</th>\n",
" <th>Cost to Classify Entire Dataset</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Llama2 7B (FT)</td>\n",
" <td>0.000009</td>\n",
" <td>18.81</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>GPT-3.5</td>\n",
" <td>0.000481</td>\n",
" <td>1033.26</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>GPT-3.5 (FT)</td>\n",
" <td>0.004044</td>\n",
" <td>8683.47</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>GPT-4</td>\n",
" <td>0.010800</td>\n",
" <td>23190.28</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Model Cost to Classify One Recipe \\\n",
"0 Llama2 7B (FT) 0.000009 \n",
"1 GPT-3.5 0.000481 \n",
"2 GPT-3.5 (FT) 0.004044 \n",
"3 GPT-4 0.010800 \n",
"\n",
" Cost to Classify Entire Dataset \n",
"0 18.81 \n",
"1 1033.26 \n",
"2 8683.47 \n",
"3 23190.28 "
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"# I used an on-demand Nvidia L40 on RunPod for this, at an hourly cost of $1.14.\n",
"finetuned_hourly_cost = 1.14\n",
"\n",
"finetuned_total_hours = 16.5\n",
"\n",
"finetuned_avg_cost = finetuned_hourly_cost * finetuned_total_hours / len(all_recipes)\n",
"\n",
"# The average input and output tokens for OpenAI, based on the 5000 recipes I\n",
"# sent them when generating training data.\n",
"avg_input_tokens = 276\n",
"avg_output_tokens = 42\n",
"\n",
"# Token pricing from https://openai.com/pricing\n",
"gpt_4_avg_cost = avg_input_tokens * 0.03 / 1000 + avg_output_tokens * 0.06 / 1000\n",
"\n",
"gpt_35_avg_cost = avg_input_tokens * 0.0015 / 1000 + avg_output_tokens * 0.0016 / 1000\n",
"\n",
"gpt_35_finetuned_avg_cost = (\n",
" avg_input_tokens * 0.012 / 1000 + avg_output_tokens * 0.016 / 1000 + 0.06 / 1000\n",
")\n",
"\n",
"models = pd.DataFrame(\n",
" {\n",
" \"Model\": [\n",
" \"Llama2 7B (FT)\",\n",
" \"GPT-3.5\",\n",
" \"GPT-3.5 (FT)\",\n",
" \"GPT-4\",\n",
" ],\n",
" \"Cost to Classify One Recipe\": [\n",
" finetuned_avg_cost,\n",
" gpt_35_avg_cost,\n",
" gpt_35_finetuned_avg_cost,\n",
" gpt_4_avg_cost,\n",
" ],\n",
" }\n",
")\n",
"\n",
"models[\"Cost to Classify Entire Dataset\"] = (\n",
" models[\"Cost to Classify One Recipe\"] * len(all_recipes)\n",
").round(2)\n",
"\n",
"models\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,10 @@
# OpenPipe demo: fine-tuning your own model
Hi there! This repository should give you a brief overview of how to fine-tune a competitive model from start to finish. You should review the notebooks in this directory in the following order:
1. [./generate-data.ipynb](./generate-data.ipynb): Demonstrates how to generate a sample dataset of GPT-4 completions, store it using OpenPipe, and then export it in a format suitable for training a model.
2. [./train.ipynb](./train.ipynb): Trains a Llama 2 7B model on the dataset from step (1).
3. [./evaluate.ipynb](./evaluate.ipynb): Evaluates the model we trained using a special test set that we set aside in step (1).
4. [./benchmark.ipynb](./benchmark.ipynb): A script to compare costs and completion latencies between our fine-tuned model, GPT-3.5, and GPT-4.
If you want to follow along yourself, I recommend using [RunPod](https://www.runpod.io/). The training scripts we use will run on any of their GPUs with 24GB of vRAM or more.

View File

View File

@@ -0,0 +1,207 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample training data:\n",
"{'messages': [{'content': 'Your goal is to classify a recipe along several '\n",
" 'dimensions.Pay attention to the instructions.',\n",
" 'role': 'system'},\n",
" {'content': 'Homemade Salad Dressing\\n'\n",
" '\\n'\n",
" 'Ingredients:\\n'\n",
" \"- 1 pt. Hellmann's mayonnaise\\n\"\n",
" '- 1 pt. buttermilk\\n'\n",
" '- 1 tsp. Accent\\n'\n",
" '- 2 Tbsp. dry parsley\\n'\n",
" '- 2 pkg. low-calorie Italian salad dressing mix\\n'\n",
" '- 1 can jalapeno peppers or 4 oz. Jimenez green '\n",
" 'sauce\\n'\n",
" '\\n'\n",
" 'Directions:\\n'\n",
" '- Blend well in blender; store in refrigerator.\\n'\n",
" '- For dip, decrease liquid.',\n",
" 'role': 'user'},\n",
" {'content': '{\\n'\n",
" '\"has_non_fish_meat\": false,\\n'\n",
" '\"requires_oven\": false,\\n'\n",
" '\"requires_stove\": false,\\n'\n",
" '\"cook_time_over_30_mins\": false,\\n'\n",
" '\"main_dish\": false\\n'\n",
" '}',\n",
" 'role': 'assistant'}]}\n"
]
}
],
"source": [
"import pandas as pd\n",
"from pprint import pprint\n",
"import json\n",
"\n",
"df = pd.read_json(\"data/train.jsonl\", lines=True)\n",
"\n",
"training_data = []\n",
"for row in df.itertuples():\n",
" input = json.loads(row.instruction)\n",
" output = json.loads(row.output)\n",
"\n",
" output[\"content\"] = output[\"function_call\"][\"arguments\"]\n",
" del output[\"function_call\"]\n",
"\n",
" sample = {\"messages\": input.copy() + [output]}\n",
" training_data.append(sample)\n",
"\n",
"# save the training data to data/train-gpt3.5.jsonl\n",
"\n",
"with open(\"data/train-gpt3.5.jsonl\", \"w\") as f:\n",
" for sample in training_data:\n",
" f.write(json.dumps(sample) + \"\\n\")\n",
"\n",
"print(f\"Sample training data:\")\n",
"pprint(training_data[0])\n"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<File file id=file-faAdQ1KPxZH79ThW4Dbu4z1y at 0x7fa55db5c6d0> JSON: {\n",
" \"object\": \"file\",\n",
" \"id\": \"file-faAdQ1KPxZH79ThW4Dbu4z1y\",\n",
" \"purpose\": \"fine-tune\",\n",
" \"filename\": \"recipe-classification\",\n",
" \"bytes\": 4210831,\n",
" \"created_at\": 1693000959,\n",
" \"status\": \"uploaded\",\n",
" \"status_details\": null\n",
"}"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import os\n",
"import openai\n",
"\n",
"import dotenv\n",
"\n",
"dotenv.load_dotenv()\n",
"\n",
"openai.api_key = os.getenv(\"OPENAI_API_KEY\")\n",
"\n",
"openai.File.create(\n",
" file=open(\"data/train-gpt3.5.jsonl\", \"rb\"),\n",
" purpose=\"fine-tune\",\n",
" user_provided_filename=\"recipe-classification\",\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<OpenAIObject list at 0x7fa55dbf6930> JSON: {\n",
" \"object\": \"list\",\n",
" \"data\": [\n",
" {\n",
" \"object\": \"file\",\n",
" \"id\": \"file-faAdQ1KPxZH79ThW4Dbu4z1y\",\n",
" \"purpose\": \"fine-tune\",\n",
" \"filename\": \"recipe-classification\",\n",
" \"bytes\": 4210831,\n",
" \"created_at\": 1693000959,\n",
" \"status\": \"processed\",\n",
" \"status_details\": null\n",
" }\n",
" ]\n",
"}"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"openai.File.list()\n"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<FineTuningJob fine_tuning.job id=ftjob-EjjLxmj9P8apwPRk5s2NPSeB at 0x7fa55ddc4360> JSON: {\n",
" \"object\": \"fine_tuning.job\",\n",
" \"id\": \"ftjob-EjjLxmj9P8apwPRk5s2NPSeB\",\n",
" \"model\": \"gpt-3.5-turbo-0613\",\n",
" \"created_at\": 1693001190,\n",
" \"finished_at\": null,\n",
" \"fine_tuned_model\": null,\n",
" \"organization_id\": \"org-jRz4nVPMoeGHWL5nVR3Mb0kp\",\n",
" \"result_files\": [],\n",
" \"status\": \"created\",\n",
" \"validation_file\": null,\n",
" \"training_file\": \"file-faAdQ1KPxZH79ThW4Dbu4z1y\",\n",
" \"hyperparameters\": {\n",
" \"n_epochs\": 3\n",
" },\n",
" \"trained_tokens\": null\n",
"}"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"openai.FineTuningJob.create(\n",
" training_file=\"file-faAdQ1KPxZH79ThW4Dbu4z1y\", model=\"gpt-3.5-turbo\"\n",
")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,73 @@
# This file is used by the training script in train.ipynb. You can read more about
# the format and see more examples at https://github.com/OpenAccess-AI-Collective/axolotl.
# One of the parameters you might want to play around with is `num_epochs`: if you have a
# smaller dataset size, making that large can have good results.
base_model: meta-llama/Llama-2-7b-hf
base_model_config: meta-llama/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: ./data/train.jsonl
type: alpaca_instruct.load_no_prompt
dataset_prepared_path: ./data/last_run_prepared
val_set_size: 0.05
output_dir: ./models/run1
sequence_len: 4096
sample_packing: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
# This will report stats from your training run to https://wandb.ai/. If you don't want to create a wandb account you can comment this section out.
wandb_project: classify-recipes
wandb_entity:
wandb_watch:
wandb_run_id: run1
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 5
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
eval_steps: 20
save_steps: 60
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"

View File

@@ -0,0 +1,37 @@
import yaml
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from peft import PeftModel
import os
def merge_lora_model(config_file: str):
config = yaml.load(open(config_file, "r"), Loader=yaml.FullLoader)
base_model = config["base_model"]
lora_model = config["output_dir"]
merged_model = f"{lora_model}/merged"
if os.path.exists(merged_model):
print(f"Model {merged_model} already exists, skipping")
return merged_model
print("Loading base model")
model = AutoModelForCausalLM.from_pretrained(
base_model,
return_dict=True,
torch_dtype=torch.float16,
)
print("Loading PEFT model")
model = PeftModel.from_pretrained(model, lora_model)
print(f"Running merge_and_unload")
model = model.merge_and_unload()
tokenizer = AutoTokenizer.from_pretrained(base_model)
model.save_pretrained(merged_model)
tokenizer.save_pretrained(merged_model)
print(f"Model saved to {merged_model}")
return merged_model

210
pnpm-lock.yaml generated
View File

@@ -80,6 +80,9 @@ importers:
'@vercel/og':
specifier: ^0.5.9
version: 0.5.9
archiver:
specifier: ^6.0.0
version: 6.0.0
ast-types:
specifier: ^0.14.2
version: 0.14.2
@@ -116,6 +119,9 @@ importers:
graphile-worker:
specifier: ^0.13.0
version: 0.13.0
human-id:
specifier: ^4.0.0
version: 4.0.0
immer:
specifier: ^10.0.2
version: 10.0.2
@@ -230,6 +236,9 @@ importers:
socket.io-client:
specifier: ^4.7.1
version: 4.7.1
stream-buffers:
specifier: ^3.0.2
version: 3.0.2
superjson:
specifier: 1.12.2
version: 1.12.2
@@ -261,6 +270,9 @@ importers:
'@openapi-contrib/openapi-schema-to-json-schema':
specifier: ^4.0.5
version: 4.0.5
'@types/archiver':
specifier: ^5.3.2
version: 5.3.2
'@types/babel__core':
specifier: ^7.20.1
version: 7.20.1
@@ -309,6 +321,9 @@ importers:
'@types/react-syntax-highlighter':
specifier: ^15.5.7
version: 15.5.7
'@types/stream-buffers':
specifier: ^3.0.4
version: 3.0.4
'@types/uuid':
specifier: ^9.0.2
version: 9.0.2
@@ -2947,6 +2962,12 @@ packages:
resolution: {integrity: sha512-+Wt0NFAeflVSNiUnHIDNN3C8jP7XIRmYrcgJ6IsAnm0lK4p/FkpCpeu1aig5qxrgZx30PHNDLZ/3FttVSEW2aQ==}
dev: false
/@types/archiver@5.3.2:
resolution: {integrity: sha512-IctHreBuWE5dvBDz/0WeKtyVKVRs4h75IblxOACL92wU66v+HGAfEYAOyXkOFphvRJMhuXdI9huDXpX0FC6lCw==}
dependencies:
'@types/readdir-glob': 1.1.1
dev: true
/@types/babel__core@7.20.1:
resolution: {integrity: sha512-aACu/U/omhdk15O4Nfb+fHgH/z3QsfQzpnvRZhYhThms83ZnAOZz7zZAWO7mn2yyNQaA4xTO8GLK3uqFU4bYYw==}
dependencies:
@@ -3262,6 +3283,12 @@ packages:
'@types/scheduler': 0.16.3
csstype: 3.1.2
/@types/readdir-glob@1.1.1:
resolution: {integrity: sha512-ImM6TmoF8bgOwvehGviEj3tRdRBbQujr1N+0ypaln/GWjaerOB26jb93vsRHmdMtvVQZQebOlqt2HROark87mQ==}
dependencies:
'@types/node': 20.4.10
dev: true
/@types/request@2.48.8:
resolution: {integrity: sha512-whjk1EDJPcAR2kYHRbFl/lKeeKYTi05A15K9bnLInCVroNDCtXce57xKdI0/rQaA3K+6q0eFyUBPmqfSndUZdQ==}
dependencies:
@@ -3293,6 +3320,12 @@ packages:
'@types/node': 20.4.10
dev: true
/@types/stream-buffers@3.0.4:
resolution: {integrity: sha512-qU/K1tb2yUdhXkLIATzsIPwbtX6BpZk0l3dPW6xqWyhfzzM1ECaQ/8faEnu3CNraLiQ9LHyQQPBGp7N9Fbs25w==}
dependencies:
'@types/node': 20.4.10
dev: true
/@types/tough-cookie@4.0.2:
resolution: {integrity: sha512-Q5vtl1W5ue16D+nIaW8JWebSSraJVlK+EthKn7e7UcD4KWsaSJ8BqGPXNaPghgtcn/fhvrN17Tv8ksUsQpiplw==}
dev: false
@@ -3696,6 +3729,51 @@ packages:
picomatch: 2.3.1
dev: false
/archiver-utils@2.1.0:
resolution: {integrity: sha512-bEL/yUb/fNNiNTuUz979Z0Yg5L+LzLxGJz8x79lYmR54fmTIb6ob/hNQgkQnIUDWIFjZVQwl9Xs356I6BAMHfw==}
engines: {node: '>= 6'}
dependencies:
glob: 7.2.3
graceful-fs: 4.2.11
lazystream: 1.0.1
lodash.defaults: 4.2.0
lodash.difference: 4.5.0
lodash.flatten: 4.4.0
lodash.isplainobject: 4.0.6
lodash.union: 4.6.0
normalize-path: 3.0.0
readable-stream: 2.3.8
dev: false
/archiver-utils@3.0.3:
resolution: {integrity: sha512-fXzpEZTKgBJMWy0eUT0/332CAQnJ27OJd7sGcvNZzxS2Yzg7iITivMhXOm+zUTO4vT8ZqlPCqiaLPmB8qWhWRA==}
engines: {node: '>= 10'}
dependencies:
glob: 7.2.3
graceful-fs: 4.2.11
lazystream: 1.0.1
lodash.defaults: 4.2.0
lodash.difference: 4.5.0
lodash.flatten: 4.4.0
lodash.isplainobject: 4.0.6
lodash.union: 4.6.0
normalize-path: 3.0.0
readable-stream: 3.6.2
dev: false
/archiver@6.0.0:
resolution: {integrity: sha512-EPGa+bYaxaMiCT8DCbEDqFz8IjeBSExrJzyUOJx2FBkFJ/OZzJuso3lMSk901M50gMqXxTQcumlGajOFlXhVhw==}
engines: {node: '>= 12.0.0'}
dependencies:
archiver-utils: 3.0.3
async: 3.2.4
buffer-crc32: 0.2.13
readable-stream: 3.6.2
readdir-glob: 1.1.3
tar-stream: 2.2.0
zip-stream: 4.1.0
dev: false
/argparse@2.0.1:
resolution: {integrity: sha512-8+9WqebbFzpX9OR+Wa6O29asIogeRMzcGtAINdpMHHyAg10f05aSFVBbcEqGf/PXw1EjAZ+q2/bEBg3DvurK3Q==}
@@ -3834,6 +3912,10 @@ packages:
tslib: 2.6.1
dev: false
/async@3.2.4:
resolution: {integrity: sha512-iAB+JbDEGXhyIUavoDl9WP/Jj106Kz9DEn1DPgYw5ruDn0e3Wgi3sKFm55sASdGBNOQB8F59d9qQ7deqrHA8wQ==}
dev: false
/asynckit@0.4.0:
resolution: {integrity: sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==}
@@ -3953,6 +4035,14 @@ packages:
engines: {node: '>=8'}
dev: false
/bl@4.1.0:
resolution: {integrity: sha512-1W07cM9gS6DcLperZfFSj+bWLtaPGSOHWhPiGzXmvVJbRLdG82sH/Kn8EtW1VqWVA54AKf2h5k5BbnIbwF3h6w==}
dependencies:
buffer: 5.7.1
inherits: 2.0.4
readable-stream: 3.6.2
dev: false
/bluebird@3.7.2:
resolution: {integrity: sha512-XpNj6GDQzdfW+r2Wnn7xiSAd7TM3jzkxGXBGTtWKuSXv1xUV+azxAm8jdWZN06QTQk+2N2XB9jRDkvbmQmcRtg==}
dev: false
@@ -4005,6 +4095,10 @@ packages:
node-releases: 2.0.13
update-browserslist-db: 1.0.11(browserslist@4.21.10)
/buffer-crc32@0.2.13:
resolution: {integrity: sha512-VO9Ht/+p3SN7SKWqcrgEzjGbRSJYTx+Q1pTQC0wrWqHx0vpJraQ6GtHx8tvcg1rlK1byhU5gccxgOgj7B0TDkQ==}
dev: false
/buffer-from@0.1.2:
resolution: {integrity: sha512-RiWIenusJsmI2KcvqQABB83tLxCByE3upSP8QU3rJDMVFGPWLvPQJt/O1Su9moRWeH7d+Q2HYb68f6+v+tw2vg==}
dev: false
@@ -4017,6 +4111,13 @@ packages:
engines: {node: '>=4'}
dev: false
/buffer@5.7.1:
resolution: {integrity: sha512-EHcyIPBQ4BSGlvjB16k5KgAJ27CIsHY/2JBmCRReo48y9rQ3MaUzWX3KVlBa4U7MyX02HdVj0K7C3WaB3ju7FQ==}
dependencies:
base64-js: 1.5.1
ieee754: 1.2.1
dev: false
/busboy@1.6.0:
resolution: {integrity: sha512-8SFQbg/0hQ9xy3UNTB0YEnsNBbWfhf7RtnzpL7TkBiTBRfrQ9Fxcnz7VJsleJpyp6rVLvXiuORqjlHi5q+PYuA==}
engines: {node: '>=10.16.0'}
@@ -4243,6 +4344,16 @@ packages:
resolution: {integrity: sha512-W9pAhw0ja1Edb5GVdIF1mjZw/ASI0AlShXM83UUGe2DVr5TdAPEA1OA8m/g8zWp9x6On7gqufY+FatDbC3MDQg==}
dev: false
/compress-commons@4.1.1:
resolution: {integrity: sha512-QLdDLCKNV2dtoTorqgxngQCMA+gWXkM/Nwu7FpeBhk/RdkzimqC3jueb/FDmaZeXh+uby1jkBqE3xArsLBE5wQ==}
engines: {node: '>= 10'}
dependencies:
buffer-crc32: 0.2.13
crc32-stream: 4.0.2
normalize-path: 3.0.0
readable-stream: 3.6.2
dev: false
/compute-scroll-into-view@1.0.20:
resolution: {integrity: sha512-UCB0ioiyj8CRjtrvaceBLqqhZCVP+1B8+NWQhmdsm0VXOJtobBCf1dBQmebCCo34qZmUwZfIH2MZLqNHazrfjg==}
dev: false
@@ -4350,6 +4461,20 @@ packages:
yaml: 1.10.2
dev: false
/crc-32@1.2.2:
resolution: {integrity: sha512-ROmzCKrTnOwybPcJApAA6WBWij23HVfGVNKqqrZpuyZOHqK2CwHSvpGuyt/UNNvaIjEd8X5IFGp4Mh+Ie1IHJQ==}
engines: {node: '>=0.8'}
hasBin: true
dev: false
/crc32-stream@4.0.2:
resolution: {integrity: sha512-DxFZ/Hk473b/muq1VJ///PMNLj0ZMnzye9thBpmjpJKCc5eMgB95aK8zCGrGfQ90cWo561Te6HK9D+j4KPdM6w==}
engines: {node: '>= 10'}
dependencies:
crc-32: 1.2.2
readable-stream: 3.6.2
dev: false
/create-emotion@10.0.27:
resolution: {integrity: sha512-fIK73w82HPPn/RsAij7+Zt8eCE8SptcJ3WoRMfxMtjteYxud8GDTKKld7MYwAX2TVhrw29uR1N/bVGxeStHILg==}
dependencies:
@@ -4732,6 +4857,12 @@ packages:
iconv-lite: 0.6.3
dev: false
/end-of-stream@1.4.4:
resolution: {integrity: sha512-+uw1inIHVPQoaVuHzRyXd21icM+cnt4CzD5rW+NC1wjOUSTOs+Te7FOv7AhN7vS9x/oIyhLP5PR1H+phQAHu5Q==}
dependencies:
once: 1.4.0
dev: false
/engine.io-client@6.5.2:
resolution: {integrity: sha512-CQZqbrpEYnrpGqC07a9dJDz4gePZUgTPMU3NKJPSeQOyw27Tst4Pl3FemKoFGAlHzgZmKjoRmiJvbWfhCXUlIg==}
dependencies:
@@ -5574,6 +5705,10 @@ packages:
engines: {node: '>= 0.6'}
dev: false
/fs-constants@1.0.0:
resolution: {integrity: sha512-y6OAwoSIf7FyjMIv94u+b5rdheZEjzR63GTyZJm5qh4Bi+2YgwLCcI/fPFZkL5PSixOt6ZNKm+w+Hfp/Bciwow==}
dev: false
/fs-extra@11.1.1:
resolution: {integrity: sha512-MGIE4HOvQCeUCzmlHs0vXpih4ysz4wg9qiSAu6cd42lVwPbTM1TjV7RusoyQqMmk/95gdQZX72u+YW+c3eEpFQ==}
engines: {node: '>=14.14'}
@@ -5942,6 +6077,10 @@ packages:
- supports-color
dev: false
/human-id@4.0.0:
resolution: {integrity: sha512-pui0xZRgeAlaRt0I9r8N2pNlbNmluvn71EfjKRpM7jOpZbuHe5mm76r67gcprjw/Nd+GpvB9C3OlTbh7ZKLg7A==}
dev: false
/humanize-ms@1.2.1:
resolution: {integrity: sha512-Fl70vYtsAFb/C06PTS9dZBo7ihau+Tu/DNCk/OyHhea07S+aeMWpFFkUaXRa8fI+ScZbEI8dfSxwY7gxZ9SAVQ==}
dependencies:
@@ -5962,6 +6101,10 @@ packages:
safer-buffer: 2.1.2
dev: false
/ieee754@1.2.1:
resolution: {integrity: sha512-dcyqhDvX1C46lXZcVqCpK+FtMRQVdIMN6/Df5js2zouUsqG7I6sFxitIC+7KYK29KdXOLHdu9zL4sFnoVQnqaA==}
dev: false
/ignore@5.2.4:
resolution: {integrity: sha512-MAb38BcSbH0eHNBxn7ql2NH/kX33OkB3lZ1BNdh7ENeRChHTYsTvWrMubiIAMNS2llXEEgZ1MUOBtXChP3kaFQ==}
engines: {node: '>= 4'}
@@ -6427,6 +6570,13 @@ packages:
language-subtag-registry: 0.3.22
dev: true
/lazystream@1.0.1:
resolution: {integrity: sha512-b94GiNHQNy6JNTrt5w6zNyffMrNkXZb3KTkCZJb2V1xaEGCk093vkZ2jk3tpaeP33/OiXC+WvK9AxUebnf5nbw==}
engines: {node: '>= 0.6.3'}
dependencies:
readable-stream: 2.3.8
dev: false
/levn@0.4.1:
resolution: {integrity: sha512-+bT2uH4E5LGE7h/n3evcS/sQlJXCpIp6ym8OWJ5eV6+67Dsql/LaaT7qJBAt2rzfoa/5QBGBhxDix1dMt2kQKQ==}
engines: {node: '>= 0.8.0'}
@@ -6495,6 +6645,22 @@ packages:
resolution: {integrity: sha512-/u14pXGviLaweY5JI0IUzgzF2J6Ne8INyzAZjImcryjgkZ+ebruBxy2/JaOOkTqScddcYtakjhSaeemV8lR0tA==}
dev: false
/lodash.defaults@4.2.0:
resolution: {integrity: sha512-qjxPLHd3r5DnsdGacqOMU6pb/avJzdh9tFX2ymgoZE27BmjXrNy/y4LoaiTeAb+O3gL8AfpJGtqfX/ae2leYYQ==}
dev: false
/lodash.difference@4.5.0:
resolution: {integrity: sha512-dS2j+W26TQ7taQBGN8Lbbq04ssV3emRw4NY58WErlTO29pIqS0HmoT5aJ9+TUQ1N3G+JOZSji4eugsWwGp9yPA==}
dev: false
/lodash.flatten@4.4.0:
resolution: {integrity: sha512-C5N2Z3DgnnKr0LOpv/hKCgKdb7ZZwafIrsesve6lmzvZIRZRGaZ/l6Q8+2W7NaT+ZwO3fFlSCzCzrDCFdJfZ4g==}
dev: false
/lodash.isplainobject@4.0.6:
resolution: {integrity: sha512-oSXzaWypCMHkPC3NvBEaPHf0KsA5mvPrOPgQWDsbg8n7orZ290M0BmC/jgRZ4vcJ6DTAhjrsSYgdsW/F+MFOBA==}
dev: false
/lodash.merge@4.6.2:
resolution: {integrity: sha512-0KpjqXRVvrYyCsX1swR/XTK0va6VQkQM6MNo7PqW77ByjAhoARA8EfrP1N4+KlKj8YS0ZUCtRT/YUuhyYDujIQ==}
dev: true
@@ -6503,6 +6669,10 @@ packages:
resolution: {integrity: sha512-GK3g5RPZWTRSeLSpgP8Xhra+pnjBC56q9FZYe1d5RN3TJ35dbkGy3YqBSMbyCrlbi+CM9Z3Jk5yTL7RCsqboyQ==}
dev: false
/lodash.union@4.6.0:
resolution: {integrity: sha512-c4pB2CdGrGdjMKYLA+XiRDO7Y0PRQbm/Gzg8qMj+QH+pFVAoTp5sBpO0odL3FjoPCGjK96p6qsP+yQoiLoOBcw==}
dev: false
/lodash@4.17.21:
resolution: {integrity: sha512-v2kDEe57lecTulaDIuNTPy3Ry4gLGJ6Z1O3vE1krgXZNrsQ+LFTGHVxVjcXPs17LhbZVGedAJv8XZ1tvj5FvSg==}
dev: false
@@ -7848,6 +8018,21 @@ packages:
util-deprecate: 1.0.2
dev: false
/readable-stream@3.6.2:
resolution: {integrity: sha512-9u/sniCrY3D5WdsERHzHE4G2YCXqoG5FTHUiCC4SIbr6XcLZBY05ya9EKjYek9O5xOAwjGq+1JdGBAS7Q9ScoA==}
engines: {node: '>= 6'}
dependencies:
inherits: 2.0.4
string_decoder: 1.1.1
util-deprecate: 1.0.2
dev: false
/readdir-glob@1.1.3:
resolution: {integrity: sha512-v05I2k7xN8zXvPD9N+z/uhXPaj0sUFCe2rcWZIpBsqxfP7xXFQ0tipAd/wjj1YxWyWtUS5IDJpOG82JKt2EAVA==}
dependencies:
minimatch: 5.1.6
dev: false
/readdirp@3.6.0:
resolution: {integrity: sha512-hOS089on8RduqdbhvQ5Z37A0ESjsqz6qnRcffsMU3495FuTdqSm+7bhJ29JvIOsBDEEnan5DPu9t3To9VRlMzA==}
engines: {node: '>=8.10.0'}
@@ -8303,6 +8488,11 @@ packages:
resolution: {integrity: sha512-Rz6yejtVyWnVjC1RFvNmYL10kgjC49EOghxWn0RFqlCHGFpQx+Xe7yW3I4ceK1SGrWIGMjD5Kbue8W/udkbMJg==}
dev: true
/stream-buffers@3.0.2:
resolution: {integrity: sha512-DQi1h8VEBA/lURbSwFtEHnSTb9s2/pwLEaFuNhXwy1Dx3Sa0lOuYT2yNUr4/j2fs8oCAMANtrZ5OrPZtyVs3MQ==}
engines: {node: '>= 0.10.0'}
dev: false
/streamsearch@1.1.0:
resolution: {integrity: sha512-Mcc5wHehp9aXz1ax6bZUyY5afg9u2rv5cqQI3mRrYkGC8rW2hM02jWuwjtL++LS5qinSyhj2QfLyNsuc+VsExg==}
engines: {node: '>=10.0.0'}
@@ -8450,6 +8640,17 @@ packages:
resolution: {integrity: sha512-GNzQvQTOIP6RyTfE2Qxb8ZVlNmw0n88vp1szwWRimP02mnTsx3Wtn5qRdqY9w2XduFNUgvOwhNnQsjwCp+kqaQ==}
engines: {node: '>=6'}
/tar-stream@2.2.0:
resolution: {integrity: sha512-ujeqbceABgwMZxEJnk2HDY2DlnUZ+9oEcb1KzTVfYHio0UE6dG71n60d8D2I4qNvleWrrXpmjpt7vZeF1LnMZQ==}
engines: {node: '>=6'}
dependencies:
bl: 4.1.0
end-of-stream: 1.4.4
fs-constants: 1.0.0
inherits: 2.0.4
readable-stream: 3.6.2
dev: false
/terser-webpack-plugin@5.3.9(webpack@5.88.2):
resolution: {integrity: sha512-ZuXsqE07EcggTWQjXUj+Aot/OMcD0bMKGgF63f7UxYcu5/AJF53aIpK1YoP5xR9l6s/Hy2b+t1AM0bLNPRuhwA==}
engines: {node: '>= 10.13.0'}
@@ -9334,6 +9535,15 @@ packages:
resolution: {integrity: sha512-N+d4UJSJbt/R3wqY7Coqs5pcV0aUj2j9IaQ3rNj9bVCLld8tTGKRa2USARjnvZJWVx1NDmQev8EknoczaOQDOA==}
dev: false
/zip-stream@4.1.0:
resolution: {integrity: sha512-zshzwQW7gG7hjpBlgeQP9RuyPGNxvJdzR8SUM3QhxCnLjWN2E7j3dOvpeDcQoETfHx0urRS7EtmVToql7YpU4A==}
engines: {node: '>= 10'}
dependencies:
archiver-utils: 2.1.0
compress-commons: 4.1.1
readable-stream: 3.6.2
dev: false
/zod-to-json-schema@3.21.4(zod@3.21.4):
resolution: {integrity: sha512-fjUZh4nQ1s6HMccgIeE0VP4QG/YRGPmyjO9sAh890aQKPEk3nqbfUXhMFaC+Dr5KvYBm8BCyvfpZf2jY9aGSsw==}
peerDependencies: