Compare commits
7 Commits
random-stu
...
change-mod
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
01343efb6a | ||
|
|
c7aaaea426 | ||
|
|
332e7afb0c | ||
|
|
fe08e29f47 | ||
|
|
89ce730e52 | ||
|
|
ad87c1b2eb | ||
|
|
58ddc72cbb |
@@ -17,17 +17,12 @@ DATABASE_URL="postgresql://postgres:postgres@localhost:5432/openpipe?schema=publ
|
||||
# https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key
|
||||
OPENAI_API_KEY=""
|
||||
|
||||
# Replicate API token. Create a token here: https://replicate.com/account/api-tokens
|
||||
REPLICATE_API_TOKEN=""
|
||||
|
||||
NEXT_PUBLIC_SOCKET_URL="http://localhost:3318"
|
||||
|
||||
# Next Auth
|
||||
NEXTAUTH_SECRET="your_secret"
|
||||
NEXTAUTH_URL="http://localhost:3000"
|
||||
|
||||
NEXT_PUBLIC_HOST="http://localhost:3000"
|
||||
|
||||
# Next Auth Github Provider
|
||||
GITHUB_CLIENT_ID="your_client_id"
|
||||
GITHUB_CLIENT_SECRET="your_secret"
|
||||
@@ -37,7 +37,6 @@ const config = {
|
||||
"warn",
|
||||
{ vars: "all", varsIgnorePattern: "^_", args: "after-used", argsIgnorePattern: "^_" },
|
||||
],
|
||||
"react/no-unescaped-entities": "off",
|
||||
},
|
||||
};
|
||||
|
||||
@@ -6,10 +6,6 @@ on:
|
||||
push:
|
||||
branches: [main]
|
||||
|
||||
defaults:
|
||||
run:
|
||||
working-directory: app
|
||||
|
||||
jobs:
|
||||
run-checks:
|
||||
runs-on: ubuntu-latest
|
||||
3
app/.gitignore → .gitignore
vendored
3
app/.gitignore → .gitignore
vendored
@@ -40,6 +40,3 @@ yarn-error.log*
|
||||
|
||||
# typescript
|
||||
*.tsbuildinfo
|
||||
|
||||
# Sentry Auth Token
|
||||
.sentryclirc
|
||||
2
.prettierignore
Normal file
2
.prettierignore
Normal file
@@ -0,0 +1,2 @@
|
||||
src/codegen/openai.schema.json
|
||||
pnpm-lock.yaml
|
||||
6
.vscode/settings.json
vendored
Normal file
6
.vscode/settings.json
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
{
|
||||
"eslint.format.enable": true,
|
||||
"editor.codeActionsOnSave": {
|
||||
"source.fixAll.eslint": true
|
||||
}
|
||||
}
|
||||
@@ -13,17 +13,10 @@ declare module "nextjs-routes" {
|
||||
export type Route =
|
||||
| StaticRoute<"/account/signin">
|
||||
| DynamicRoute<"/api/auth/[...nextauth]", { "nextauth": string[] }>
|
||||
| StaticRoute<"/api/experiments/og-image">
|
||||
| StaticRoute<"/api/sentry-example-api">
|
||||
| DynamicRoute<"/api/trpc/[trpc]", { "trpc": string }>
|
||||
| DynamicRoute<"/data/[id]", { "id": string }>
|
||||
| StaticRoute<"/data">
|
||||
| DynamicRoute<"/experiments/[id]", { "id": string }>
|
||||
| StaticRoute<"/experiments">
|
||||
| StaticRoute<"/">
|
||||
| StaticRoute<"/sentry-example-page">
|
||||
| StaticRoute<"/world-champs">
|
||||
| StaticRoute<"/world-champs/signup">;
|
||||
| StaticRoute<"/">;
|
||||
|
||||
interface StaticRoute<Pathname> {
|
||||
pathname: Pathname;
|
||||
@@ -20,9 +20,6 @@ FROM base as builder
|
||||
# Include all NEXT_PUBLIC_* env vars here
|
||||
ARG NEXT_PUBLIC_POSTHOG_KEY
|
||||
ARG NEXT_PUBLIC_SOCKET_URL
|
||||
ARG NEXT_PUBLIC_HOST
|
||||
ARG NEXT_PUBLIC_SENTRY_DSN
|
||||
ARG SENTRY_AUTH_TOKEN
|
||||
|
||||
WORKDIR /app
|
||||
COPY --from=deps /app/node_modules ./node_modules
|
||||
62
README.md
62
README.md
@@ -1,61 +1,49 @@
|
||||
<!-- <img src="https://github.com/openpipe/openpipe/assets/41524992/ca59596e-eb80-40f9-921f-6d67f6e6d8fa" width="72px" /> -->
|
||||
<img src="https://github.com/openpipe/openpipe/assets/41524992/ca59596e-eb80-40f9-921f-6d67f6e6d8fa" width="72px" />
|
||||
|
||||
# OpenPipe
|
||||
|
||||
OpenPipe is a flexible playground for comparing and optimizing LLM prompts. It lets you quickly generate, test and compare candidate prompts, and can automatically [translate](#-translate-between-model-apis) those prompts between models.
|
||||
|
||||
<img src="https://github.com/openpipe/openpipe/assets/41524992/219a844e-3f4e-4f6b-8066-41348b42977b" alt="demo">
|
||||
|
||||
You can use our hosted version of OpenPipe at https://openpipe.ai. You can also clone this repository and [run it locally](#running-locally).
|
||||
OpenPipe is a flexible playground for comparing and optimizing LLM prompts. It lets you quickly generate, test and compare candidate prompts with realistic sample data.
|
||||
|
||||
## Sample Experiments
|
||||
|
||||
These are simple experiments users have created that show how OpenPipe works. Feel free to fork them and start experimenting yourself.
|
||||
These are simple experiments users have created that show how OpenPipe works.
|
||||
|
||||
- [Twitter Sentiment Analysis](https://app.openpipe.ai/experiments/62c20a73-2012-4a64-973c-4b665ad46a57)
|
||||
- [Country Capitals](https://app.openpipe.ai/experiments/11111111-1111-1111-1111-111111111111)
|
||||
- [Reddit User Needs](https://app.openpipe.ai/experiments/22222222-2222-2222-2222-222222222222)
|
||||
- [OpenAI Function Calls](https://app.openpipe.ai/experiments/2ebbdcb3-ed51-456e-87dc-91f72eaf3e2b)
|
||||
- [Activity Classification](https://app.openpipe.ai/experiments/3950940f-ab6b-4b74-841d-7e9dbc4e4ff8)
|
||||
|
||||
## Supported Models
|
||||
<img src="https://github.com/openpipe/openpipe/assets/176426/fc7624c6-5b65-4d4d-82b7-4a816f3e5678" alt="demo" height="400px">
|
||||
|
||||
- All models available through the OpenAI [chat completion API](https://platform.openai.com/docs/guides/gpt/chat-completions-api)
|
||||
- Llama2 [7b chat](https://replicate.com/a16z-infra/llama7b-v2-chat), [13b chat](https://replicate.com/a16z-infra/llama13b-v2-chat), [70b chat](https://replicate.com/replicate/llama70b-v2-chat).
|
||||
- Anthropic's [Claude 1 Instant](https://www.anthropic.com/index/introducing-claude) and [Claude 2](https://www.anthropic.com/index/claude-2)
|
||||
You can use our hosted version of OpenPipe at [https://openpipe.ai]. You can also clone this repository and [run it locally](#running-locally).
|
||||
|
||||
## Features
|
||||
## High-Level Features
|
||||
|
||||
### 🔍 Visualize Responses
|
||||
**Configure Multiple Prompts**
|
||||
Set up multiple prompt configurations and compare their output side-by-side. Each configuration can be configured independently.
|
||||
|
||||
**Visualize Responses**
|
||||
Inspect prompt completions side-by-side.
|
||||
|
||||
### 🧪 Bulk-Test
|
||||
|
||||
OpenPipe lets you _template_ a prompt. Use the templating feature to run the prompts you're testing against many potential inputs for broad coverage of your problem space.
|
||||
|
||||
### 📟 Translate between Model APIs
|
||||
|
||||
Write your prompt in one format and automatically convert it to work with any other model.
|
||||
|
||||
<img width="480" alt="Screenshot 2023-08-01 at 11 55 38 PM" src="https://github.com/OpenPipe/OpenPipe/assets/41524992/1e19ccf2-96b6-4e93-a3a5-1449710d1b5b" alt="translate between models">
|
||||
|
||||
<br><br>
|
||||
|
||||
### 🛠️ Refine Your Prompts Automatically
|
||||
|
||||
Use a growing database of best-practice refinements to improve your prompts automatically.
|
||||
|
||||
<img width="480" alt="Screenshot 2023-08-01 at 11 55 38 PM" src="https://github.com/OpenPipe/OpenPipe/assets/41524992/87a27fe7-daef-445c-a5e2-1c82b23f9f99" alt="add function call">
|
||||
|
||||
<br><br>
|
||||
|
||||
### 🪄 Auto-generate Test Scenarios
|
||||
**Test Many Inputs**
|
||||
OpenPipe lets you _template_ a prompt. Use the templating feature to run the prompts you're testing against many potential inputs for broader coverage of your problem space than you'd get with manual testing.
|
||||
|
||||
**🪄 Auto-generate Test Scenarios**
|
||||
OpenPipe includes a tool to generate new test scenarios based on your existing prompts and scenarios. Just click "Autogenerate Scenario" to try it out!
|
||||
|
||||
<img width="600" src="https://github.com/openpipe/openpipe/assets/41524992/219a844e-3f4e-4f6b-8066-41348b42977b" alt="auto-generate">
|
||||
**Prompt Validation and Typeahead**
|
||||
We use OpenAI's OpenAPI spec to automatically provide typeahead and validate prompts.
|
||||
|
||||
<br><br>
|
||||
<img alt="typeahead" src="https://github.com/openpipe/openpipe/assets/176426/acc638f8-d851-4742-8d01-fe6f98890840" height="300px">
|
||||
|
||||
**Function Call Support**
|
||||
Natively supports [OpenAI function calls](https://openai.com/blog/function-calling-and-other-api-updates) on supported models.
|
||||
|
||||
<img height="300px" alt="function calls" src="https://github.com/openpipe/openpipe/assets/176426/48ad13fe-af2f-4294-bf32-62015597fd9b">
|
||||
|
||||
## Supported Models
|
||||
|
||||
OpenPipe currently supports GPT-3.5 and GPT-4. Wider model support is planned.
|
||||
|
||||
## Running Locally
|
||||
|
||||
|
||||
@@ -1,2 +0,0 @@
|
||||
*.schema.json
|
||||
pnpm-lock.yaml
|
||||
3
app/.vscode/settings.json
vendored
3
app/.vscode/settings.json
vendored
@@ -1,3 +0,0 @@
|
||||
{
|
||||
"eslint.format.enable": true
|
||||
}
|
||||
@@ -1,61 +0,0 @@
|
||||
import nextRoutes from "nextjs-routes/config";
|
||||
import { withSentryConfig } from "@sentry/nextjs";
|
||||
|
||||
/**
|
||||
* Run `build` or `dev` with `SKIP_ENV_VALIDATION` to skip env validation. This is especially useful
|
||||
* for Docker builds.
|
||||
*/
|
||||
const { env } = await import("./src/env.mjs");
|
||||
|
||||
/** @type {import("next").NextConfig} */
|
||||
let config = {
|
||||
reactStrictMode: true,
|
||||
|
||||
/**
|
||||
* If you have `experimental: { appDir: true }` set, then you must comment the below `i18n` config
|
||||
* out.
|
||||
*
|
||||
* @see https://github.com/vercel/next.js/issues/41980
|
||||
*/
|
||||
i18n: {
|
||||
locales: ["en"],
|
||||
defaultLocale: "en",
|
||||
},
|
||||
|
||||
rewrites: async () => [
|
||||
{
|
||||
source: "/ingest/:path*",
|
||||
destination: "https://app.posthog.com/:path*",
|
||||
},
|
||||
],
|
||||
|
||||
webpack: (config) => {
|
||||
config.module.rules.push({
|
||||
test: /\.txt$/,
|
||||
use: "raw-loader",
|
||||
});
|
||||
return config;
|
||||
},
|
||||
};
|
||||
|
||||
config = nextRoutes()(config);
|
||||
|
||||
if (env.NEXT_PUBLIC_SENTRY_DSN && env.SENTRY_AUTH_TOKEN) {
|
||||
// @ts-expect-error - `withSentryConfig` is not typed correctly
|
||||
config = withSentryConfig(
|
||||
config,
|
||||
{
|
||||
authToken: env.SENTRY_AUTH_TOKEN,
|
||||
silent: true,
|
||||
org: "openpipe",
|
||||
project: "openpipe",
|
||||
},
|
||||
{
|
||||
widenClientFileUpload: true,
|
||||
tunnelRoute: "/monitoring",
|
||||
disableLogger: true,
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
export default config;
|
||||
@@ -1,84 +0,0 @@
|
||||
Text,sentiment,emotion
|
||||
@dell your customer service is horrible especially agent syedfaisal who has made this experience of purchasing a new computer downright awful and I’ll reconsider ever buying a Dell in the future @DellTech,negative,anger
|
||||
@zacokalo @Dell @DellCares @Dell give the man what he paid for!,neutral,anger
|
||||
"COOKING STREAM DAY!!! Ty to @Alienware for sponsoring this stream! I’ll be making a bunch of Japanese Alien themed foods hehe
|
||||
|
||||
Come check it out! https://t.co/m06tJQ06zk
|
||||
|
||||
#alienwarepartner #intelgaming @Dell @IntelGaming https://t.co/qOdQX2E8VD",positive,joy
|
||||
@emijuju_ @Alienware @Dell @intel Beautiful 😍❤️😻,positive,joy
|
||||
"What's your biggest data management challenge? • Cloud complexity? • Lengthy tech refresh cycles? • Capital budget constraints? Solve your challenges with as-a-Storage. Get simplicity, agility & control with @Dell #APEX. https://t.co/mCblMtH931 https://t.co/eepKNZ4Ai3",neutral,optimism
|
||||
"This week we were at the ""Top Gun"" themed @Dell Product Expo. Eddie Muñoz met Maverick look-alike, California Tom Cruise (Jerome LeBlanc)!
|
||||
|
||||
""I feel the need, the need for speed."" - Maverick
|
||||
#topgun #topgunmaverick #dell #delltechnologies #lockncharge https://t.co/QHYH2EbMjq",positive,joy
|
||||
"Itsss been more than a week...i m following up with dell for troubleshootings...my https://t.co/lWhg2YKhQa suffering so as my hard earned money...hightly disappointed...contd..
|
||||
@DellCares @Dell",negative,sadness
|
||||
"@ashu_k7 @Dell Pathetic!!!!! I Dont mind taking legal action, this is deficency of service for which the customer is nt getting help..",negative,anger
|
||||
@ashu_k7 @Dell Making life unhappy is the new tag line of #Dell,negative,sadness
|
||||
"@Dell If you are buying a Dell, make sure you are making your life hell.
|
||||
Better buy other laptops. If you wanted to opt for Dell better opt for garbage on the streets.",negative,anger
|
||||
"MY DESK'S FINAL FORM? Seriously, I'm finally happy with my monitor setup here... and I'll keep this setup whenever I move... FOREVER. What do you think?
|
||||
https://t.co/WJZ2JXtOnX
|
||||
@Alienware @Dell cheers. https://t.co/6Whhldfpv0",positive,joy
|
||||
"@Dell Dell Alienware computer has had software problems with SupportAssist since purchase. Dell, despite paying for Premium Support, has never fixed issues. Latest solution was to erase everything and reload....SupportAssist still doesn't work.",negative,anger
|
||||
"HUGE congratulations to Startup Battle 3.0 winner ➡️ @Ox_Fulfillment x @cyborgcharu for being featured in @BusinessInsider & @Dell showcasing the journey at Ox! 🚀🚀🚀
|
||||
|
||||
We love to see our portfolio companies continuing to BUILD SOMETHING FROM NOTHING! 🔥 https://t.co/awBkn5ippB",positive,joy
|
||||
@Dell happy Friday!,positive,joy
|
||||
"@intel Core i5 1135G7 - 4732 points
|
||||
@intel Core i5 1235 - 6619 points
|
||||
@Dell Latitude 5420 x 5430.
|
||||
Cinebench R23. Good job Intel!",positive,joy
|
||||
@Dell india we purchased 52 docking station and we have around 100 users using dell laptop as well as dell monitor now they are refusing to replace my faulty product and disconnecting my every call....,negative,anger
|
||||
"It's another year ans another day But cant fill it in yet the child hood dreams.
|
||||
It's my birthdy today. Can anyone of you guys bless me with a simplest gaming oc that can run
|
||||
@DOTA2 ?
|
||||
@Dell @HP @VastGG @Acer @Alienware @Lenovo @toshiba @IBM @Fujitsu_Global @NEC https://t.co/69G8tL9sN8",neutral,joy
|
||||
"@idoccor @Dell That's always the decision—wait, or, look elsewhere. In this case, I think I unfortunately need to wait since there are only two monitors with these specs and I don't like the other one 😂",negative,sadness
|
||||
"@MichaelDell @Dell @DellCares For how long this will continue. It is high time you either fix the problem for good or replace the complete laptop. Spent over 60+ hours with Customer Care teams, which is not helping. Cannot keep going on like this.",negative,anger
|
||||
"@Dell @DellCares but no, not really",neutral,sadness
|
||||
"Business innovation requires insight, agility and efficiency. How do you get there? RP PRO, LLC recommends starting by proactively managing IT infrastructure with #OpenManage Systems from @Dell. https://t.co/fBcK1lfFMu https://t.co/xWHLkkHCjn",neutral,optimism
|
||||
@Dell Yessirrrrr #NationalCoffeeDay,positive,joy
|
||||
"New blog post from @Dell shared on https://t.co/EgfPChB8AT
|
||||
|
||||
Re-routing Our Connected and Autonomous Future https://t.co/AW8EHQrbd6
|
||||
|
||||
#future #futuretech #techinnovation https://t.co/koX8stKPsr",neutral,joy
|
||||
"In a free-market economy, the folks @IronMountain can set prices as they see fit. Their customers are also free to find better prices at competitors like @Dell
|
||||
@H3CGlobal @HPE
|
||||
https://t.co/reZ56DNTBI",neutral,optimism
|
||||
"Delighted to chat with many of our partners here in person at @Intel Innovation! @Dell, @Lenovo, @Supermicro_SMCI, @QuantaQCT #IntelON https://t.co/BxIeGW8deN",positive,joy
|
||||
"A special gracias to our Startup Chica San Antonio 2022 sponsors @eBay, @jcpenney, @Barbie, @HEB, @Dell, @Honda, @SouthsideSATX💜✨ https://t.co/lZ6WWkziHl",positive,joy
|
||||
"When your team decides to start supporting developers, your #ops must change too. More from @cote and @Dell Developer Community Manager @barton808: https://t.co/W6f1oMiTgV",neutral,optimism
|
||||
@EmDStowers @LASERGIANT1 @ohwormongod @Ludovician_Vega @Dell our boy snitchin,neutral,anger
|
||||
A 1st place dmi:Design Value Award goes to @Dell for a packaging modernization initiative that helped them get closer to their corporate Moonshot Sustainability Goal of 100% recycled or renewable packaging by 2030. More at https://t.co/dnhZWWLCQC #designvalue #DVA22,positive,optimism
|
||||
Reducing deployment and maintenance complexity is the goal behind @dell and @WindRiver's new collaboration. https://t.co/2PxQgPuHUU,positive,optimism
|
||||
@jaserhunter @Dell Love the sales pitch lol,positive,joy
|
||||
@Dell india we purchased 52 docking station and we have around 100 users using dell laptop as well as dell monitor now they are refusing to replace my faulty product and disconnecting my every call....,negative,anger
|
||||
@ashu_k7 @Dell One more example.. their technical support is also worse. https://t.co/20atSgI4fg,negative,anger
|
||||
*angry screeches about @Dell proprietary MBR windows 8.1 partitions not being able to save as an img in clonezilla *,negative,anger
|
||||
@socialitebooks @BBYC_Gamers @Dell @Alienware @BestBuyCanada @intelcanada Congratulations!!!,positive,joy
|
||||
"Thank you to the @dell team for coming out to volunteer today! We truly appreciate your hard work and look forward to seeing you again soon!
|
||||
|
||||
If you and your team are interested in helping out at the UMLAUF, visit our website for more information: https://t.co/lVfsZT2ogS https://t.co/eLz0FY0y4M",positive,joy
|
||||
"@TheCaramelGamer @intel @bravadogaming @Intel_Africa @Dell @DellTech @DellTechMEA @Alienware @IntelUK we love to see it.
|
||||
|
||||
Also also actually actually whoever did that artwork? 🔥🔥🔥 am a fan.",positive,joy
|
||||
"LOVING MY DELL 2 IN 1 LAPTOP
|
||||
YAYY 🥳🥳
|
||||
@Dell #DellInspiron #DellLaptop https://t.co/vib96jf3tC",positive,joy
|
||||
@Azure @OracleItalia @AWS_Italy @lenovoitalia @Dell discussing the future of #HPC during the #hpcroundtable22 in Turin today #highperformancecomputing https://t.co/jJ1WqBulPF,neutral,joy
|
||||
Attracting talent @AmericanChamber. @marg_cola @Dell speaks of quality of life connectivity and the Opportunity for development being so crucial. Housing availability is now impacting on decision making for potential candidates. #WhyCork,positive,optimism
|
||||
.@Dell partners with @WindRiver on modular cloud-native telecommunications infrastructure https://t.co/4SWATspwCP @SiliconANGLE @Mike_Wheatley @holgermu @constellationr,neutral,joy
|
||||
@Dell Not buy Dell Inspiron laptop,neutral,sadness
|
||||
"@dell #delltechforum reminding us IDC have predicted that by 2024, 50% of everything we consume in technology will be as a service https://t.co/3UBiZJX0LE",neutral,optimism
|
||||
@RachMurph @HETTShow @Dell Thank you for coming! Great evening,positive,joy
|
||||
Congratulations to Jason M of Moncton NB on winning a @Dell @Alienware m15 R7 15.6″ gaming laptop from @BestBuyCanada and @intelcanada's gaming days #contest on the blog. Visit https://t.co/VryaY5Rvv9 to learn about tech and for chances to win new tech. https://t.co/T6n0dzF6oL,positive,joy
|
||||
@MattVisiwig @Dell Sour taste for sure 😶 But don't let ego distract you from what you really want to buy 😁,neutral,optimism
|
||||
"Massive thank you goes to sponsors @HendersonLoggie @lindsaysnews @Dell @unity, all of our fantastic judges and mentors and the team at @EGX and @ExCeLLondon.
|
||||
|
||||
Big congratulations also to all of our other @AbertayDare teams - an amazing year! #Dare2022 https://t.co/jYe4agO7lW",positive,joy
|
||||
"@timetcetera @rahaug Nah, I just need @Dell to start paying me comissions 😂",neutral,joy
|
||||
"""Whether you’re an engineer, a designer, or work in supply chain management or sales, there are always opportunities to think about sustainability and how you can do things more efficiently."" 👏 — Oliver Campbell, Director of Packaging Engineering, @Dell https://t.co/vUJLTWNFwP https://t.co/GJWAzGfAxJ",positive,optimism
|
||||
"Hi, my name is @listerepvp and I support @Dell, always.",positive,joy
|
||||
|
@@ -1,8 +0,0 @@
|
||||
/*
|
||||
Warnings:
|
||||
|
||||
- You are about to drop the column `streamingChannel` on the `ScenarioVariantCell` table. All the data in the column will be lost.
|
||||
|
||||
*/
|
||||
-- AlterTable
|
||||
ALTER TABLE "ScenarioVariantCell" DROP COLUMN "streamingChannel";
|
||||
@@ -1,52 +0,0 @@
|
||||
-- DropForeignKey
|
||||
ALTER TABLE "ModelOutput" DROP CONSTRAINT "ModelOutput_scenarioVariantCellId_fkey";
|
||||
|
||||
-- DropForeignKey
|
||||
ALTER TABLE "OutputEvaluation" DROP CONSTRAINT "OutputEvaluation_modelOutputId_fkey";
|
||||
|
||||
-- DropIndex
|
||||
DROP INDEX "OutputEvaluation_modelOutputId_evaluationId_key";
|
||||
|
||||
-- AlterTable
|
||||
ALTER TABLE "OutputEvaluation" RENAME COLUMN "modelOutputId" TO "modelResponseId";
|
||||
|
||||
-- AlterTable
|
||||
ALTER TABLE "ScenarioVariantCell" DROP COLUMN "retryTime",
|
||||
DROP COLUMN "statusCode",
|
||||
ADD COLUMN "jobQueuedAt" TIMESTAMP(3),
|
||||
ADD COLUMN "jobStartedAt" TIMESTAMP(3);
|
||||
|
||||
ALTER TABLE "ModelOutput" RENAME TO "ModelResponse";
|
||||
|
||||
ALTER TABLE "ModelResponse"
|
||||
ADD COLUMN "requestedAt" TIMESTAMP(3),
|
||||
ADD COLUMN "receivedAt" TIMESTAMP(3),
|
||||
ADD COLUMN "statusCode" INTEGER,
|
||||
ADD COLUMN "errorMessage" TEXT,
|
||||
ADD COLUMN "retryTime" TIMESTAMP(3),
|
||||
ADD COLUMN "outdated" BOOLEAN NOT NULL DEFAULT false;
|
||||
|
||||
-- 3. Remove the unnecessary column
|
||||
ALTER TABLE "ModelResponse"
|
||||
DROP COLUMN "timeToComplete";
|
||||
|
||||
-- AlterTable
|
||||
ALTER TABLE "ModelResponse" RENAME CONSTRAINT "ModelOutput_pkey" TO "ModelResponse_pkey";
|
||||
ALTER TABLE "ModelResponse" ALTER COLUMN "output" DROP NOT NULL;
|
||||
|
||||
-- DropIndex
|
||||
DROP INDEX "ModelOutput_scenarioVariantCellId_key";
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "ModelResponse" ADD CONSTRAINT "ModelResponse_scenarioVariantCellId_fkey" FOREIGN KEY ("scenarioVariantCellId") REFERENCES "ScenarioVariantCell"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
|
||||
-- RenameIndex
|
||||
ALTER INDEX "ModelOutput_inputHash_idx" RENAME TO "ModelResponse_inputHash_idx";
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "OutputEvaluation_modelResponseId_evaluationId_key" ON "OutputEvaluation"("modelResponseId", "evaluationId");
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "OutputEvaluation" ADD CONSTRAINT "OutputEvaluation_modelResponseId_fkey" FOREIGN KEY ("modelResponseId") REFERENCES "ModelResponse"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
|
||||
|
||||
@@ -1,16 +0,0 @@
|
||||
-- CreateTable
|
||||
CREATE TABLE "WorldChampEntrant" (
|
||||
"id" UUID NOT NULL,
|
||||
"userId" UUID NOT NULL,
|
||||
"approved" BOOLEAN NOT NULL DEFAULT false,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
|
||||
CONSTRAINT "WorldChampEntrant_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "WorldChampEntrant_userId_key" ON "WorldChampEntrant"("userId");
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "WorldChampEntrant" ADD CONSTRAINT "WorldChampEntrant_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
@@ -1,3 +0,0 @@
|
||||
-- AlterTable
|
||||
ALTER TABLE "User" ADD COLUMN "createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
ADD COLUMN "updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP;
|
||||
@@ -1,5 +0,0 @@
|
||||
-- CreateEnum
|
||||
CREATE TYPE "UserRole" AS ENUM ('ADMIN', 'USER');
|
||||
|
||||
-- AlterTable
|
||||
ALTER TABLE "User" ADD COLUMN "role" "UserRole" NOT NULL DEFAULT 'USER';
|
||||
@@ -1,28 +0,0 @@
|
||||
-- CreateTable
|
||||
CREATE TABLE "Dataset" (
|
||||
"id" UUID NOT NULL,
|
||||
"name" TEXT NOT NULL,
|
||||
"organizationId" UUID NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
|
||||
CONSTRAINT "Dataset_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "DatasetEntry" (
|
||||
"id" UUID NOT NULL,
|
||||
"input" TEXT NOT NULL,
|
||||
"output" TEXT,
|
||||
"datasetId" UUID NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
|
||||
CONSTRAINT "DatasetEntry_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "Dataset" ADD CONSTRAINT "Dataset_organizationId_fkey" FOREIGN KEY ("organizationId") REFERENCES "Organization"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "DatasetEntry" ADD CONSTRAINT "DatasetEntry_datasetId_fkey" FOREIGN KEY ("datasetId") REFERENCES "Dataset"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
@@ -1,13 +0,0 @@
|
||||
/*
|
||||
Warnings:
|
||||
|
||||
- You are about to drop the column `constructFn` on the `PromptVariant` table. All the data in the column will be lost.
|
||||
- You are about to drop the column `constructFnVersion` on the `PromptVariant` table. All the data in the column will be lost.
|
||||
- Added the required column `promptConstructor` to the `PromptVariant` table without a default value. This is not possible if the table is not empty.
|
||||
- Added the required column `promptConstructorVersion` to the `PromptVariant` table without a default value. This is not possible if the table is not empty.
|
||||
|
||||
*/
|
||||
-- AlterTable
|
||||
|
||||
ALTER TABLE "PromptVariant" RENAME COLUMN "constructFn" TO "promptConstructor";
|
||||
ALTER TABLE "PromptVariant" RENAME COLUMN "constructFnVersion" TO "promptConstructorVersion";
|
||||
@@ -1,404 +0,0 @@
|
||||
// This is your Prisma schema file,
|
||||
// learn more about it in the docs: https://pris.ly/d/prisma-schema
|
||||
|
||||
generator client {
|
||||
provider = "prisma-client-js"
|
||||
}
|
||||
|
||||
datasource db {
|
||||
provider = "postgresql"
|
||||
url = env("DATABASE_URL")
|
||||
}
|
||||
|
||||
model Experiment {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
label String
|
||||
|
||||
sortIndex Int @default(0)
|
||||
|
||||
organizationId String @db.Uuid
|
||||
organization Organization? @relation(fields: [organizationId], references: [id], onDelete: Cascade)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
templateVariables TemplateVariable[]
|
||||
promptVariants PromptVariant[]
|
||||
testScenarios TestScenario[]
|
||||
evaluations Evaluation[]
|
||||
}
|
||||
|
||||
model PromptVariant {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
label String
|
||||
promptConstructor String
|
||||
promptConstructorVersion Int
|
||||
model String
|
||||
modelProvider String
|
||||
|
||||
uiId String @default(uuid()) @db.Uuid
|
||||
visible Boolean @default(true)
|
||||
sortIndex Int @default(0)
|
||||
|
||||
experimentId String @db.Uuid
|
||||
experiment Experiment @relation(fields: [experimentId], references: [id], onDelete: Cascade)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
scenarioVariantCells ScenarioVariantCell[]
|
||||
|
||||
@@index([uiId])
|
||||
}
|
||||
|
||||
model TestScenario {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
variableValues Json
|
||||
|
||||
uiId String @default(uuid()) @db.Uuid
|
||||
visible Boolean @default(true)
|
||||
sortIndex Int @default(0)
|
||||
|
||||
experimentId String @db.Uuid
|
||||
experiment Experiment @relation(fields: [experimentId], references: [id], onDelete: Cascade)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
scenarioVariantCells ScenarioVariantCell[]
|
||||
}
|
||||
|
||||
model TemplateVariable {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
label String
|
||||
|
||||
experimentId String @db.Uuid
|
||||
experiment Experiment @relation(fields: [experimentId], references: [id], onDelete: Cascade)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
}
|
||||
|
||||
enum CellRetrievalStatus {
|
||||
PENDING
|
||||
IN_PROGRESS
|
||||
COMPLETE
|
||||
ERROR
|
||||
}
|
||||
|
||||
model ScenarioVariantCell {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
retrievalStatus CellRetrievalStatus @default(COMPLETE)
|
||||
jobQueuedAt DateTime?
|
||||
jobStartedAt DateTime?
|
||||
modelResponses ModelResponse[]
|
||||
errorMessage String? // Contains errors that occurred independently of model responses
|
||||
|
||||
promptVariantId String @db.Uuid
|
||||
promptVariant PromptVariant @relation(fields: [promptVariantId], references: [id], onDelete: Cascade)
|
||||
prompt Json?
|
||||
|
||||
testScenarioId String @db.Uuid
|
||||
testScenario TestScenario @relation(fields: [testScenarioId], references: [id], onDelete: Cascade)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
@@unique([promptVariantId, testScenarioId])
|
||||
}
|
||||
|
||||
model ModelResponse {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
inputHash String
|
||||
requestedAt DateTime?
|
||||
receivedAt DateTime?
|
||||
output Json?
|
||||
cost Float?
|
||||
promptTokens Int?
|
||||
completionTokens Int?
|
||||
statusCode Int?
|
||||
errorMessage String?
|
||||
retryTime DateTime?
|
||||
outdated Boolean @default(false)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
scenarioVariantCellId String @db.Uuid
|
||||
scenarioVariantCell ScenarioVariantCell @relation(fields: [scenarioVariantCellId], references: [id], onDelete: Cascade)
|
||||
outputEvaluations OutputEvaluation[]
|
||||
|
||||
@@index([inputHash])
|
||||
}
|
||||
|
||||
enum EvalType {
|
||||
CONTAINS
|
||||
DOES_NOT_CONTAIN
|
||||
GPT4_EVAL
|
||||
}
|
||||
|
||||
model Evaluation {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
label String
|
||||
evalType EvalType
|
||||
value String
|
||||
|
||||
experimentId String @db.Uuid
|
||||
experiment Experiment @relation(fields: [experimentId], references: [id], onDelete: Cascade)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
outputEvaluations OutputEvaluation[]
|
||||
}
|
||||
|
||||
model OutputEvaluation {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
// Number between 0 (fail) and 1 (pass)
|
||||
result Float
|
||||
details String?
|
||||
|
||||
modelResponseId String @db.Uuid
|
||||
modelResponse ModelResponse @relation(fields: [modelResponseId], references: [id], onDelete: Cascade)
|
||||
|
||||
evaluationId String @db.Uuid
|
||||
evaluation Evaluation @relation(fields: [evaluationId], references: [id], onDelete: Cascade)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
@@unique([modelResponseId, evaluationId])
|
||||
}
|
||||
|
||||
model Dataset {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
name String
|
||||
datasetEntries DatasetEntry[]
|
||||
|
||||
organizationId String @db.Uuid
|
||||
organization Organization @relation(fields: [organizationId], references: [id], onDelete: Cascade)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
}
|
||||
|
||||
model DatasetEntry {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
input String
|
||||
output String?
|
||||
|
||||
datasetId String @db.Uuid
|
||||
dataset Dataset? @relation(fields: [datasetId], references: [id], onDelete: Cascade)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
}
|
||||
|
||||
model Organization {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
personalOrgUserId String? @unique @db.Uuid
|
||||
PersonalOrgUser User? @relation(fields: [personalOrgUserId], references: [id], onDelete: Cascade)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
organizationUsers OrganizationUser[]
|
||||
experiments Experiment[]
|
||||
datasets Dataset[]
|
||||
loggedCalls LoggedCall[]
|
||||
apiKeys ApiKey[]
|
||||
}
|
||||
|
||||
enum OrganizationUserRole {
|
||||
ADMIN
|
||||
MEMBER
|
||||
VIEWER
|
||||
}
|
||||
|
||||
model OrganizationUser {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
role OrganizationUserRole
|
||||
|
||||
organizationId String @db.Uuid
|
||||
organization Organization? @relation(fields: [organizationId], references: [id], onDelete: Cascade)
|
||||
|
||||
userId String @db.Uuid
|
||||
user User @relation(fields: [userId], references: [id], onDelete: Cascade)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
@@unique([organizationId, userId])
|
||||
}
|
||||
|
||||
model WorldChampEntrant {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
userId String @db.Uuid
|
||||
user User @relation(fields: [userId], references: [id], onDelete: Cascade)
|
||||
|
||||
approved Boolean @default(false)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
@@unique([userId])
|
||||
}
|
||||
|
||||
model LoggedCall {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
startTime DateTime
|
||||
|
||||
// True if this call was served from the cache, false otherwise
|
||||
cacheHit Boolean
|
||||
|
||||
// A LoggedCall is always associated with a LoggedCallModelResponse. If this
|
||||
// is a cache miss, it's a new LoggedCallModelResponse we created for this.
|
||||
// If it's a cache hit, it's the existing LoggedCallModelResponse we served.
|
||||
modelResponseId String @db.Uuid
|
||||
modelResponse LoggedCallModelResponse @relation(fields: [modelResponseId], references: [id], onDelete: Cascade)
|
||||
|
||||
// The response created by this LoggedCall. Will be null if this LoggedCall is a cache hit.
|
||||
createdResponse LoggedCallModelResponse[] @relation(name: "ModelResponseCreatedBy")
|
||||
|
||||
organizationId String @db.Uuid
|
||||
organization Organization? @relation(fields: [organizationId], references: [id], onDelete: Cascade)
|
||||
|
||||
tags LoggedCallTag[]
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
@@index([startTime])
|
||||
}
|
||||
|
||||
model LoggedCallModelResponse {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
reqPayload Json
|
||||
|
||||
// The HTTP status returned by the model provider
|
||||
respStatus Int?
|
||||
respPayload Json?
|
||||
|
||||
// Should be null if the request was successful, and some string if the request failed.
|
||||
error String?
|
||||
|
||||
startTime DateTime
|
||||
endTime DateTime
|
||||
|
||||
// Note: the function to calculate the cacheKey should include the project
|
||||
// ID so we don't share cached responses between projects, which could be an
|
||||
// attack vector. Also, we should only set the cacheKey on the model if the
|
||||
// request was successful.
|
||||
cacheKey String?
|
||||
|
||||
// Derived fields
|
||||
durationMs Int?
|
||||
inputTokens Int?
|
||||
outputTokens Int?
|
||||
finishReason String?
|
||||
completionId String?
|
||||
totalCost Decimal? @db.Decimal(18, 12)
|
||||
|
||||
// The LoggedCall that created this LoggedCallModelResponse
|
||||
createdById String @unique @db.Uuid
|
||||
createdBy LoggedCall @relation(name: "ModelResponseCreatedBy", fields: [createdById], references: [id], onDelete: Cascade)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
loggedCalls LoggedCall[]
|
||||
|
||||
@@index([cacheKey])
|
||||
}
|
||||
|
||||
model LoggedCallTag {
|
||||
id String @id @default(cuid())
|
||||
name String
|
||||
value String?
|
||||
|
||||
loggedCallId String
|
||||
loggedCall LoggedCall @relation(fields: [loggedCallId], references: [id], onDelete: Cascade)
|
||||
|
||||
@@index([name])
|
||||
@@index([name, value])
|
||||
}
|
||||
|
||||
model ApiKey {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
|
||||
name String
|
||||
apiKey String @unique
|
||||
|
||||
organizationId String @db.Uuid
|
||||
organization Organization? @relation(fields: [organizationId], references: [id], onDelete: Cascade)
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
}
|
||||
|
||||
model Account {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
userId String @db.Uuid
|
||||
type String
|
||||
provider String
|
||||
providerAccountId String
|
||||
refresh_token String? @db.Text
|
||||
refresh_token_expires_in Int?
|
||||
access_token String? @db.Text
|
||||
expires_at Int?
|
||||
token_type String?
|
||||
scope String?
|
||||
id_token String? @db.Text
|
||||
session_state String?
|
||||
user User @relation(fields: [userId], references: [id], onDelete: Cascade)
|
||||
|
||||
@@unique([provider, providerAccountId])
|
||||
}
|
||||
|
||||
model Session {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
sessionToken String @unique
|
||||
userId String @db.Uuid
|
||||
expires DateTime
|
||||
user User @relation(fields: [userId], references: [id], onDelete: Cascade)
|
||||
}
|
||||
|
||||
enum UserRole {
|
||||
ADMIN
|
||||
USER
|
||||
}
|
||||
|
||||
model User {
|
||||
id String @id @default(uuid()) @db.Uuid
|
||||
name String?
|
||||
email String? @unique
|
||||
emailVerified DateTime?
|
||||
image String?
|
||||
|
||||
role UserRole @default(USER)
|
||||
|
||||
accounts Account[]
|
||||
sessions Session[]
|
||||
organizationUsers OrganizationUser[]
|
||||
organizations Organization[]
|
||||
worldChampEntrant WorldChampEntrant?
|
||||
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @default(now()) @updatedAt
|
||||
}
|
||||
|
||||
model VerificationToken {
|
||||
identifier String
|
||||
token String @unique
|
||||
expires DateTime
|
||||
|
||||
@@unique([identifier, token])
|
||||
}
|
||||
@@ -1,128 +0,0 @@
|
||||
import { prisma } from "~/server/db";
|
||||
import { generateNewCell } from "~/server/utils/generateNewCell";
|
||||
import dedent from "dedent";
|
||||
import { execSync } from "child_process";
|
||||
import fs from "fs";
|
||||
import { promptConstructorVersion } from "~/promptConstructor/version";
|
||||
|
||||
const defaultId = "11111111-1111-1111-1111-111111111112";
|
||||
|
||||
await prisma.organization.deleteMany({
|
||||
where: { id: defaultId },
|
||||
});
|
||||
|
||||
// If there's an existing org, just seed into it
|
||||
const org =
|
||||
(await prisma.organization.findFirst({})) ??
|
||||
(await prisma.organization.create({
|
||||
data: { id: defaultId },
|
||||
}));
|
||||
|
||||
// Clone the repo from git@github.com:microsoft/AGIEval.git into a tmp dir if it doesn't exist
|
||||
const tmpDir = "/tmp/agi-eval";
|
||||
if (!fs.existsSync(tmpDir)) {
|
||||
execSync(`git clone git@github.com:microsoft/AGIEval.git ${tmpDir}`);
|
||||
}
|
||||
|
||||
const datasets = [
|
||||
"sat-en",
|
||||
"sat-math",
|
||||
"lsat-rc",
|
||||
"lsat-ar",
|
||||
"aqua-rat",
|
||||
"logiqa-en",
|
||||
"lsat-lr",
|
||||
"math",
|
||||
];
|
||||
|
||||
type Scenario = {
|
||||
passage: string | null;
|
||||
question: string;
|
||||
options: string[] | null;
|
||||
label: string;
|
||||
};
|
||||
|
||||
for (const dataset of datasets) {
|
||||
const experimentName = `AGI-Eval: ${dataset}`;
|
||||
const oldExperiment = await prisma.experiment.findFirst({
|
||||
where: {
|
||||
label: experimentName,
|
||||
organizationId: org.id,
|
||||
},
|
||||
});
|
||||
if (oldExperiment) {
|
||||
await prisma.experiment.deleteMany({
|
||||
where: { id: oldExperiment.id },
|
||||
});
|
||||
}
|
||||
|
||||
const experiment = await prisma.experiment.create({
|
||||
data: {
|
||||
id: oldExperiment?.id ?? undefined,
|
||||
label: experimentName,
|
||||
organizationId: org.id,
|
||||
},
|
||||
});
|
||||
|
||||
const scenarios: Scenario[] = fs
|
||||
.readFileSync(`${tmpDir}/data/v1/${dataset}.jsonl`, "utf8")
|
||||
.split("\n")
|
||||
.filter((line) => line.length > 0)
|
||||
.map((line) => JSON.parse(line) as Scenario);
|
||||
console.log("scenarios", scenarios.length);
|
||||
|
||||
await prisma.testScenario.createMany({
|
||||
data: scenarios.slice(0, 30).map((scenario, i) => ({
|
||||
experimentId: experiment.id,
|
||||
sortIndex: i,
|
||||
variableValues: {
|
||||
passage: scenario.passage,
|
||||
question: scenario.question,
|
||||
options: scenario.options?.join("\n"),
|
||||
label: scenario.label,
|
||||
},
|
||||
})),
|
||||
});
|
||||
|
||||
await prisma.templateVariable.createMany({
|
||||
data: ["passage", "question", "options", "label"].map((label) => ({
|
||||
experimentId: experiment.id,
|
||||
label,
|
||||
})),
|
||||
});
|
||||
|
||||
await prisma.promptVariant.createMany({
|
||||
data: [
|
||||
{
|
||||
experimentId: experiment.id,
|
||||
label: "Prompt Variant 1",
|
||||
sortIndex: 0,
|
||||
model: "gpt-3.5-turbo-0613",
|
||||
modelProvider: "openai/ChatCompletion",
|
||||
promptConstructorVersion,
|
||||
promptConstructor: dedent`
|
||||
definePrompt("openai/ChatCompletion", {
|
||||
model: "gpt-3.5-turbo-0613",
|
||||
messages: [
|
||||
{
|
||||
role: "user",
|
||||
content: \`Passage: ${"$"}{scenario.passage}\n\nQuestion: ${"$"}{scenario.question}\n\nOptions: ${"$"}{scenario.options}\n\n Respond with just the letter of the best option in the format Answer: (A).\`
|
||||
}
|
||||
],
|
||||
temperature: 0,
|
||||
})`,
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
await prisma.evaluation.createMany({
|
||||
data: [
|
||||
{
|
||||
experimentId: experiment.id,
|
||||
label: "Eval",
|
||||
evalType: "CONTAINS",
|
||||
value: "Answer: ({{label}})",
|
||||
},
|
||||
],
|
||||
});
|
||||
}
|
||||
@@ -1,114 +0,0 @@
|
||||
import { prisma } from "~/server/db";
|
||||
import dedent from "dedent";
|
||||
import fs from "fs";
|
||||
import { parse } from "csv-parse/sync";
|
||||
import { promptConstructorVersion } from "~/promptConstructor/version";
|
||||
|
||||
const defaultId = "11111111-1111-1111-1111-111111111112";
|
||||
|
||||
await prisma.organization.deleteMany({
|
||||
where: { id: defaultId },
|
||||
});
|
||||
|
||||
// If there's an existing org, just seed into it
|
||||
const org =
|
||||
(await prisma.organization.findFirst({})) ??
|
||||
(await prisma.organization.create({
|
||||
data: { id: defaultId },
|
||||
}));
|
||||
|
||||
type Scenario = {
|
||||
text: string;
|
||||
sentiment: string;
|
||||
emotion: string;
|
||||
};
|
||||
|
||||
const experimentName = `Twitter Sentiment Analysis`;
|
||||
const oldExperiment = await prisma.experiment.findFirst({
|
||||
where: {
|
||||
label: experimentName,
|
||||
organizationId: org.id,
|
||||
},
|
||||
});
|
||||
if (oldExperiment) {
|
||||
await prisma.experiment.deleteMany({
|
||||
where: { id: oldExperiment.id },
|
||||
});
|
||||
}
|
||||
|
||||
const experiment = await prisma.experiment.create({
|
||||
data: {
|
||||
id: oldExperiment?.id ?? undefined,
|
||||
label: experimentName,
|
||||
organizationId: org.id,
|
||||
},
|
||||
});
|
||||
|
||||
const content = fs.readFileSync("./prisma/datasets/validated_tweets.csv", "utf8");
|
||||
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
const records: any[] = parse(content, { delimiter: ",", from_line: 2 });
|
||||
|
||||
console.log("records", records);
|
||||
|
||||
const scenarios: Scenario[] = records.map((row) => ({
|
||||
text: row[0],
|
||||
sentiment: row[1],
|
||||
emotion: row[2],
|
||||
}));
|
||||
|
||||
console.log("scenarios", scenarios.length);
|
||||
|
||||
await prisma.testScenario.createMany({
|
||||
data: scenarios.slice(0, 30).map((scenario, i) => ({
|
||||
experimentId: experiment.id,
|
||||
sortIndex: i,
|
||||
variableValues: {
|
||||
text: scenario.text,
|
||||
sentiment: scenario.sentiment,
|
||||
emotion: scenario.emotion,
|
||||
},
|
||||
})),
|
||||
});
|
||||
|
||||
await prisma.templateVariable.createMany({
|
||||
data: ["text", "sentiment", "emotion"].map((label) => ({
|
||||
experimentId: experiment.id,
|
||||
label,
|
||||
})),
|
||||
});
|
||||
|
||||
await prisma.promptVariant.createMany({
|
||||
data: [
|
||||
{
|
||||
experimentId: experiment.id,
|
||||
label: "Prompt Variant 1",
|
||||
sortIndex: 0,
|
||||
model: "gpt-3.5-turbo-0613",
|
||||
modelProvider: "openai/ChatCompletion",
|
||||
promptConstructorVersion,
|
||||
promptConstructor: dedent`
|
||||
definePrompt("openai/ChatCompletion", {
|
||||
model: "gpt-3.5-turbo-0613",
|
||||
messages: [
|
||||
{
|
||||
role: "user",
|
||||
content: \`Text: ${"$"}{scenario.text}\n\nRespond with the sentiment (negative|neutral|positive) and emotion (optimism|joy|anger|sadness) of the tweet in this format: "answer: <sentiment>-<emotion>".\`
|
||||
}
|
||||
],
|
||||
temperature: 0,
|
||||
})`,
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
await prisma.evaluation.createMany({
|
||||
data: [
|
||||
{
|
||||
experimentId: experiment.id,
|
||||
label: "Eval",
|
||||
evalType: "CONTAINS",
|
||||
value: "answer: {{sentiment}}-{{emotion}}",
|
||||
},
|
||||
],
|
||||
});
|
||||
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 62 KiB |
@@ -1,15 +0,0 @@
|
||||
#! /bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
echo "Migrating the database"
|
||||
pnpm prisma migrate deploy
|
||||
|
||||
echo "Migrating promptConstructors"
|
||||
pnpm tsx src/promptConstructor/migrate.ts
|
||||
|
||||
echo "Starting the server"
|
||||
|
||||
pnpm concurrently --kill-others \
|
||||
"pnpm start" \
|
||||
"pnpm tsx src/server/tasks/worker.ts"
|
||||
@@ -1,33 +0,0 @@
|
||||
// This file configures the initialization of Sentry on the client.
|
||||
// The config you add here will be used whenever a users loads a page in their browser.
|
||||
// https://docs.sentry.io/platforms/javascript/guides/nextjs/
|
||||
|
||||
import * as Sentry from "@sentry/nextjs";
|
||||
import { env } from "~/env.mjs";
|
||||
|
||||
if (env.NEXT_PUBLIC_SENTRY_DSN) {
|
||||
Sentry.init({
|
||||
dsn: env.NEXT_PUBLIC_SENTRY_DSN,
|
||||
|
||||
// Adjust this value in production, or use tracesSampler for greater control
|
||||
tracesSampleRate: 1,
|
||||
|
||||
// Setting this option to true will print useful information to the console while you're setting up Sentry.
|
||||
debug: false,
|
||||
|
||||
replaysOnErrorSampleRate: 1.0,
|
||||
|
||||
// This sets the sample rate to be 10%. You may want this to be 100% while
|
||||
// in development and sample at a lower rate in production
|
||||
replaysSessionSampleRate: 0.1,
|
||||
|
||||
// You can remove this option if you're not planning to use the Sentry Session Replay feature:
|
||||
integrations: [
|
||||
new Sentry.Replay({
|
||||
// Additional Replay configuration goes in here, for example:
|
||||
maskAllText: true,
|
||||
blockAllMedia: true,
|
||||
}),
|
||||
],
|
||||
});
|
||||
}
|
||||
@@ -1,19 +0,0 @@
|
||||
// This file configures the initialization of Sentry for edge features (middleware, edge routes, and so on).
|
||||
// The config you add here will be used whenever one of the edge features is loaded.
|
||||
// Note that this config is unrelated to the Vercel Edge Runtime and is also required when running locally.
|
||||
// https://docs.sentry.io/platforms/javascript/guides/nextjs/
|
||||
|
||||
import * as Sentry from "@sentry/nextjs";
|
||||
import { env } from "~/env.mjs";
|
||||
|
||||
if (env.NEXT_PUBLIC_SENTRY_DSN) {
|
||||
Sentry.init({
|
||||
dsn: env.NEXT_PUBLIC_SENTRY_DSN,
|
||||
|
||||
// Adjust this value in production, or use tracesSampler for greater control
|
||||
tracesSampleRate: 1,
|
||||
|
||||
// Setting this option to true will print useful information to the console while you're setting up Sentry.
|
||||
debug: false,
|
||||
});
|
||||
}
|
||||
@@ -1,18 +0,0 @@
|
||||
// This file configures the initialization of Sentry on the server.
|
||||
// The config you add here will be used whenever the server handles a request.
|
||||
// https://docs.sentry.io/platforms/javascript/guides/nextjs/
|
||||
|
||||
import * as Sentry from "@sentry/nextjs";
|
||||
import { env } from "~/env.mjs";
|
||||
|
||||
if (env.NEXT_PUBLIC_SENTRY_DSN) {
|
||||
Sentry.init({
|
||||
dsn: env.NEXT_PUBLIC_SENTRY_DSN,
|
||||
|
||||
// Adjust this value in production, or use tracesSampler for greater control
|
||||
tracesSampleRate: 1,
|
||||
|
||||
// Setting this option to true will print useful information to the console while you're setting up Sentry.
|
||||
debug: false,
|
||||
});
|
||||
}
|
||||
@@ -1,36 +0,0 @@
|
||||
import { Text, VStack } from "@chakra-ui/react";
|
||||
import { type LegacyRef } from "react";
|
||||
import Select from "react-select";
|
||||
import { useElementDimensions } from "~/utils/hooks";
|
||||
|
||||
import { flatMap } from "lodash-es";
|
||||
import frontendModelProviders from "~/modelProviders/frontendModelProviders";
|
||||
import { type ProviderModel } from "~/modelProviders/types";
|
||||
import { modelLabel } from "~/utils/utils";
|
||||
|
||||
const modelOptions = flatMap(Object.entries(frontendModelProviders), ([providerId, provider]) =>
|
||||
Object.entries(provider.models).map(([modelId]) => ({
|
||||
provider: providerId,
|
||||
model: modelId,
|
||||
})),
|
||||
) as ProviderModel[];
|
||||
|
||||
export const ModelSearch = (props: {
|
||||
selectedModel: ProviderModel;
|
||||
setSelectedModel: (model: ProviderModel) => void;
|
||||
}) => {
|
||||
const [containerRef, containerDimensions] = useElementDimensions();
|
||||
|
||||
return (
|
||||
<VStack ref={containerRef as LegacyRef<HTMLDivElement>} w="full" fontFamily="inconsolata">
|
||||
<Text fontWeight="bold">Browse Models</Text>
|
||||
<Select<ProviderModel>
|
||||
styles={{ control: (provided) => ({ ...provided, width: containerDimensions?.width }) }}
|
||||
getOptionLabel={(data) => modelLabel(data.provider, data.model)}
|
||||
getOptionValue={(data) => modelLabel(data.provider, data.model)}
|
||||
options={modelOptions}
|
||||
onChange={(option) => option && props.setSelectedModel(option)}
|
||||
/>
|
||||
</VStack>
|
||||
);
|
||||
};
|
||||
@@ -1,117 +0,0 @@
|
||||
import {
|
||||
GridItem,
|
||||
HStack,
|
||||
Link,
|
||||
SimpleGrid,
|
||||
Text,
|
||||
VStack,
|
||||
type StackProps,
|
||||
} from "@chakra-ui/react";
|
||||
import { type lookupModel } from "~/utils/utils";
|
||||
|
||||
export const ModelStatsCard = ({
|
||||
label,
|
||||
model,
|
||||
}: {
|
||||
label: string;
|
||||
model: ReturnType<typeof lookupModel>;
|
||||
}) => {
|
||||
if (!model) return null;
|
||||
return (
|
||||
<VStack w="full" align="start">
|
||||
<Text fontWeight="bold" fontSize="sm" textTransform="uppercase">
|
||||
{label}
|
||||
</Text>
|
||||
|
||||
<VStack
|
||||
w="full"
|
||||
spacing={6}
|
||||
borderWidth={1}
|
||||
borderColor="gray.300"
|
||||
p={4}
|
||||
borderRadius={8}
|
||||
fontFamily="inconsolata"
|
||||
>
|
||||
<HStack w="full" align="flex-start">
|
||||
<VStack flex={1} fontSize="lg" alignItems="flex-start">
|
||||
<Text as="span" fontWeight="bold" color="gray.900">
|
||||
{model.name}
|
||||
</Text>
|
||||
<Text as="span" color="gray.600" fontSize="sm">
|
||||
Provider: {model.provider}
|
||||
</Text>
|
||||
</VStack>
|
||||
<Link
|
||||
href={model.learnMoreUrl}
|
||||
isExternal
|
||||
color="blue.500"
|
||||
fontWeight="bold"
|
||||
fontSize="sm"
|
||||
ml={2}
|
||||
>
|
||||
Learn More
|
||||
</Link>
|
||||
</HStack>
|
||||
<SimpleGrid
|
||||
w="full"
|
||||
justifyContent="space-between"
|
||||
alignItems="flex-start"
|
||||
fontSize="sm"
|
||||
columns={{ base: 2, md: 4 }}
|
||||
>
|
||||
<SelectedModelLabeledInfo label="Context Window" info={model.contextWindow} />
|
||||
{model.promptTokenPrice && (
|
||||
<SelectedModelLabeledInfo
|
||||
label="Input"
|
||||
info={
|
||||
<Text>
|
||||
${(model.promptTokenPrice * 1000).toFixed(3)}
|
||||
<Text color="gray.500"> / 1K tokens</Text>
|
||||
</Text>
|
||||
}
|
||||
/>
|
||||
)}
|
||||
{model.completionTokenPrice && (
|
||||
<SelectedModelLabeledInfo
|
||||
label="Output"
|
||||
info={
|
||||
<Text>
|
||||
${(model.completionTokenPrice * 1000).toFixed(3)}
|
||||
<Text color="gray.500"> / 1K tokens</Text>
|
||||
</Text>
|
||||
}
|
||||
/>
|
||||
)}
|
||||
{model.pricePerSecond && (
|
||||
<SelectedModelLabeledInfo
|
||||
label="Price"
|
||||
info={
|
||||
<Text>
|
||||
${model.pricePerSecond.toFixed(3)}
|
||||
<Text color="gray.500"> / second</Text>
|
||||
</Text>
|
||||
}
|
||||
/>
|
||||
)}
|
||||
<SelectedModelLabeledInfo label="Speed" info={<Text>{model.speed}</Text>} />
|
||||
</SimpleGrid>
|
||||
</VStack>
|
||||
</VStack>
|
||||
);
|
||||
};
|
||||
|
||||
const SelectedModelLabeledInfo = ({
|
||||
label,
|
||||
info,
|
||||
...props
|
||||
}: {
|
||||
label: string;
|
||||
info: string | number | React.ReactElement;
|
||||
} & StackProps) => (
|
||||
<GridItem>
|
||||
<VStack alignItems="flex-start" {...props}>
|
||||
<Text fontWeight="bold">{label}</Text>
|
||||
<Text>{info}</Text>
|
||||
</VStack>
|
||||
</GridItem>
|
||||
);
|
||||
@@ -1,69 +0,0 @@
|
||||
import {
|
||||
Button,
|
||||
Icon,
|
||||
AlertDialog,
|
||||
AlertDialogBody,
|
||||
AlertDialogFooter,
|
||||
AlertDialogHeader,
|
||||
AlertDialogContent,
|
||||
AlertDialogOverlay,
|
||||
useDisclosure,
|
||||
Text,
|
||||
} from "@chakra-ui/react";
|
||||
|
||||
import { useRouter } from "next/router";
|
||||
import { useRef } from "react";
|
||||
import { BsTrash } from "react-icons/bs";
|
||||
import { api } from "~/utils/api";
|
||||
import { useExperiment, useHandledAsyncCallback } from "~/utils/hooks";
|
||||
|
||||
export const DeleteButton = () => {
|
||||
const experiment = useExperiment();
|
||||
const mutation = api.experiments.delete.useMutation();
|
||||
const utils = api.useContext();
|
||||
const router = useRouter();
|
||||
|
||||
const { isOpen, onOpen, onClose } = useDisclosure();
|
||||
const cancelRef = useRef<HTMLButtonElement>(null);
|
||||
|
||||
const [onDeleteConfirm] = useHandledAsyncCallback(async () => {
|
||||
if (!experiment.data?.id) return;
|
||||
await mutation.mutateAsync({ id: experiment.data.id });
|
||||
await utils.experiments.list.invalidate();
|
||||
await router.push({ pathname: "/experiments" });
|
||||
onClose();
|
||||
}, [mutation, experiment.data?.id, router]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<Button size="sm" variant="ghost" colorScheme="red" fontWeight="normal" onClick={onOpen}>
|
||||
<Icon as={BsTrash} boxSize={4} />
|
||||
<Text ml={2}>Delete Experiment</Text>
|
||||
</Button>
|
||||
|
||||
<AlertDialog isOpen={isOpen} leastDestructiveRef={cancelRef} onClose={onClose}>
|
||||
<AlertDialogOverlay>
|
||||
<AlertDialogContent>
|
||||
<AlertDialogHeader fontSize="lg" fontWeight="bold">
|
||||
Delete Experiment
|
||||
</AlertDialogHeader>
|
||||
|
||||
<AlertDialogBody>
|
||||
If you delete this experiment all the associated prompts and scenarios will be deleted
|
||||
as well. Are you sure?
|
||||
</AlertDialogBody>
|
||||
|
||||
<AlertDialogFooter>
|
||||
<Button ref={cancelRef} onClick={onClose}>
|
||||
Cancel
|
||||
</Button>
|
||||
<Button colorScheme="red" onClick={onDeleteConfirm} ml={3}>
|
||||
Delete
|
||||
</Button>
|
||||
</AlertDialogFooter>
|
||||
</AlertDialogContent>
|
||||
</AlertDialogOverlay>
|
||||
</AlertDialog>
|
||||
</>
|
||||
);
|
||||
};
|
||||
@@ -1,57 +0,0 @@
|
||||
import { Box, Flex, Icon, Spinner } from "@chakra-ui/react";
|
||||
import { BsPlus } from "react-icons/bs";
|
||||
import { Text } from "@chakra-ui/react";
|
||||
import { api } from "~/utils/api";
|
||||
import {
|
||||
useExperiment,
|
||||
useExperimentAccess,
|
||||
useHandledAsyncCallback,
|
||||
useVisibleScenarioIds,
|
||||
} from "~/utils/hooks";
|
||||
import { cellPadding } from "../constants";
|
||||
import { ActionButton } from "./ScenariosHeader";
|
||||
|
||||
export default function AddVariantButton() {
|
||||
const experiment = useExperiment();
|
||||
const mutation = api.promptVariants.create.useMutation();
|
||||
const utils = api.useContext();
|
||||
const visibleScenarios = useVisibleScenarioIds();
|
||||
|
||||
const [onClick, loading] = useHandledAsyncCallback(async () => {
|
||||
if (!experiment.data) return;
|
||||
await mutation.mutateAsync({
|
||||
experimentId: experiment.data.id,
|
||||
streamScenarios: visibleScenarios,
|
||||
});
|
||||
await utils.promptVariants.list.invalidate();
|
||||
}, [mutation]);
|
||||
|
||||
const { canModify } = useExperimentAccess();
|
||||
if (!canModify) return <Box w={cellPadding.x} />;
|
||||
|
||||
return (
|
||||
<Flex w="100%" justifyContent="flex-end">
|
||||
<ActionButton
|
||||
onClick={onClick}
|
||||
py={5}
|
||||
leftIcon={<Icon as={loading ? Spinner : BsPlus} boxSize={6} mr={loading ? 1 : 0} />}
|
||||
>
|
||||
<Text display={{ base: "none", md: "flex" }}>Add Variant</Text>
|
||||
</ActionButton>
|
||||
{/* <Button
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
fontWeight="normal"
|
||||
bgColor="transparent"
|
||||
_hover={{ bgColor: "gray.100" }}
|
||||
px={cellPadding.x}
|
||||
onClick={onClick}
|
||||
height="unset"
|
||||
minH={headerMinHeight}
|
||||
>
|
||||
<Icon as={loading ? Spinner : BsPlus} boxSize={6} mr={loading ? 1 : 0} />
|
||||
<Text display={{ base: "none", md: "flex" }}>Add Variant</Text>
|
||||
</Button> */}
|
||||
</Flex>
|
||||
);
|
||||
}
|
||||
@@ -1,197 +0,0 @@
|
||||
import { api } from "~/utils/api";
|
||||
import { type PromptVariant, type Scenario } from "../types";
|
||||
import { type StackProps, Text, VStack } from "@chakra-ui/react";
|
||||
import { useExperiment, useHandledAsyncCallback } from "~/utils/hooks";
|
||||
import SyntaxHighlighter from "react-syntax-highlighter";
|
||||
import { docco } from "react-syntax-highlighter/dist/cjs/styles/hljs";
|
||||
import stringify from "json-stringify-pretty-compact";
|
||||
import { type ReactElement, useState, useEffect, Fragment, useCallback } from "react";
|
||||
import useSocket from "~/utils/useSocket";
|
||||
import { OutputStats } from "./OutputStats";
|
||||
import { RetryCountdown } from "./RetryCountdown";
|
||||
import frontendModelProviders from "~/modelProviders/frontendModelProviders";
|
||||
import { ResponseLog } from "./ResponseLog";
|
||||
import { CellOptions } from "./TopActions";
|
||||
|
||||
const WAITING_MESSAGE_INTERVAL = 20000;
|
||||
|
||||
export default function OutputCell({
|
||||
scenario,
|
||||
variant,
|
||||
}: {
|
||||
scenario: Scenario;
|
||||
variant: PromptVariant;
|
||||
}): ReactElement | null {
|
||||
const utils = api.useContext();
|
||||
const experiment = useExperiment();
|
||||
const vars = api.templateVars.list.useQuery({
|
||||
experimentId: experiment.data?.id ?? "",
|
||||
}).data;
|
||||
|
||||
const scenarioVariables = scenario.variableValues as Record<string, string>;
|
||||
const templateHasVariables =
|
||||
vars?.length === 0 || vars?.some((v) => scenarioVariables[v.label] !== undefined);
|
||||
|
||||
let disabledReason: string | null = null;
|
||||
|
||||
if (!templateHasVariables) disabledReason = "Add a value to the scenario variables to see output";
|
||||
|
||||
const [refetchInterval, setRefetchInterval] = useState(0);
|
||||
const { data: cell, isLoading: queryLoading } = api.scenarioVariantCells.get.useQuery(
|
||||
{ scenarioId: scenario.id, variantId: variant.id },
|
||||
{ refetchInterval },
|
||||
);
|
||||
|
||||
const provider =
|
||||
frontendModelProviders[variant.modelProvider as keyof typeof frontendModelProviders];
|
||||
|
||||
type OutputSchema = Parameters<typeof provider.normalizeOutput>[0];
|
||||
|
||||
const { mutateAsync: hardRefetchMutate } = api.scenarioVariantCells.forceRefetch.useMutation();
|
||||
const [hardRefetch, hardRefetching] = useHandledAsyncCallback(async () => {
|
||||
await hardRefetchMutate({ scenarioId: scenario.id, variantId: variant.id });
|
||||
await utils.scenarioVariantCells.get.invalidate({
|
||||
scenarioId: scenario.id,
|
||||
variantId: variant.id,
|
||||
});
|
||||
await utils.promptVariants.stats.invalidate({
|
||||
variantId: variant.id,
|
||||
});
|
||||
}, [hardRefetchMutate, scenario.id, variant.id]);
|
||||
|
||||
const fetchingOutput = queryLoading || hardRefetching;
|
||||
|
||||
const awaitingOutput =
|
||||
!cell ||
|
||||
!cell.evalsComplete ||
|
||||
cell.retrievalStatus === "PENDING" ||
|
||||
cell.retrievalStatus === "IN_PROGRESS" ||
|
||||
hardRefetching;
|
||||
useEffect(() => setRefetchInterval(awaitingOutput ? 1000 : 0), [awaitingOutput]);
|
||||
|
||||
// TODO: disconnect from socket if we're not streaming anymore
|
||||
const streamedMessage = useSocket<OutputSchema>(cell?.id);
|
||||
|
||||
const mostRecentResponse = cell?.modelResponses[cell.modelResponses.length - 1];
|
||||
|
||||
const CellWrapper = useCallback(
|
||||
({ children, ...props }: StackProps) => (
|
||||
<VStack w="full" alignItems="flex-start" {...props} px={2} py={2} h="100%">
|
||||
{cell && (
|
||||
<CellOptions refetchingOutput={hardRefetching} refetchOutput={hardRefetch} cell={cell} />
|
||||
)}
|
||||
<VStack w="full" alignItems="flex-start" maxH={500} overflowY="auto" flex={1}>
|
||||
{children}
|
||||
</VStack>
|
||||
{mostRecentResponse && (
|
||||
<OutputStats modelResponse={mostRecentResponse} scenario={scenario} />
|
||||
)}
|
||||
</VStack>
|
||||
),
|
||||
[hardRefetching, hardRefetch, mostRecentResponse, scenario, cell],
|
||||
);
|
||||
|
||||
if (!vars) return null;
|
||||
|
||||
if (!cell && !fetchingOutput)
|
||||
return (
|
||||
<CellWrapper>
|
||||
<Text color="gray.500">Error retrieving output</Text>
|
||||
</CellWrapper>
|
||||
);
|
||||
|
||||
if (cell && cell.errorMessage) {
|
||||
return (
|
||||
<CellWrapper>
|
||||
<Text color="red.500">{cell.errorMessage}</Text>
|
||||
</CellWrapper>
|
||||
);
|
||||
}
|
||||
|
||||
if (disabledReason) return <Text color="gray.500">{disabledReason}</Text>;
|
||||
|
||||
const showLogs = !streamedMessage && !mostRecentResponse?.output;
|
||||
|
||||
if (showLogs)
|
||||
return (
|
||||
<CellWrapper alignItems="flex-start" fontFamily="inconsolata, monospace" spacing={0}>
|
||||
{cell?.jobQueuedAt && <ResponseLog time={cell.jobQueuedAt} title="Job queued" />}
|
||||
{cell?.jobStartedAt && <ResponseLog time={cell.jobStartedAt} title="Job started" />}
|
||||
{cell?.modelResponses?.map((response) => {
|
||||
let numWaitingMessages = 0;
|
||||
const relativeWaitingTime = response.receivedAt
|
||||
? response.receivedAt.getTime()
|
||||
: Date.now();
|
||||
if (response.requestedAt) {
|
||||
numWaitingMessages = Math.floor(
|
||||
(relativeWaitingTime - response.requestedAt.getTime()) / WAITING_MESSAGE_INTERVAL,
|
||||
);
|
||||
}
|
||||
return (
|
||||
<Fragment key={response.id}>
|
||||
{response.requestedAt && (
|
||||
<ResponseLog time={response.requestedAt} title="Request sent to API" />
|
||||
)}
|
||||
{response.requestedAt &&
|
||||
Array.from({ length: numWaitingMessages }, (_, i) => (
|
||||
<ResponseLog
|
||||
key={`waiting-${i}`}
|
||||
time={
|
||||
new Date(
|
||||
(response.requestedAt?.getTime?.() ?? 0) +
|
||||
(i + 1) * WAITING_MESSAGE_INTERVAL,
|
||||
)
|
||||
}
|
||||
title="Waiting for response..."
|
||||
/>
|
||||
))}
|
||||
{response.receivedAt && (
|
||||
<ResponseLog
|
||||
time={response.receivedAt}
|
||||
title="Response received from API"
|
||||
message={`statusCode: ${response.statusCode ?? ""}\n ${
|
||||
response.errorMessage ?? ""
|
||||
}`}
|
||||
/>
|
||||
)}
|
||||
</Fragment>
|
||||
);
|
||||
}) ?? null}
|
||||
{mostRecentResponse?.retryTime && (
|
||||
<RetryCountdown retryTime={mostRecentResponse.retryTime} />
|
||||
)}
|
||||
</CellWrapper>
|
||||
);
|
||||
|
||||
const normalizedOutput = mostRecentResponse?.output
|
||||
? provider.normalizeOutput(mostRecentResponse?.output)
|
||||
: streamedMessage
|
||||
? provider.normalizeOutput(streamedMessage)
|
||||
: null;
|
||||
|
||||
if (mostRecentResponse?.output && normalizedOutput?.type === "json") {
|
||||
return (
|
||||
<CellWrapper>
|
||||
<SyntaxHighlighter
|
||||
customStyle={{ overflowX: "unset", width: "100%", flex: 1 }}
|
||||
language="json"
|
||||
style={docco}
|
||||
lineProps={{
|
||||
style: { wordBreak: "break-all", whiteSpace: "pre-wrap" },
|
||||
}}
|
||||
wrapLines
|
||||
>
|
||||
{stringify(normalizedOutput.value, { maxLength: 40 })}
|
||||
</SyntaxHighlighter>
|
||||
</CellWrapper>
|
||||
);
|
||||
}
|
||||
|
||||
const contentToDisplay = (normalizedOutput?.type === "text" && normalizedOutput.value) || "";
|
||||
|
||||
return (
|
||||
<CellWrapper>
|
||||
<Text>{contentToDisplay}</Text>
|
||||
</CellWrapper>
|
||||
);
|
||||
}
|
||||
@@ -1,36 +0,0 @@
|
||||
import {
|
||||
Modal,
|
||||
ModalBody,
|
||||
ModalCloseButton,
|
||||
ModalContent,
|
||||
ModalHeader,
|
||||
ModalOverlay,
|
||||
type UseDisclosureReturn,
|
||||
} from "@chakra-ui/react";
|
||||
import { type RouterOutputs } from "~/utils/api";
|
||||
import { JSONTree } from "react-json-tree";
|
||||
|
||||
export default function ExpandedModal(props: {
|
||||
cell: NonNullable<RouterOutputs["scenarioVariantCells"]["get"]>;
|
||||
disclosure: UseDisclosureReturn;
|
||||
}) {
|
||||
return (
|
||||
<Modal isOpen={props.disclosure.isOpen} onClose={props.disclosure.onClose} size="2xl">
|
||||
<ModalOverlay />
|
||||
<ModalContent>
|
||||
<ModalHeader>Prompt</ModalHeader>
|
||||
<ModalCloseButton />
|
||||
<ModalBody>
|
||||
<JSONTree
|
||||
data={props.cell.prompt}
|
||||
invertTheme={true}
|
||||
theme="chalk"
|
||||
shouldExpandNodeInitially={() => true}
|
||||
getItemString={() => ""}
|
||||
hideRoot
|
||||
/>
|
||||
</ModalBody>
|
||||
</ModalContent>
|
||||
</Modal>
|
||||
);
|
||||
}
|
||||
@@ -1,22 +0,0 @@
|
||||
import { HStack, VStack, Text } from "@chakra-ui/react";
|
||||
import dayjs from "dayjs";
|
||||
|
||||
export const ResponseLog = ({
|
||||
time,
|
||||
title,
|
||||
message,
|
||||
}: {
|
||||
time: Date;
|
||||
title: string;
|
||||
message?: string;
|
||||
}) => {
|
||||
return (
|
||||
<VStack spacing={0} alignItems="flex-start">
|
||||
<HStack>
|
||||
<Text>{dayjs(time).format("HH:mm:ss")}</Text>
|
||||
<Text>{title}</Text>
|
||||
</HStack>
|
||||
{message && <Text pl={4}>{message}</Text>}
|
||||
</VStack>
|
||||
);
|
||||
};
|
||||
@@ -1,53 +0,0 @@
|
||||
import { HStack, Icon, IconButton, Spinner, Tooltip, useDisclosure } from "@chakra-ui/react";
|
||||
import { BsArrowClockwise, BsInfoCircle } from "react-icons/bs";
|
||||
import { useExperimentAccess } from "~/utils/hooks";
|
||||
import ExpandedModal from "./PromptModal";
|
||||
import { type RouterOutputs } from "~/utils/api";
|
||||
|
||||
export const CellOptions = ({
|
||||
cell,
|
||||
refetchingOutput,
|
||||
refetchOutput,
|
||||
}: {
|
||||
cell: RouterOutputs["scenarioVariantCells"]["get"];
|
||||
refetchingOutput: boolean;
|
||||
refetchOutput: () => void;
|
||||
}) => {
|
||||
const { canModify } = useExperimentAccess();
|
||||
|
||||
const modalDisclosure = useDisclosure();
|
||||
|
||||
return (
|
||||
<HStack justifyContent="flex-end" w="full">
|
||||
{cell && (
|
||||
<>
|
||||
<Tooltip label="See Prompt">
|
||||
<IconButton
|
||||
aria-label="See Prompt"
|
||||
icon={<Icon as={BsInfoCircle} boxSize={4} />}
|
||||
onClick={modalDisclosure.onOpen}
|
||||
size="xs"
|
||||
colorScheme="gray"
|
||||
color="gray.500"
|
||||
variant="ghost"
|
||||
/>
|
||||
</Tooltip>
|
||||
<ExpandedModal cell={cell} disclosure={modalDisclosure} />
|
||||
</>
|
||||
)}
|
||||
{canModify && (
|
||||
<Tooltip label="Refetch output">
|
||||
<IconButton
|
||||
size="xs"
|
||||
color="gray.500"
|
||||
variant="ghost"
|
||||
cursor="pointer"
|
||||
onClick={refetchOutput}
|
||||
aria-label="refetch output"
|
||||
icon={<Icon as={refetchingOutput ? Spinner : BsArrowClockwise} boxSize={4} />}
|
||||
/>
|
||||
</Tooltip>
|
||||
)}
|
||||
</HStack>
|
||||
);
|
||||
};
|
||||
@@ -1,207 +0,0 @@
|
||||
import { isEqual } from "lodash-es";
|
||||
import { useEffect, useState, type DragEvent } from "react";
|
||||
import { api } from "~/utils/api";
|
||||
import { useExperiment, useExperimentAccess, useHandledAsyncCallback } from "~/utils/hooks";
|
||||
import { type Scenario } from "./types";
|
||||
|
||||
import {
|
||||
Box,
|
||||
Button,
|
||||
HStack,
|
||||
Icon,
|
||||
IconButton,
|
||||
Spinner,
|
||||
Text,
|
||||
Tooltip,
|
||||
VStack,
|
||||
} from "@chakra-ui/react";
|
||||
import { BsArrowsAngleExpand, BsX } from "react-icons/bs";
|
||||
import { cellPadding } from "../constants";
|
||||
import { FloatingLabelInput } from "./FloatingLabelInput";
|
||||
import { ScenarioEditorModal } from "./ScenarioEditorModal";
|
||||
|
||||
export default function ScenarioEditor({
|
||||
scenario,
|
||||
...props
|
||||
}: {
|
||||
scenario: Scenario;
|
||||
hovered: boolean;
|
||||
canHide: boolean;
|
||||
}) {
|
||||
const { canModify } = useExperimentAccess();
|
||||
|
||||
const savedValues = scenario.variableValues as Record<string, string>;
|
||||
const utils = api.useContext();
|
||||
const [isDragTarget, setIsDragTarget] = useState(false);
|
||||
const [variableInputHovered, setVariableInputHovered] = useState(false);
|
||||
|
||||
const [values, setValues] = useState<Record<string, string>>(savedValues);
|
||||
|
||||
useEffect(() => {
|
||||
if (savedValues) setValues(savedValues);
|
||||
}, [savedValues]);
|
||||
|
||||
const experiment = useExperiment();
|
||||
const vars = api.templateVars.list.useQuery({ experimentId: experiment.data?.id ?? "" });
|
||||
|
||||
const variableLabels = vars.data?.map((v) => v.label) ?? [];
|
||||
|
||||
const hasChanged = !isEqual(savedValues, values);
|
||||
|
||||
const mutation = api.scenarios.replaceWithValues.useMutation();
|
||||
|
||||
const [onSave] = useHandledAsyncCallback(async () => {
|
||||
await mutation.mutateAsync({
|
||||
id: scenario.id,
|
||||
values,
|
||||
});
|
||||
await utils.scenarios.list.invalidate();
|
||||
}, [mutation, values]);
|
||||
|
||||
const hideMutation = api.scenarios.hide.useMutation();
|
||||
const [onHide, hidingInProgress] = useHandledAsyncCallback(async () => {
|
||||
await hideMutation.mutateAsync({
|
||||
id: scenario.id,
|
||||
});
|
||||
await utils.scenarios.list.invalidate();
|
||||
await utils.promptVariants.stats.invalidate();
|
||||
}, [hideMutation, scenario.id]);
|
||||
|
||||
const reorderMutation = api.scenarios.reorder.useMutation();
|
||||
const [onReorder] = useHandledAsyncCallback(
|
||||
async (e: DragEvent<HTMLDivElement>) => {
|
||||
e.preventDefault();
|
||||
setIsDragTarget(false);
|
||||
const draggedId = e.dataTransfer.getData("text/plain");
|
||||
const droppedId = scenario.id;
|
||||
if (!draggedId || !droppedId || draggedId === droppedId) return;
|
||||
await reorderMutation.mutateAsync({
|
||||
draggedId,
|
||||
droppedId,
|
||||
});
|
||||
await utils.scenarios.list.invalidate();
|
||||
},
|
||||
[reorderMutation, scenario.id],
|
||||
);
|
||||
|
||||
const [scenarioEditorModalOpen, setScenarioEditorModalOpen] = useState(false);
|
||||
|
||||
return (
|
||||
<>
|
||||
<HStack
|
||||
alignItems="flex-start"
|
||||
px={cellPadding.x}
|
||||
py={cellPadding.y}
|
||||
spacing={0}
|
||||
height="100%"
|
||||
draggable={!variableInputHovered}
|
||||
onDragStart={(e) => {
|
||||
e.dataTransfer.setData("text/plain", scenario.id);
|
||||
e.currentTarget.style.opacity = "0.4";
|
||||
}}
|
||||
onDragEnd={(e) => {
|
||||
e.currentTarget.style.opacity = "1";
|
||||
}}
|
||||
onDragOver={(e) => {
|
||||
e.preventDefault();
|
||||
setIsDragTarget(true);
|
||||
}}
|
||||
onDragLeave={() => {
|
||||
setIsDragTarget(false);
|
||||
}}
|
||||
onDrop={onReorder}
|
||||
backgroundColor={isDragTarget ? "gray.100" : "transparent"}
|
||||
>
|
||||
{variableLabels.length === 0 ? (
|
||||
<Box color="gray.500">
|
||||
{vars.data ? "No scenario variables configured" : "Loading..."}
|
||||
</Box>
|
||||
) : (
|
||||
<VStack spacing={4} flex={1} py={2}>
|
||||
<HStack justifyContent="space-between" w="100%" align="center" spacing={0}>
|
||||
<Text flex={1}>Scenario</Text>
|
||||
<Tooltip label="Expand" hasArrow>
|
||||
<IconButton
|
||||
aria-label="Expand"
|
||||
icon={<Icon as={BsArrowsAngleExpand} boxSize={3} />}
|
||||
onClick={() => setScenarioEditorModalOpen(true)}
|
||||
size="xs"
|
||||
colorScheme="gray"
|
||||
color="gray.500"
|
||||
variant="ghost"
|
||||
/>
|
||||
</Tooltip>
|
||||
{canModify && props.canHide && (
|
||||
<Tooltip label="Delete" hasArrow>
|
||||
<IconButton
|
||||
aria-label="Delete"
|
||||
icon={
|
||||
<Icon
|
||||
as={hidingInProgress ? Spinner : BsX}
|
||||
boxSize={hidingInProgress ? 4 : 6}
|
||||
/>
|
||||
}
|
||||
onClick={onHide}
|
||||
size="xs"
|
||||
display="flex"
|
||||
colorScheme="gray"
|
||||
color="gray.500"
|
||||
variant="ghost"
|
||||
/>
|
||||
</Tooltip>
|
||||
)}
|
||||
</HStack>
|
||||
{variableLabels.map((key) => {
|
||||
const value = values[key] ?? "";
|
||||
return (
|
||||
<FloatingLabelInput
|
||||
key={key}
|
||||
label={key}
|
||||
isDisabled={!canModify}
|
||||
style={{ width: "100%" }}
|
||||
maxHeight={32}
|
||||
value={value}
|
||||
onChange={(e) => {
|
||||
setValues((prev) => ({ ...prev, [key]: e.target.value }));
|
||||
}}
|
||||
onKeyDown={(e) => {
|
||||
if (e.key === "Enter" && (e.metaKey || e.ctrlKey)) {
|
||||
e.preventDefault();
|
||||
e.currentTarget.blur();
|
||||
onSave();
|
||||
}
|
||||
}}
|
||||
onMouseEnter={() => setVariableInputHovered(true)}
|
||||
onMouseLeave={() => setVariableInputHovered(false)}
|
||||
/>
|
||||
);
|
||||
})}
|
||||
{hasChanged && (
|
||||
<HStack justify="right">
|
||||
<Button
|
||||
size="sm"
|
||||
onMouseDown={() => {
|
||||
setValues(savedValues);
|
||||
}}
|
||||
colorScheme="gray"
|
||||
>
|
||||
Reset
|
||||
</Button>
|
||||
<Button size="sm" onMouseDown={onSave} colorScheme="blue">
|
||||
Save
|
||||
</Button>
|
||||
</HStack>
|
||||
)}
|
||||
</VStack>
|
||||
)}
|
||||
</HStack>
|
||||
{scenarioEditorModalOpen && (
|
||||
<ScenarioEditorModal
|
||||
scenarioId={scenario.id}
|
||||
initialValues={savedValues}
|
||||
onClose={() => setScenarioEditorModalOpen(false)}
|
||||
/>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
}
|
||||
@@ -1,123 +0,0 @@
|
||||
import {
|
||||
Button,
|
||||
HStack,
|
||||
Modal,
|
||||
ModalBody,
|
||||
ModalCloseButton,
|
||||
ModalContent,
|
||||
ModalFooter,
|
||||
ModalHeader,
|
||||
ModalOverlay,
|
||||
Spinner,
|
||||
Text,
|
||||
VStack,
|
||||
} from "@chakra-ui/react";
|
||||
import { useEffect, useState } from "react";
|
||||
import { isEqual } from "lodash-es";
|
||||
|
||||
import { api } from "~/utils/api";
|
||||
import {
|
||||
useScenario,
|
||||
useHandledAsyncCallback,
|
||||
useExperiment,
|
||||
useExperimentAccess,
|
||||
} from "~/utils/hooks";
|
||||
import { FloatingLabelInput } from "./FloatingLabelInput";
|
||||
|
||||
export const ScenarioEditorModal = ({
|
||||
scenarioId,
|
||||
initialValues,
|
||||
onClose,
|
||||
}: {
|
||||
scenarioId: string;
|
||||
initialValues: Record<string, string>;
|
||||
onClose: () => void;
|
||||
}) => {
|
||||
const utils = api.useContext();
|
||||
const experiment = useExperiment();
|
||||
const { canModify } = useExperimentAccess();
|
||||
const scenario = useScenario(scenarioId);
|
||||
|
||||
const savedValues = scenario.data?.variableValues as Record<string, string>;
|
||||
|
||||
const [values, setValues] = useState<Record<string, string>>(initialValues);
|
||||
|
||||
useEffect(() => {
|
||||
if (savedValues) setValues(savedValues);
|
||||
}, [savedValues]);
|
||||
|
||||
const hasChanged = !isEqual(savedValues, values);
|
||||
|
||||
const mutation = api.scenarios.replaceWithValues.useMutation();
|
||||
|
||||
const [onSave, saving] = useHandledAsyncCallback(async () => {
|
||||
await mutation.mutateAsync({
|
||||
id: scenarioId,
|
||||
values,
|
||||
});
|
||||
await utils.scenarios.list.invalidate();
|
||||
}, [mutation, values]);
|
||||
|
||||
const vars = api.templateVars.list.useQuery({ experimentId: experiment.data?.id ?? "" });
|
||||
const variableLabels = vars.data?.map((v) => v.label) ?? [];
|
||||
|
||||
return (
|
||||
<Modal
|
||||
isOpen
|
||||
onClose={onClose}
|
||||
size={{ base: "xl", sm: "2xl", md: "3xl", lg: "5xl", xl: "7xl" }}
|
||||
>
|
||||
<ModalOverlay />
|
||||
<ModalContent w={1200}>
|
||||
<ModalHeader />
|
||||
<ModalCloseButton />
|
||||
<ModalBody maxW="unset">
|
||||
<VStack spacing={8}>
|
||||
{values &&
|
||||
variableLabels.map((key) => {
|
||||
const value = values[key] ?? "";
|
||||
return (
|
||||
<FloatingLabelInput
|
||||
key={key}
|
||||
label={key}
|
||||
isDisabled={!canModify}
|
||||
_disabled={{ opacity: 1 }}
|
||||
style={{ width: "100%" }}
|
||||
value={value}
|
||||
onChange={(e) => {
|
||||
setValues((prev) => ({ ...prev, [key]: e.target.value }));
|
||||
}}
|
||||
onKeyDown={(e) => {
|
||||
if (e.key === "Enter" && (e.metaKey || e.ctrlKey)) {
|
||||
e.preventDefault();
|
||||
e.currentTarget.blur();
|
||||
onSave();
|
||||
}
|
||||
}}
|
||||
/>
|
||||
);
|
||||
})}
|
||||
</VStack>
|
||||
</ModalBody>
|
||||
|
||||
<ModalFooter>
|
||||
{canModify && (
|
||||
<HStack>
|
||||
<Button
|
||||
colorScheme="gray"
|
||||
onClick={() => setValues(savedValues)}
|
||||
minW={24}
|
||||
isDisabled={!hasChanged}
|
||||
>
|
||||
<Text>Reset</Text>
|
||||
</Button>
|
||||
<Button colorScheme="blue" onClick={onSave} minW={24} isDisabled={!hasChanged}>
|
||||
{saving ? <Spinner boxSize={4} /> : <Text>Save</Text>}
|
||||
</Button>
|
||||
</HStack>
|
||||
)}
|
||||
</ModalFooter>
|
||||
</ModalContent>
|
||||
</Modal>
|
||||
);
|
||||
};
|
||||
@@ -1,21 +0,0 @@
|
||||
import { useScenarios } from "~/utils/hooks";
|
||||
import Paginator from "../Paginator";
|
||||
|
||||
const ScenarioPaginator = () => {
|
||||
const { data } = useScenarios();
|
||||
|
||||
if (!data) return null;
|
||||
|
||||
const { scenarios, startIndex, lastPage, count } = data;
|
||||
|
||||
return (
|
||||
<Paginator
|
||||
numItemsLoaded={scenarios.length}
|
||||
startIndex={startIndex}
|
||||
lastPage={lastPage}
|
||||
count={count}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default ScenarioPaginator;
|
||||
@@ -1,82 +0,0 @@
|
||||
import {
|
||||
Button,
|
||||
type ButtonProps,
|
||||
HStack,
|
||||
Text,
|
||||
Icon,
|
||||
Menu,
|
||||
MenuButton,
|
||||
MenuList,
|
||||
MenuItem,
|
||||
IconButton,
|
||||
Spinner,
|
||||
} from "@chakra-ui/react";
|
||||
import { cellPadding } from "../constants";
|
||||
import {
|
||||
useExperiment,
|
||||
useExperimentAccess,
|
||||
useHandledAsyncCallback,
|
||||
useScenarios,
|
||||
} from "~/utils/hooks";
|
||||
import { BsGear, BsPencil, BsPlus, BsStars } from "react-icons/bs";
|
||||
import { useAppStore } from "~/state/store";
|
||||
import { api } from "~/utils/api";
|
||||
|
||||
export const ActionButton = (props: ButtonProps) => (
|
||||
<Button size="sm" variant="ghost" color="gray.600" {...props} />
|
||||
);
|
||||
|
||||
export const ScenariosHeader = () => {
|
||||
const openDrawer = useAppStore((s) => s.openDrawer);
|
||||
const { canModify } = useExperimentAccess();
|
||||
const scenarios = useScenarios();
|
||||
|
||||
const experiment = useExperiment();
|
||||
const createScenarioMutation = api.scenarios.create.useMutation();
|
||||
const utils = api.useContext();
|
||||
|
||||
const [onAddScenario, loading] = useHandledAsyncCallback(
|
||||
async (autogenerate: boolean) => {
|
||||
if (!experiment.data) return;
|
||||
await createScenarioMutation.mutateAsync({
|
||||
experimentId: experiment.data.id,
|
||||
autogenerate,
|
||||
});
|
||||
await utils.scenarios.list.invalidate();
|
||||
},
|
||||
[createScenarioMutation],
|
||||
);
|
||||
|
||||
return (
|
||||
<HStack w="100%" pb={cellPadding.y} pt={0} align="center" spacing={0}>
|
||||
<Text fontSize={16} fontWeight="bold">
|
||||
Scenarios ({scenarios.data?.count})
|
||||
</Text>
|
||||
{canModify && (
|
||||
<Menu>
|
||||
<MenuButton
|
||||
as={IconButton}
|
||||
mt={1}
|
||||
variant="ghost"
|
||||
aria-label="Edit Scenarios"
|
||||
icon={<Icon as={loading ? Spinner : BsGear} />}
|
||||
/>
|
||||
<MenuList fontSize="md" zIndex="dropdown" mt={-3}>
|
||||
<MenuItem
|
||||
icon={<Icon as={BsPlus} boxSize={6} mx="-5px" />}
|
||||
onClick={() => onAddScenario(false)}
|
||||
>
|
||||
Add Scenario
|
||||
</MenuItem>
|
||||
<MenuItem icon={<BsStars />} onClick={() => onAddScenario(true)}>
|
||||
Autogenerate Scenario
|
||||
</MenuItem>
|
||||
<MenuItem icon={<BsPencil />} onClick={openDrawer}>
|
||||
Edit Vars
|
||||
</MenuItem>
|
||||
</MenuList>
|
||||
</Menu>
|
||||
)}
|
||||
</HStack>
|
||||
);
|
||||
};
|
||||
@@ -1,107 +0,0 @@
|
||||
import { Grid, GridItem, type GridItemProps } from "@chakra-ui/react";
|
||||
import { api } from "~/utils/api";
|
||||
import AddVariantButton from "./AddVariantButton";
|
||||
import ScenarioRow from "./ScenarioRow";
|
||||
import VariantEditor from "./VariantEditor";
|
||||
import VariantHeader from "../VariantHeader/VariantHeader";
|
||||
import VariantStats from "./VariantStats";
|
||||
import { ScenariosHeader } from "./ScenariosHeader";
|
||||
import { borders } from "./styles";
|
||||
import { useScenarios } from "~/utils/hooks";
|
||||
import ScenarioPaginator from "./ScenarioPaginator";
|
||||
import { Fragment } from "react";
|
||||
|
||||
export default function OutputsTable({ experimentId }: { experimentId: string | undefined }) {
|
||||
const variants = api.promptVariants.list.useQuery(
|
||||
{ experimentId: experimentId as string },
|
||||
{ enabled: !!experimentId },
|
||||
);
|
||||
|
||||
const scenarios = useScenarios();
|
||||
|
||||
if (!variants.data || !scenarios.data) return null;
|
||||
|
||||
const allCols = variants.data.length + 2;
|
||||
const variantHeaderRows = 3;
|
||||
const scenarioHeaderRows = 1;
|
||||
const scenarioFooterRows = 1;
|
||||
const visibleScenariosCount = scenarios.data.scenarios.length;
|
||||
const allRows =
|
||||
variantHeaderRows + scenarioHeaderRows + visibleScenariosCount + scenarioFooterRows;
|
||||
|
||||
return (
|
||||
<Grid
|
||||
pt={4}
|
||||
pb={24}
|
||||
pl={8}
|
||||
display="grid"
|
||||
gridTemplateColumns={`250px repeat(${variants.data.length}, minmax(320px, 1fr)) auto`}
|
||||
sx={{
|
||||
"> *": {
|
||||
borderColor: "gray.300",
|
||||
},
|
||||
}}
|
||||
fontSize="sm"
|
||||
>
|
||||
<GridItem rowSpan={variantHeaderRows}>
|
||||
<AddVariantButton />
|
||||
</GridItem>
|
||||
|
||||
{variants.data.map((variant, i) => {
|
||||
const sharedProps: GridItemProps = {
|
||||
...borders,
|
||||
colStart: i + 2,
|
||||
borderLeftWidth: i === 0 ? 1 : 0,
|
||||
marginLeft: i === 0 ? "-1px" : 0,
|
||||
backgroundColor: "gray.100",
|
||||
};
|
||||
return (
|
||||
<Fragment key={variant.uiId}>
|
||||
<VariantHeader
|
||||
variant={variant}
|
||||
canHide={variants.data.length > 1}
|
||||
rowStart={1}
|
||||
{...sharedProps}
|
||||
/>
|
||||
<GridItem rowStart={2} {...sharedProps}>
|
||||
<VariantEditor variant={variant} />
|
||||
</GridItem>
|
||||
<GridItem rowStart={3} {...sharedProps}>
|
||||
<VariantStats variant={variant} />
|
||||
</GridItem>
|
||||
</Fragment>
|
||||
);
|
||||
})}
|
||||
|
||||
<GridItem
|
||||
colSpan={allCols - 1}
|
||||
rowStart={variantHeaderRows + 1}
|
||||
colStart={1}
|
||||
{...borders}
|
||||
borderRightWidth={0}
|
||||
>
|
||||
<ScenariosHeader />
|
||||
</GridItem>
|
||||
|
||||
{scenarios.data.scenarios.map((scenario, i) => (
|
||||
<ScenarioRow
|
||||
rowStart={i + variantHeaderRows + scenarioHeaderRows + 2}
|
||||
key={scenario.uiId}
|
||||
scenario={scenario}
|
||||
variants={variants.data}
|
||||
canHide={visibleScenariosCount > 1}
|
||||
/>
|
||||
))}
|
||||
<GridItem
|
||||
rowStart={variantHeaderRows + scenarioHeaderRows + visibleScenariosCount + 2}
|
||||
colStart={1}
|
||||
colSpan={allCols}
|
||||
>
|
||||
<ScenarioPaginator />
|
||||
</GridItem>
|
||||
|
||||
{/* Add some extra padding on the right, because when the table is too wide to fit in the viewport `pr` on the Grid isn't respected. */}
|
||||
<GridItem rowStart={1} colStart={allCols} rowSpan={allRows} w={4} borderBottomWidth={0} />
|
||||
</Grid>
|
||||
);
|
||||
}
|
||||
@@ -1,6 +0,0 @@
|
||||
import { type GridItemProps } from "@chakra-ui/react";
|
||||
|
||||
export const borders: GridItemProps = {
|
||||
borderRightWidth: 1,
|
||||
borderBottomWidth: 1,
|
||||
};
|
||||
@@ -1,79 +0,0 @@
|
||||
import { Box, HStack, IconButton } from "@chakra-ui/react";
|
||||
import {
|
||||
BsChevronDoubleLeft,
|
||||
BsChevronDoubleRight,
|
||||
BsChevronLeft,
|
||||
BsChevronRight,
|
||||
} from "react-icons/bs";
|
||||
import { usePage } from "~/utils/hooks";
|
||||
|
||||
const Paginator = ({
|
||||
numItemsLoaded,
|
||||
startIndex,
|
||||
lastPage,
|
||||
count,
|
||||
}: {
|
||||
numItemsLoaded: number;
|
||||
startIndex: number;
|
||||
lastPage: number;
|
||||
count: number;
|
||||
}) => {
|
||||
const [page, setPage] = usePage();
|
||||
|
||||
const nextPage = () => {
|
||||
if (page < lastPage) {
|
||||
setPage(page + 1, "replace");
|
||||
}
|
||||
};
|
||||
|
||||
const prevPage = () => {
|
||||
if (page > 1) {
|
||||
setPage(page - 1, "replace");
|
||||
}
|
||||
};
|
||||
|
||||
const goToLastPage = () => setPage(lastPage, "replace");
|
||||
const goToFirstPage = () => setPage(1, "replace");
|
||||
|
||||
return (
|
||||
<HStack pt={4}>
|
||||
<IconButton
|
||||
variant="ghost"
|
||||
size="sm"
|
||||
onClick={goToFirstPage}
|
||||
isDisabled={page === 1}
|
||||
aria-label="Go to first page"
|
||||
icon={<BsChevronDoubleLeft />}
|
||||
/>
|
||||
<IconButton
|
||||
variant="ghost"
|
||||
size="sm"
|
||||
onClick={prevPage}
|
||||
isDisabled={page === 1}
|
||||
aria-label="Previous page"
|
||||
icon={<BsChevronLeft />}
|
||||
/>
|
||||
<Box>
|
||||
{startIndex}-{startIndex + numItemsLoaded - 1} / {count}
|
||||
</Box>
|
||||
<IconButton
|
||||
variant="ghost"
|
||||
size="sm"
|
||||
onClick={nextPage}
|
||||
isDisabled={page === lastPage}
|
||||
aria-label="Next page"
|
||||
icon={<BsChevronRight />}
|
||||
/>
|
||||
<IconButton
|
||||
variant="ghost"
|
||||
size="sm"
|
||||
onClick={goToLastPage}
|
||||
isDisabled={page === lastPage}
|
||||
aria-label="Go to last page"
|
||||
icon={<BsChevronDoubleRight />}
|
||||
/>
|
||||
</HStack>
|
||||
);
|
||||
};
|
||||
|
||||
export default Paginator;
|
||||
@@ -1,110 +0,0 @@
|
||||
import {
|
||||
HStack,
|
||||
Icon,
|
||||
VStack,
|
||||
Text,
|
||||
Divider,
|
||||
Spinner,
|
||||
AspectRatio,
|
||||
SkeletonText,
|
||||
} from "@chakra-ui/react";
|
||||
import { RiDatabase2Line } from "react-icons/ri";
|
||||
import { formatTimePast } from "~/utils/dayjs";
|
||||
import Link from "next/link";
|
||||
import { useRouter } from "next/router";
|
||||
import { BsPlusSquare } from "react-icons/bs";
|
||||
import { api } from "~/utils/api";
|
||||
import { useHandledAsyncCallback } from "~/utils/hooks";
|
||||
|
||||
type DatasetData = {
|
||||
name: string;
|
||||
numEntries: number;
|
||||
id: string;
|
||||
createdAt: Date;
|
||||
updatedAt: Date;
|
||||
};
|
||||
|
||||
export const DatasetCard = ({ dataset }: { dataset: DatasetData }) => {
|
||||
return (
|
||||
<AspectRatio ratio={1.2} w="full">
|
||||
<VStack
|
||||
as={Link}
|
||||
href={{ pathname: "/data/[id]", query: { id: dataset.id } }}
|
||||
bg="gray.50"
|
||||
_hover={{ bg: "gray.100" }}
|
||||
transition="background 0.2s"
|
||||
cursor="pointer"
|
||||
borderColor="gray.200"
|
||||
borderWidth={1}
|
||||
p={4}
|
||||
justify="space-between"
|
||||
>
|
||||
<HStack w="full" color="gray.700" justify="center">
|
||||
<Icon as={RiDatabase2Line} boxSize={4} />
|
||||
<Text fontWeight="bold">{dataset.name}</Text>
|
||||
</HStack>
|
||||
<HStack h="full" spacing={4} flex={1} align="center">
|
||||
<CountLabel label="Rows" count={dataset.numEntries} />
|
||||
</HStack>
|
||||
<HStack w="full" color="gray.500" fontSize="xs" textAlign="center">
|
||||
<Text flex={1}>Created {formatTimePast(dataset.createdAt)}</Text>
|
||||
<Divider h={4} orientation="vertical" />
|
||||
<Text flex={1}>Updated {formatTimePast(dataset.updatedAt)}</Text>
|
||||
</HStack>
|
||||
</VStack>
|
||||
</AspectRatio>
|
||||
);
|
||||
};
|
||||
|
||||
const CountLabel = ({ label, count }: { label: string; count: number }) => {
|
||||
return (
|
||||
<VStack alignItems="center" flex={1}>
|
||||
<Text color="gray.500" fontWeight="bold">
|
||||
{label}
|
||||
</Text>
|
||||
<Text fontSize="sm" color="gray.500">
|
||||
{count}
|
||||
</Text>
|
||||
</VStack>
|
||||
);
|
||||
};
|
||||
|
||||
export const NewDatasetCard = () => {
|
||||
const router = useRouter();
|
||||
const createMutation = api.datasets.create.useMutation();
|
||||
const [createDataset, isLoading] = useHandledAsyncCallback(async () => {
|
||||
const newDataset = await createMutation.mutateAsync({ label: "New Dataset" });
|
||||
await router.push({ pathname: "/data/[id]", query: { id: newDataset.id } });
|
||||
}, [createMutation, router]);
|
||||
|
||||
return (
|
||||
<AspectRatio ratio={1.2} w="full">
|
||||
<VStack
|
||||
align="center"
|
||||
justify="center"
|
||||
_hover={{ cursor: "pointer", bg: "gray.50" }}
|
||||
transition="background 0.2s"
|
||||
cursor="pointer"
|
||||
borderColor="gray.200"
|
||||
borderWidth={1}
|
||||
p={4}
|
||||
onClick={createDataset}
|
||||
>
|
||||
<Icon as={isLoading ? Spinner : BsPlusSquare} boxSize={8} />
|
||||
<Text display={{ base: "none", md: "block" }} ml={2}>
|
||||
New Dataset
|
||||
</Text>
|
||||
</VStack>
|
||||
</AspectRatio>
|
||||
);
|
||||
};
|
||||
|
||||
export const DatasetCardSkeleton = () => (
|
||||
<AspectRatio ratio={1.2} w="full">
|
||||
<VStack align="center" borderColor="gray.200" borderWidth={1} p={4} bg="gray.50">
|
||||
<SkeletonText noOfLines={1} w="80%" />
|
||||
<SkeletonText noOfLines={2} w="60%" />
|
||||
<SkeletonText noOfLines={1} w="80%" />
|
||||
</VStack>
|
||||
</AspectRatio>
|
||||
);
|
||||
@@ -1,21 +0,0 @@
|
||||
import { useDatasetEntries } from "~/utils/hooks";
|
||||
import Paginator from "../Paginator";
|
||||
|
||||
const DatasetEntriesPaginator = () => {
|
||||
const { data } = useDatasetEntries();
|
||||
|
||||
if (!data) return null;
|
||||
|
||||
const { entries, startIndex, lastPage, count } = data;
|
||||
|
||||
return (
|
||||
<Paginator
|
||||
numItemsLoaded={entries.length}
|
||||
startIndex={startIndex}
|
||||
lastPage={lastPage}
|
||||
count={count}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default DatasetEntriesPaginator;
|
||||
@@ -1,31 +0,0 @@
|
||||
import { type StackProps, VStack, Table, Th, Tr, Thead, Tbody, Text } from "@chakra-ui/react";
|
||||
import { useDatasetEntries } from "~/utils/hooks";
|
||||
import TableRow from "./TableRow";
|
||||
import DatasetEntriesPaginator from "./DatasetEntriesPaginator";
|
||||
|
||||
const DatasetEntriesTable = (props: StackProps) => {
|
||||
const { data } = useDatasetEntries();
|
||||
|
||||
return (
|
||||
<VStack justifyContent="space-between" {...props}>
|
||||
<Table variant="simple" sx={{ "table-layout": "fixed", width: "full" }}>
|
||||
<Thead>
|
||||
<Tr>
|
||||
<Th>Input</Th>
|
||||
<Th>Output</Th>
|
||||
</Tr>
|
||||
</Thead>
|
||||
<Tbody>{data?.entries.map((entry) => <TableRow key={entry.id} entry={entry} />)}</Tbody>
|
||||
</Table>
|
||||
{(!data || data.entries.length) === 0 ? (
|
||||
<Text alignSelf="flex-start" pl={6} color="gray.500">
|
||||
No entries found
|
||||
</Text>
|
||||
) : (
|
||||
<DatasetEntriesPaginator />
|
||||
)}
|
||||
</VStack>
|
||||
);
|
||||
};
|
||||
|
||||
export default DatasetEntriesTable;
|
||||
@@ -1,26 +0,0 @@
|
||||
import { Button, HStack, useDisclosure } from "@chakra-ui/react";
|
||||
import { BiImport } from "react-icons/bi";
|
||||
import { BsStars } from "react-icons/bs";
|
||||
|
||||
import { GenerateDataModal } from "./GenerateDataModal";
|
||||
|
||||
export const DatasetHeaderButtons = () => {
|
||||
const generateModalDisclosure = useDisclosure();
|
||||
|
||||
return (
|
||||
<>
|
||||
<HStack>
|
||||
<Button leftIcon={<BiImport />} colorScheme="blue" variant="ghost">
|
||||
Import Data
|
||||
</Button>
|
||||
<Button leftIcon={<BsStars />} colorScheme="blue" onClick={generateModalDisclosure.onOpen}>
|
||||
Generate Data
|
||||
</Button>
|
||||
</HStack>
|
||||
<GenerateDataModal
|
||||
isOpen={generateModalDisclosure.isOpen}
|
||||
onClose={generateModalDisclosure.onClose}
|
||||
/>
|
||||
</>
|
||||
);
|
||||
};
|
||||
@@ -1,128 +0,0 @@
|
||||
import {
|
||||
Modal,
|
||||
ModalBody,
|
||||
ModalCloseButton,
|
||||
ModalContent,
|
||||
ModalHeader,
|
||||
ModalOverlay,
|
||||
ModalFooter,
|
||||
Text,
|
||||
HStack,
|
||||
VStack,
|
||||
Icon,
|
||||
NumberInput,
|
||||
NumberInputField,
|
||||
NumberInputStepper,
|
||||
NumberIncrementStepper,
|
||||
NumberDecrementStepper,
|
||||
Button,
|
||||
} from "@chakra-ui/react";
|
||||
import { BsStars } from "react-icons/bs";
|
||||
import { useState } from "react";
|
||||
import { useDataset, useHandledAsyncCallback } from "~/utils/hooks";
|
||||
import { api } from "~/utils/api";
|
||||
import AutoResizeTextArea from "~/components/AutoResizeTextArea";
|
||||
|
||||
export const GenerateDataModal = ({
|
||||
isOpen,
|
||||
onClose,
|
||||
}: {
|
||||
isOpen: boolean;
|
||||
onClose: () => void;
|
||||
}) => {
|
||||
const utils = api.useContext();
|
||||
|
||||
const datasetId = useDataset().data?.id;
|
||||
|
||||
const [numToGenerate, setNumToGenerate] = useState<number>(20);
|
||||
const [inputDescription, setInputDescription] = useState<string>(
|
||||
"Each input should contain an email body. Half of the emails should contain event details, and the other half should not.",
|
||||
);
|
||||
const [outputDescription, setOutputDescription] = useState<string>(
|
||||
`Each output should contain "true" or "false", where "true" indicates that the email contains event details.`,
|
||||
);
|
||||
|
||||
const generateEntriesMutation = api.datasetEntries.autogenerateEntries.useMutation();
|
||||
|
||||
const [generateEntries, generateEntriesInProgress] = useHandledAsyncCallback(async () => {
|
||||
if (!inputDescription || !outputDescription || !numToGenerate || !datasetId) return;
|
||||
await generateEntriesMutation.mutateAsync({
|
||||
datasetId,
|
||||
inputDescription,
|
||||
outputDescription,
|
||||
numToGenerate,
|
||||
});
|
||||
await utils.datasetEntries.list.invalidate();
|
||||
onClose();
|
||||
}, [
|
||||
generateEntriesMutation,
|
||||
onClose,
|
||||
inputDescription,
|
||||
outputDescription,
|
||||
numToGenerate,
|
||||
datasetId,
|
||||
]);
|
||||
|
||||
return (
|
||||
<Modal isOpen={isOpen} onClose={onClose} size={{ base: "xl", sm: "2xl", md: "3xl" }}>
|
||||
<ModalOverlay />
|
||||
<ModalContent w={1200}>
|
||||
<ModalHeader>
|
||||
<HStack>
|
||||
<Icon as={BsStars} />
|
||||
<Text>Generate Data</Text>
|
||||
</HStack>
|
||||
</ModalHeader>
|
||||
<ModalCloseButton />
|
||||
<ModalBody maxW="unset">
|
||||
<VStack w="full" spacing={8} padding={8} alignItems="flex-start">
|
||||
<VStack alignItems="flex-start" spacing={2}>
|
||||
<Text fontWeight="bold">Number of Rows:</Text>
|
||||
<NumberInput
|
||||
step={5}
|
||||
defaultValue={15}
|
||||
min={0}
|
||||
max={100}
|
||||
onChange={(valueString) => setNumToGenerate(parseInt(valueString) || 0)}
|
||||
value={numToGenerate}
|
||||
w="24"
|
||||
>
|
||||
<NumberInputField />
|
||||
<NumberInputStepper>
|
||||
<NumberIncrementStepper />
|
||||
<NumberDecrementStepper />
|
||||
</NumberInputStepper>
|
||||
</NumberInput>
|
||||
</VStack>
|
||||
<VStack alignItems="flex-start" w="full" spacing={2}>
|
||||
<Text fontWeight="bold">Input Description:</Text>
|
||||
<AutoResizeTextArea
|
||||
value={inputDescription}
|
||||
onChange={(e) => setInputDescription(e.target.value)}
|
||||
placeholder="Each input should contain..."
|
||||
/>
|
||||
</VStack>
|
||||
<VStack alignItems="flex-start" w="full" spacing={2}>
|
||||
<Text fontWeight="bold">Output Description (optional):</Text>
|
||||
<AutoResizeTextArea
|
||||
value={outputDescription}
|
||||
onChange={(e) => setOutputDescription(e.target.value)}
|
||||
placeholder="The output should contain..."
|
||||
/>
|
||||
</VStack>
|
||||
</VStack>
|
||||
</ModalBody>
|
||||
<ModalFooter>
|
||||
<Button
|
||||
colorScheme="blue"
|
||||
isLoading={generateEntriesInProgress}
|
||||
isDisabled={!numToGenerate || !inputDescription || !outputDescription}
|
||||
onClick={generateEntries}
|
||||
>
|
||||
Generate
|
||||
</Button>
|
||||
</ModalFooter>
|
||||
</ModalContent>
|
||||
</Modal>
|
||||
);
|
||||
};
|
||||
@@ -1,13 +0,0 @@
|
||||
import { Td, Tr } from "@chakra-ui/react";
|
||||
import { type DatasetEntry } from "@prisma/client";
|
||||
|
||||
const TableRow = ({ entry }: { entry: DatasetEntry }) => {
|
||||
return (
|
||||
<Tr key={entry.id}>
|
||||
<Td>{entry.input}</Td>
|
||||
<Td>{entry.output}</Td>
|
||||
</Tr>
|
||||
);
|
||||
};
|
||||
|
||||
export default TableRow;
|
||||
@@ -1,57 +0,0 @@
|
||||
import {
|
||||
Button,
|
||||
AlertDialog,
|
||||
AlertDialogBody,
|
||||
AlertDialogFooter,
|
||||
AlertDialogHeader,
|
||||
AlertDialogContent,
|
||||
AlertDialogOverlay,
|
||||
} from "@chakra-ui/react";
|
||||
|
||||
import { useRouter } from "next/router";
|
||||
import { useRef } from "react";
|
||||
import { api } from "~/utils/api";
|
||||
import { useExperiment, useHandledAsyncCallback } from "~/utils/hooks";
|
||||
|
||||
export const DeleteDialog = ({ onClose }: { onClose: () => void }) => {
|
||||
const experiment = useExperiment();
|
||||
const deleteMutation = api.experiments.delete.useMutation();
|
||||
const utils = api.useContext();
|
||||
const router = useRouter();
|
||||
|
||||
const cancelRef = useRef<HTMLButtonElement>(null);
|
||||
|
||||
const [onDeleteConfirm] = useHandledAsyncCallback(async () => {
|
||||
if (!experiment.data?.id) return;
|
||||
await deleteMutation.mutateAsync({ id: experiment.data.id });
|
||||
await utils.experiments.list.invalidate();
|
||||
await router.push({ pathname: "/experiments" });
|
||||
onClose();
|
||||
}, [deleteMutation, experiment.data?.id, router]);
|
||||
|
||||
return (
|
||||
<AlertDialog isOpen leastDestructiveRef={cancelRef} onClose={onClose}>
|
||||
<AlertDialogOverlay>
|
||||
<AlertDialogContent>
|
||||
<AlertDialogHeader fontSize="lg" fontWeight="bold">
|
||||
Delete Experiment
|
||||
</AlertDialogHeader>
|
||||
|
||||
<AlertDialogBody>
|
||||
If you delete this experiment all the associated prompts and scenarios will be deleted
|
||||
as well. Are you sure?
|
||||
</AlertDialogBody>
|
||||
|
||||
<AlertDialogFooter>
|
||||
<Button ref={cancelRef} onClick={onClose}>
|
||||
Cancel
|
||||
</Button>
|
||||
<Button colorScheme="red" onClick={onDeleteConfirm} ml={3}>
|
||||
Delete
|
||||
</Button>
|
||||
</AlertDialogFooter>
|
||||
</AlertDialogContent>
|
||||
</AlertDialogOverlay>
|
||||
</AlertDialog>
|
||||
);
|
||||
};
|
||||
@@ -1,42 +0,0 @@
|
||||
import { Button, HStack, Icon, Spinner, Text } from "@chakra-ui/react";
|
||||
import { useOnForkButtonPressed } from "./useOnForkButtonPressed";
|
||||
import { useExperiment } from "~/utils/hooks";
|
||||
import { BsGearFill } from "react-icons/bs";
|
||||
import { TbGitFork } from "react-icons/tb";
|
||||
import { useAppStore } from "~/state/store";
|
||||
|
||||
export const ExperimentHeaderButtons = () => {
|
||||
const experiment = useExperiment();
|
||||
|
||||
const canModify = experiment.data?.access.canModify ?? false;
|
||||
|
||||
const { onForkButtonPressed, isForking } = useOnForkButtonPressed();
|
||||
|
||||
const openDrawer = useAppStore((s) => s.openDrawer);
|
||||
|
||||
if (experiment.isLoading) return null;
|
||||
|
||||
return (
|
||||
<HStack spacing={0} mt={{ base: 2, md: 0 }}>
|
||||
<Button
|
||||
onClick={onForkButtonPressed}
|
||||
mr={4}
|
||||
colorScheme={canModify ? undefined : "orange"}
|
||||
bgColor={canModify ? undefined : "orange.400"}
|
||||
minW={0}
|
||||
variant={{ base: "solid", md: canModify ? "ghost" : "solid" }}
|
||||
>
|
||||
{isForking ? <Spinner boxSize={5} /> : <Icon as={TbGitFork} boxSize={5} />}
|
||||
<Text ml={2}>Fork</Text>
|
||||
</Button>
|
||||
{canModify && (
|
||||
<Button variant={{ base: "solid", md: "ghost" }} onClick={openDrawer}>
|
||||
<HStack>
|
||||
<Icon as={BsGearFill} />
|
||||
<Text>Settings</Text>
|
||||
</HStack>
|
||||
</Button>
|
||||
)}
|
||||
</HStack>
|
||||
);
|
||||
};
|
||||
@@ -1,30 +0,0 @@
|
||||
import { useCallback } from "react";
|
||||
import { api } from "~/utils/api";
|
||||
import { useExperiment, useHandledAsyncCallback } from "~/utils/hooks";
|
||||
import { signIn, useSession } from "next-auth/react";
|
||||
import { useRouter } from "next/router";
|
||||
|
||||
export const useOnForkButtonPressed = () => {
|
||||
const router = useRouter();
|
||||
|
||||
const user = useSession().data;
|
||||
const experiment = useExperiment();
|
||||
|
||||
const forkMutation = api.experiments.fork.useMutation();
|
||||
|
||||
const [onFork, isForking] = useHandledAsyncCallback(async () => {
|
||||
if (!experiment.data?.id) return;
|
||||
const forkedExperimentId = await forkMutation.mutateAsync({ id: experiment.data.id });
|
||||
await router.push({ pathname: "/experiments/[id]", query: { id: forkedExperimentId } });
|
||||
}, [forkMutation, experiment.data?.id, router]);
|
||||
|
||||
const onForkButtonPressed = useCallback(() => {
|
||||
if (user === null) {
|
||||
signIn("github").catch(console.error);
|
||||
} else {
|
||||
onFork();
|
||||
}
|
||||
}, [onFork, user]);
|
||||
|
||||
return { onForkButtonPressed, isForking };
|
||||
};
|
||||
@@ -1,63 +0,0 @@
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"model": {
|
||||
"description": "The model that will complete your prompt.",
|
||||
"x-oaiTypeLabel": "string",
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"claude-2",
|
||||
"claude-2.0",
|
||||
"claude-instant-1",
|
||||
"claude-instant-1.1"
|
||||
]
|
||||
},
|
||||
"prompt": {
|
||||
"description": "The prompt that you want Claude to complete.\n\nFor proper response generation you will need to format your prompt as follows:\n\"\\n\\nHuman: all instructions for the assistant\\n\\nAssistant:\". The prompt string should begin with the characters \"Human:\" and end with \"Assistant:\".",
|
||||
"default": "<|endoftext|>",
|
||||
"example": "\\n\\nHuman: What is the correct translation of ${scenario.input}? I would like a long analysis followed by a short answer.\\n\\nAssistant:",
|
||||
"type": "string"
|
||||
},
|
||||
"max_tokens_to_sample": {
|
||||
"type": "integer",
|
||||
"minimum": 1,
|
||||
"default": 256,
|
||||
"nullable": true,
|
||||
"description": "The maximum number of tokens to generate before stopping."
|
||||
},
|
||||
"temperature": {
|
||||
"type": "number",
|
||||
"minimum": 0,
|
||||
"maximum": 1,
|
||||
"nullable": true,
|
||||
"description": "Amount of randomness injected into the response.\n\nDefaults to 1."
|
||||
},
|
||||
"top_p": {
|
||||
"type": "number",
|
||||
"minimum": 0,
|
||||
"maximum": 1,
|
||||
"nullable": true,
|
||||
"description": "Use nucleus sampling.\n\nYou should either alter temperature or top_p, but not both.\n"
|
||||
},
|
||||
"top_k": {
|
||||
"type": "number",
|
||||
"minimum": 0,
|
||||
"default": 5,
|
||||
"nullable": true,
|
||||
"description": "Only sample from the top K options for each subsequent token."
|
||||
},
|
||||
"stream": {
|
||||
"description": "Whether to incrementally stream the response using server-sent events.",
|
||||
"type": "boolean",
|
||||
"nullable": true,
|
||||
"default": false
|
||||
},
|
||||
"stop_sequences": {
|
||||
"description": "Sequences that will cause the model to stop generating completion text.\nBy default, our models stop on \"\\n\\nHuman:\".",
|
||||
"default": null,
|
||||
"nullable": true,
|
||||
"type": "array"
|
||||
}
|
||||
},
|
||||
"required": ["model", "prompt", "max_tokens_to_sample"]
|
||||
}
|
||||
@@ -1,42 +0,0 @@
|
||||
import { type Completion } from "@anthropic-ai/sdk/resources";
|
||||
import { type SupportedModel } from ".";
|
||||
import { type FrontendModelProvider } from "../types";
|
||||
import { refinementActions } from "./refinementActions";
|
||||
|
||||
const frontendModelProvider: FrontendModelProvider<SupportedModel, Completion> = {
|
||||
name: "Replicate Llama2",
|
||||
|
||||
models: {
|
||||
"claude-2.0": {
|
||||
name: "Claude 2.0",
|
||||
contextWindow: 100000,
|
||||
promptTokenPrice: 11.02 / 1000000,
|
||||
completionTokenPrice: 32.68 / 1000000,
|
||||
speed: "medium",
|
||||
provider: "anthropic/completion",
|
||||
learnMoreUrl: "https://www.anthropic.com/product",
|
||||
apiDocsUrl: "https://docs.anthropic.com/claude/reference/complete_post",
|
||||
},
|
||||
"claude-instant-1.1": {
|
||||
name: "Claude Instant 1.1",
|
||||
contextWindow: 100000,
|
||||
promptTokenPrice: 1.63 / 1000000,
|
||||
completionTokenPrice: 5.51 / 1000000,
|
||||
speed: "fast",
|
||||
provider: "anthropic/completion",
|
||||
learnMoreUrl: "https://www.anthropic.com/product",
|
||||
apiDocsUrl: "https://docs.anthropic.com/claude/reference/complete_post",
|
||||
},
|
||||
},
|
||||
|
||||
refinementActions,
|
||||
|
||||
normalizeOutput: (output) => {
|
||||
return {
|
||||
type: "text",
|
||||
value: output.completion,
|
||||
};
|
||||
},
|
||||
};
|
||||
|
||||
export default frontendModelProvider;
|
||||
@@ -1,86 +0,0 @@
|
||||
import { env } from "~/env.mjs";
|
||||
import { type CompletionResponse } from "../types";
|
||||
|
||||
import Anthropic, { APIError } from "@anthropic-ai/sdk";
|
||||
import { type Completion, type CompletionCreateParams } from "@anthropic-ai/sdk/resources";
|
||||
import { isObject, isString } from "lodash-es";
|
||||
|
||||
const anthropic = new Anthropic({
|
||||
apiKey: env.ANTHROPIC_API_KEY,
|
||||
});
|
||||
|
||||
export async function getCompletion(
|
||||
input: CompletionCreateParams,
|
||||
onStream: ((partialOutput: Completion) => void) | null,
|
||||
): Promise<CompletionResponse<Completion>> {
|
||||
const start = Date.now();
|
||||
let finalCompletion: Completion | null = null;
|
||||
|
||||
try {
|
||||
if (onStream) {
|
||||
const resp = await anthropic.completions.create(
|
||||
{ ...input, stream: true },
|
||||
{
|
||||
maxRetries: 0,
|
||||
},
|
||||
);
|
||||
|
||||
for await (const part of resp) {
|
||||
if (finalCompletion === null) {
|
||||
finalCompletion = part;
|
||||
} else {
|
||||
finalCompletion = { ...part, completion: finalCompletion.completion + part.completion };
|
||||
}
|
||||
onStream(finalCompletion);
|
||||
}
|
||||
if (!finalCompletion) {
|
||||
return {
|
||||
type: "error",
|
||||
message: "Streaming failed to return a completion",
|
||||
autoRetry: false,
|
||||
};
|
||||
}
|
||||
} else {
|
||||
const resp = await anthropic.completions.create(
|
||||
{ ...input, stream: false },
|
||||
{
|
||||
maxRetries: 0,
|
||||
},
|
||||
);
|
||||
finalCompletion = resp;
|
||||
}
|
||||
const timeToComplete = Date.now() - start;
|
||||
|
||||
return {
|
||||
type: "success",
|
||||
statusCode: 200,
|
||||
value: finalCompletion,
|
||||
timeToComplete,
|
||||
};
|
||||
} catch (error: unknown) {
|
||||
console.log("CAUGHT ERROR", error);
|
||||
if (error instanceof APIError) {
|
||||
const message =
|
||||
isObject(error.error) &&
|
||||
"error" in error.error &&
|
||||
isObject(error.error.error) &&
|
||||
"message" in error.error.error &&
|
||||
isString(error.error.error.message)
|
||||
? error.error.error.message
|
||||
: error.message;
|
||||
|
||||
return {
|
||||
type: "error",
|
||||
message,
|
||||
autoRetry: error.status === 429 || error.status === 503,
|
||||
statusCode: error.status,
|
||||
};
|
||||
} else {
|
||||
return {
|
||||
type: "error",
|
||||
message: (error as Error).message,
|
||||
autoRetry: true,
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,34 +0,0 @@
|
||||
import { type JSONSchema4 } from "json-schema";
|
||||
import { type ModelProvider } from "../types";
|
||||
import inputSchema from "./codegen/input.schema.json";
|
||||
import { getCompletion } from "./getCompletion";
|
||||
import frontendModelProvider from "./frontend";
|
||||
import type { Completion, CompletionCreateParams } from "@anthropic-ai/sdk/resources";
|
||||
|
||||
const supportedModels = ["claude-2.0", "claude-instant-1.1"] as const;
|
||||
|
||||
export type SupportedModel = (typeof supportedModels)[number];
|
||||
|
||||
export type AnthropicProvider = ModelProvider<SupportedModel, CompletionCreateParams, Completion>;
|
||||
|
||||
const modelProvider: AnthropicProvider = {
|
||||
getModel: (input) => {
|
||||
if (supportedModels.includes(input.model as SupportedModel))
|
||||
return input.model as SupportedModel;
|
||||
|
||||
const modelMaps: Record<string, SupportedModel> = {
|
||||
"claude-2": "claude-2.0",
|
||||
"claude-instant-1": "claude-instant-1.1",
|
||||
};
|
||||
|
||||
if (input.model in modelMaps) return modelMaps[input.model] as SupportedModel;
|
||||
|
||||
return null;
|
||||
},
|
||||
inputSchema: inputSchema as JSONSchema4,
|
||||
canStream: true,
|
||||
getCompletion,
|
||||
...frontendModelProvider,
|
||||
};
|
||||
|
||||
export default modelProvider;
|
||||
@@ -1,3 +0,0 @@
|
||||
import { type RefinementAction } from "../types";
|
||||
|
||||
export const refinementActions: Record<string, RefinementAction> = {};
|
||||
@@ -1,15 +0,0 @@
|
||||
import openaiChatCompletionFrontend from "./openai-ChatCompletion/frontend";
|
||||
import replicateLlama2Frontend from "./replicate-llama2/frontend";
|
||||
import anthropicFrontend from "./anthropic-completion/frontend";
|
||||
import { type SupportedProvider, type FrontendModelProvider } from "./types";
|
||||
|
||||
// Keep attributes here that need to be accessible from the frontend. We can't
|
||||
// just include them in the default `modelProviders` object because it has some
|
||||
// transient dependencies that can only be imported on the server.
|
||||
const frontendModelProviders: Record<SupportedProvider, FrontendModelProvider<any, any>> = {
|
||||
"openai/ChatCompletion": openaiChatCompletionFrontend,
|
||||
"replicate/llama2": replicateLlama2Frontend,
|
||||
"anthropic/completion": anthropicFrontend,
|
||||
};
|
||||
|
||||
export default frontendModelProviders;
|
||||
@@ -1,12 +0,0 @@
|
||||
import openaiChatCompletion from "./openai-ChatCompletion";
|
||||
import replicateLlama2 from "./replicate-llama2";
|
||||
import anthropicCompletion from "./anthropic-completion";
|
||||
import { type SupportedProvider, type ModelProvider } from "./types";
|
||||
|
||||
const modelProviders: Record<SupportedProvider, ModelProvider<any, any, any>> = {
|
||||
"openai/ChatCompletion": openaiChatCompletion,
|
||||
"replicate/llama2": replicateLlama2,
|
||||
"anthropic/completion": anthropicCompletion,
|
||||
};
|
||||
|
||||
export default modelProviders;
|
||||
@@ -1,77 +0,0 @@
|
||||
/* eslint-disable @typescript-eslint/no-var-requires */
|
||||
|
||||
import YAML from "yaml";
|
||||
import fs from "fs";
|
||||
import path from "path";
|
||||
import { openapiSchemaToJsonSchema } from "@openapi-contrib/openapi-schema-to-json-schema";
|
||||
import $RefParser from "@apidevtools/json-schema-ref-parser";
|
||||
import { type JSONObject } from "superjson/dist/types";
|
||||
import assert from "assert";
|
||||
import { type JSONSchema4Object } from "json-schema";
|
||||
import { isObject } from "lodash-es";
|
||||
|
||||
// @ts-expect-error for some reason missing from types
|
||||
import parserEstree from "prettier/plugins/estree";
|
||||
import parserBabel from "prettier/plugins/babel";
|
||||
import prettier from "prettier/standalone";
|
||||
|
||||
const OPENAPI_URL =
|
||||
"https://raw.githubusercontent.com/openai/openai-openapi/0c432eb66fd0c758fd8b9bd69db41c1096e5f4db/openapi.yaml";
|
||||
|
||||
// Fetch the openapi document
|
||||
const response = await fetch(OPENAPI_URL);
|
||||
const openApiYaml = await response.text();
|
||||
|
||||
// Parse the yaml document
|
||||
let schema = YAML.parse(openApiYaml) as JSONObject;
|
||||
schema = openapiSchemaToJsonSchema(schema);
|
||||
|
||||
const jsonSchema = await $RefParser.dereference(schema);
|
||||
|
||||
assert("components" in jsonSchema);
|
||||
const completionRequestSchema = jsonSchema.components.schemas
|
||||
.CreateChatCompletionRequest as JSONSchema4Object;
|
||||
|
||||
// We need to do a bit of surgery here since the Monaco editor doesn't like
|
||||
// the fact that the schema says `model` can be either a string or an enum,
|
||||
// and displays a warning in the editor. Let's stick with just an enum for
|
||||
// now and drop the string option.
|
||||
assert(
|
||||
"properties" in completionRequestSchema &&
|
||||
isObject(completionRequestSchema.properties) &&
|
||||
"model" in completionRequestSchema.properties &&
|
||||
isObject(completionRequestSchema.properties.model),
|
||||
);
|
||||
|
||||
const modelProperty = completionRequestSchema.properties.model;
|
||||
assert(
|
||||
"oneOf" in modelProperty &&
|
||||
Array.isArray(modelProperty.oneOf) &&
|
||||
modelProperty.oneOf.length === 2 &&
|
||||
isObject(modelProperty.oneOf[1]) &&
|
||||
"enum" in modelProperty.oneOf[1],
|
||||
"Expected model to have oneOf length of 2",
|
||||
);
|
||||
modelProperty.type = "string";
|
||||
modelProperty.enum = modelProperty.oneOf[1].enum;
|
||||
delete modelProperty["oneOf"];
|
||||
|
||||
// The default of "inf" confuses the Typescript generator, so can just remove it
|
||||
assert(
|
||||
"max_tokens" in completionRequestSchema.properties &&
|
||||
isObject(completionRequestSchema.properties.max_tokens) &&
|
||||
"default" in completionRequestSchema.properties.max_tokens,
|
||||
);
|
||||
delete completionRequestSchema.properties.max_tokens["default"];
|
||||
|
||||
// Get the directory of the current script
|
||||
const currentDirectory = path.dirname(import.meta.url).replace("file://", "");
|
||||
|
||||
// Write the JSON schema to a file in the current directory
|
||||
fs.writeFileSync(
|
||||
path.join(currentDirectory, "input.schema.json"),
|
||||
await prettier.format(JSON.stringify(completionRequestSchema, null, 2), {
|
||||
parser: "json",
|
||||
plugins: [parserBabel, parserEstree],
|
||||
}),
|
||||
);
|
||||
@@ -1,87 +0,0 @@
|
||||
import { type JsonValue } from "type-fest";
|
||||
import { type SupportedModel } from ".";
|
||||
import { type FrontendModelProvider } from "../types";
|
||||
import { type ChatCompletion } from "openai/resources/chat";
|
||||
import { refinementActions } from "./refinementActions";
|
||||
|
||||
const frontendModelProvider: FrontendModelProvider<SupportedModel, ChatCompletion> = {
|
||||
name: "OpenAI ChatCompletion",
|
||||
|
||||
models: {
|
||||
"gpt-4-0613": {
|
||||
name: "GPT-4",
|
||||
contextWindow: 8192,
|
||||
promptTokenPrice: 0.00003,
|
||||
completionTokenPrice: 0.00006,
|
||||
speed: "medium",
|
||||
provider: "openai/ChatCompletion",
|
||||
learnMoreUrl: "https://openai.com/gpt-4",
|
||||
},
|
||||
"gpt-4-32k-0613": {
|
||||
name: "GPT-4 32k",
|
||||
contextWindow: 32768,
|
||||
promptTokenPrice: 0.00006,
|
||||
completionTokenPrice: 0.00012,
|
||||
speed: "medium",
|
||||
provider: "openai/ChatCompletion",
|
||||
learnMoreUrl: "https://openai.com/gpt-4",
|
||||
},
|
||||
"gpt-3.5-turbo-0613": {
|
||||
name: "GPT-3.5 Turbo",
|
||||
contextWindow: 4096,
|
||||
promptTokenPrice: 0.0000015,
|
||||
completionTokenPrice: 0.000002,
|
||||
speed: "fast",
|
||||
provider: "openai/ChatCompletion",
|
||||
learnMoreUrl: "https://platform.openai.com/docs/guides/gpt/chat-completions-api",
|
||||
},
|
||||
"gpt-3.5-turbo-16k-0613": {
|
||||
name: "GPT-3.5 Turbo 16k",
|
||||
contextWindow: 16384,
|
||||
promptTokenPrice: 0.000003,
|
||||
completionTokenPrice: 0.000004,
|
||||
speed: "fast",
|
||||
provider: "openai/ChatCompletion",
|
||||
learnMoreUrl: "https://platform.openai.com/docs/guides/gpt/chat-completions-api",
|
||||
},
|
||||
},
|
||||
|
||||
refinementActions,
|
||||
|
||||
normalizeOutput: (output) => {
|
||||
const message = output.choices[0]?.message;
|
||||
if (!message)
|
||||
return {
|
||||
type: "json",
|
||||
value: output as unknown as JsonValue,
|
||||
};
|
||||
|
||||
if (message.content) {
|
||||
return {
|
||||
type: "text",
|
||||
value: message.content,
|
||||
};
|
||||
} else if (message.function_call) {
|
||||
let args = message.function_call.arguments ?? "";
|
||||
try {
|
||||
args = JSON.parse(args);
|
||||
} catch (e) {
|
||||
// Ignore
|
||||
}
|
||||
return {
|
||||
type: "json",
|
||||
value: {
|
||||
...message.function_call,
|
||||
arguments: args,
|
||||
},
|
||||
};
|
||||
} else {
|
||||
return {
|
||||
type: "json",
|
||||
value: message as unknown as JsonValue,
|
||||
};
|
||||
}
|
||||
},
|
||||
};
|
||||
|
||||
export default frontendModelProvider;
|
||||
@@ -1,279 +0,0 @@
|
||||
import { TfiThought } from "react-icons/tfi";
|
||||
import { type RefinementAction } from "../types";
|
||||
import { VscJson } from "react-icons/vsc";
|
||||
|
||||
export const refinementActions: Record<string, RefinementAction> = {
|
||||
"Add chain of thought": {
|
||||
icon: VscJson,
|
||||
description: "Asking the model to plan its answer can increase accuracy.",
|
||||
instructions: `Adding chain of thought means asking the model to think about its answer before it gives it to you. This is useful for getting more accurate answers. Do not add an assistant message.
|
||||
|
||||
This is what a prompt looks like before adding chain of thought:
|
||||
|
||||
definePrompt("openai/ChatCompletion", {
|
||||
model: "gpt-4",
|
||||
stream: true,
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: \`Evaluate sentiment.\`,
|
||||
},
|
||||
{
|
||||
role: "user",
|
||||
content: \`This is the user's message: \${scenario.user_message}. Return "positive" or "negative" or "neutral"\`,
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
This is what one looks like after adding chain of thought:
|
||||
|
||||
definePrompt("openai/ChatCompletion", {
|
||||
model: "gpt-4",
|
||||
stream: true,
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: \`Evaluate sentiment.\`,
|
||||
},
|
||||
{
|
||||
role: "user",
|
||||
content: \`This is the user's message: \${scenario.user_message}. Return "positive" or "negative" or "neutral". Explain your answer before you give a score, then return the score on a new line.\`,
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
Here's another example:
|
||||
|
||||
Before:
|
||||
|
||||
definePrompt("openai/ChatCompletion", {
|
||||
model: "gpt-3.5-turbo",
|
||||
messages: [
|
||||
{
|
||||
role: "user",
|
||||
content: \`Title: \${scenario.title}
|
||||
Body: \${scenario.body}
|
||||
|
||||
Need: \${scenario.need}
|
||||
|
||||
Rate likelihood on 1-3 scale.\`,
|
||||
},
|
||||
],
|
||||
temperature: 0,
|
||||
functions: [
|
||||
{
|
||||
name: "score_post",
|
||||
parameters: {
|
||||
type: "object",
|
||||
properties: {
|
||||
score: {
|
||||
type: "number",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
],
|
||||
function_call: {
|
||||
name: "score_post",
|
||||
},
|
||||
});
|
||||
|
||||
After:
|
||||
|
||||
definePrompt("openai/ChatCompletion", {
|
||||
model: "gpt-3.5-turbo",
|
||||
messages: [
|
||||
{
|
||||
role: "user",
|
||||
content: \`Title: \${scenario.title}
|
||||
Body: \${scenario.body}
|
||||
|
||||
Need: \${scenario.need}
|
||||
|
||||
Rate likelihood on 1-3 scale. Provide an explanation, but always provide a score afterward.\`,
|
||||
},
|
||||
],
|
||||
temperature: 0,
|
||||
functions: [
|
||||
{
|
||||
name: "score_post",
|
||||
parameters: {
|
||||
type: "object",
|
||||
properties: {
|
||||
explanation: {
|
||||
type: "string",
|
||||
}
|
||||
score: {
|
||||
type: "number",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
],
|
||||
function_call: {
|
||||
name: "score_post",
|
||||
},
|
||||
});
|
||||
|
||||
Add chain of thought to the original prompt.`,
|
||||
},
|
||||
"Convert to function call": {
|
||||
icon: TfiThought,
|
||||
description: "Use function calls to get output from the model in a more structured way.",
|
||||
instructions: `OpenAI functions are a specialized way for an LLM to return output.
|
||||
|
||||
This is what a prompt looks like before adding a function:
|
||||
|
||||
definePrompt("openai/ChatCompletion", {
|
||||
model: "gpt-4",
|
||||
stream: true,
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: \`Evaluate sentiment.\`,
|
||||
},
|
||||
{
|
||||
role: "user",
|
||||
content: \`This is the user's message: \${scenario.user_message}. Return "positive" or "negative" or "neutral"\`,
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
This is what one looks like after adding a function:
|
||||
|
||||
definePrompt("openai/ChatCompletion", {
|
||||
model: "gpt-4",
|
||||
stream: true,
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: "Evaluate sentiment.",
|
||||
},
|
||||
{
|
||||
role: "user",
|
||||
content: scenario.user_message,
|
||||
},
|
||||
],
|
||||
functions: [
|
||||
{
|
||||
name: "extract_sentiment",
|
||||
parameters: {
|
||||
type: "object", // parameters must always be an object with a properties key
|
||||
properties: { // properties key is required
|
||||
sentiment: {
|
||||
type: "string",
|
||||
description: "one of positive/negative/neutral",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
],
|
||||
function_call: {
|
||||
name: "extract_sentiment",
|
||||
},
|
||||
});
|
||||
|
||||
Here's another example of adding a function:
|
||||
|
||||
Before:
|
||||
|
||||
definePrompt("openai/ChatCompletion", {
|
||||
model: "gpt-3.5-turbo",
|
||||
messages: [
|
||||
{
|
||||
role: "user",
|
||||
content: \`Here is the title and body of a reddit post I am interested in:
|
||||
|
||||
title: \${scenario.title}
|
||||
body: \${scenario.body}
|
||||
|
||||
On a scale from 1 to 3, how likely is it that the person writing this post has the following need? If you are not sure, make your best guess, or answer 1.
|
||||
|
||||
Need: \${scenario.need}
|
||||
|
||||
Answer one integer between 1 and 3.\`,
|
||||
},
|
||||
],
|
||||
temperature: 0,
|
||||
});
|
||||
|
||||
After:
|
||||
|
||||
definePrompt("openai/ChatCompletion", {
|
||||
model: "gpt-3.5-turbo",
|
||||
messages: [
|
||||
{
|
||||
role: "user",
|
||||
content: \`Title: \${scenario.title}
|
||||
Body: \${scenario.body}
|
||||
|
||||
Need: \${scenario.need}
|
||||
|
||||
Rate likelihood on 1-3 scale.\`,
|
||||
},
|
||||
],
|
||||
temperature: 0,
|
||||
functions: [
|
||||
{
|
||||
name: "score_post",
|
||||
parameters: {
|
||||
type: "object",
|
||||
properties: {
|
||||
score: {
|
||||
type: "number",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
],
|
||||
function_call: {
|
||||
name: "score_post",
|
||||
},
|
||||
});
|
||||
|
||||
Another example
|
||||
|
||||
Before:
|
||||
|
||||
definePrompt("openai/ChatCompletion", {
|
||||
model: "gpt-3.5-turbo",
|
||||
stream: true,
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: \`Write 'Start experimenting!' in \${scenario.language}\`,
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
After:
|
||||
|
||||
definePrompt("openai/ChatCompletion", {
|
||||
model: "gpt-3.5-turbo",
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: \`Write 'Start experimenting!' in \${scenario.language}\`,
|
||||
},
|
||||
],
|
||||
functions: [
|
||||
{
|
||||
name: "write_in_language",
|
||||
parameters: {
|
||||
type: "object",
|
||||
properties: {
|
||||
text: {
|
||||
type: "string",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
],
|
||||
function_call: {
|
||||
name: "write_in_language",
|
||||
},
|
||||
});
|
||||
|
||||
Add an OpenAI function that takes one or more nested parameters that match the expected output from this prompt.`,
|
||||
},
|
||||
};
|
||||
@@ -1,45 +0,0 @@
|
||||
import { type SupportedModel, type ReplicateLlama2Output } from ".";
|
||||
import { type FrontendModelProvider } from "../types";
|
||||
import { refinementActions } from "./refinementActions";
|
||||
|
||||
const frontendModelProvider: FrontendModelProvider<SupportedModel, ReplicateLlama2Output> = {
|
||||
name: "Replicate Llama2",
|
||||
|
||||
models: {
|
||||
"7b-chat": {
|
||||
name: "LLama 2 7B Chat",
|
||||
contextWindow: 4096,
|
||||
pricePerSecond: 0.0023,
|
||||
speed: "fast",
|
||||
provider: "replicate/llama2",
|
||||
learnMoreUrl: "https://replicate.com/a16z-infra/llama7b-v2-chat",
|
||||
},
|
||||
"13b-chat": {
|
||||
name: "LLama 2 13B Chat",
|
||||
contextWindow: 4096,
|
||||
pricePerSecond: 0.0023,
|
||||
speed: "medium",
|
||||
provider: "replicate/llama2",
|
||||
learnMoreUrl: "https://replicate.com/a16z-infra/llama13b-v2-chat",
|
||||
},
|
||||
"70b-chat": {
|
||||
name: "LLama 2 70B Chat",
|
||||
contextWindow: 4096,
|
||||
pricePerSecond: 0.0032,
|
||||
speed: "slow",
|
||||
provider: "replicate/llama2",
|
||||
learnMoreUrl: "https://replicate.com/replicate/llama70b-v2-chat",
|
||||
},
|
||||
},
|
||||
|
||||
refinementActions,
|
||||
|
||||
normalizeOutput: (output) => {
|
||||
return {
|
||||
type: "text",
|
||||
value: output.join(""),
|
||||
};
|
||||
},
|
||||
};
|
||||
|
||||
export default frontendModelProvider;
|
||||
@@ -1,60 +0,0 @@
|
||||
import { env } from "~/env.mjs";
|
||||
import { type ReplicateLlama2Input, type ReplicateLlama2Output } from ".";
|
||||
import { type CompletionResponse } from "../types";
|
||||
import Replicate from "replicate";
|
||||
|
||||
const replicate = new Replicate({
|
||||
auth: env.REPLICATE_API_TOKEN || "",
|
||||
});
|
||||
|
||||
const modelIds: Record<ReplicateLlama2Input["model"], string> = {
|
||||
"7b-chat": "4f0b260b6a13eb53a6b1891f089d57c08f41003ae79458be5011303d81a394dc",
|
||||
"13b-chat": "2a7f981751ec7fdf87b5b91ad4db53683a98082e9ff7bfd12c8cd5ea85980a52",
|
||||
"70b-chat": "2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1",
|
||||
};
|
||||
|
||||
export async function getCompletion(
|
||||
input: ReplicateLlama2Input,
|
||||
onStream: ((partialOutput: string[]) => void) | null,
|
||||
): Promise<CompletionResponse<ReplicateLlama2Output>> {
|
||||
const start = Date.now();
|
||||
|
||||
const { model, ...rest } = input;
|
||||
|
||||
try {
|
||||
const prediction = await replicate.predictions.create({
|
||||
version: modelIds[model],
|
||||
input: rest,
|
||||
});
|
||||
|
||||
const interval = onStream
|
||||
? // eslint-disable-next-line @typescript-eslint/no-misused-promises
|
||||
setInterval(async () => {
|
||||
const partialPrediction = await replicate.predictions.get(prediction.id);
|
||||
|
||||
if (partialPrediction.output) onStream(partialPrediction.output as ReplicateLlama2Output);
|
||||
}, 500)
|
||||
: null;
|
||||
|
||||
const resp = await replicate.wait(prediction, {});
|
||||
if (interval) clearInterval(interval);
|
||||
|
||||
const timeToComplete = Date.now() - start;
|
||||
|
||||
if (resp.error) throw new Error(resp.error as string);
|
||||
|
||||
return {
|
||||
type: "success",
|
||||
statusCode: 200,
|
||||
value: resp.output as ReplicateLlama2Output,
|
||||
timeToComplete,
|
||||
};
|
||||
} catch (error: unknown) {
|
||||
console.error("ERROR IS", error);
|
||||
return {
|
||||
type: "error",
|
||||
message: (error as Error).message,
|
||||
autoRetry: true,
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -1,81 +0,0 @@
|
||||
import { type ModelProvider } from "../types";
|
||||
import frontendModelProvider from "./frontend";
|
||||
import { getCompletion } from "./getCompletion";
|
||||
|
||||
const supportedModels = ["7b-chat", "13b-chat", "70b-chat"] as const;
|
||||
|
||||
export type SupportedModel = (typeof supportedModels)[number];
|
||||
|
||||
export type ReplicateLlama2Input = {
|
||||
model: SupportedModel;
|
||||
prompt: string;
|
||||
max_length?: number;
|
||||
temperature?: number;
|
||||
top_p?: number;
|
||||
repetition_penalty?: number;
|
||||
debug?: boolean;
|
||||
};
|
||||
|
||||
export type ReplicateLlama2Output = string[];
|
||||
|
||||
export type ReplicateLlama2Provider = ModelProvider<
|
||||
SupportedModel,
|
||||
ReplicateLlama2Input,
|
||||
ReplicateLlama2Output
|
||||
>;
|
||||
|
||||
const modelProvider: ReplicateLlama2Provider = {
|
||||
getModel: (input) => {
|
||||
if (supportedModels.includes(input.model)) return input.model;
|
||||
|
||||
return null;
|
||||
},
|
||||
inputSchema: {
|
||||
type: "object",
|
||||
properties: {
|
||||
model: {
|
||||
type: "string",
|
||||
enum: supportedModels as unknown as string[],
|
||||
},
|
||||
system_prompt: {
|
||||
type: "string",
|
||||
description:
|
||||
"System prompt to send to Llama v2. This is prepended to the prompt and helps guide system behavior.",
|
||||
},
|
||||
prompt: {
|
||||
type: "string",
|
||||
description: "Prompt to send to Llama v2.",
|
||||
},
|
||||
max_new_tokens: {
|
||||
type: "number",
|
||||
description:
|
||||
"Maximum number of tokens to generate. A word is generally 2-3 tokens (minimum: 1)",
|
||||
},
|
||||
temperature: {
|
||||
type: "number",
|
||||
description:
|
||||
"Adjusts randomness of outputs, 0.1 is a good starting value. (minimum: 0.01; maximum: 5)",
|
||||
},
|
||||
top_p: {
|
||||
type: "number",
|
||||
description:
|
||||
"When decoding text, samples from the top p percentage of most likely tokens; lower to ignore less likely tokens (minimum: 0.01; maximum: 1)",
|
||||
},
|
||||
repetition_penalty: {
|
||||
type: "number",
|
||||
description:
|
||||
"Penalty for repeated words in generated text; 1 is no penalty, values greater than 1 discourage repetition, less than 1 encourage it. (minimum: 0.01; maximum: 5)",
|
||||
},
|
||||
debug: {
|
||||
type: "boolean",
|
||||
description: "provide debugging output in logs",
|
||||
},
|
||||
},
|
||||
required: ["model", "prompt"],
|
||||
},
|
||||
canStream: true,
|
||||
getCompletion,
|
||||
...frontendModelProvider,
|
||||
};
|
||||
|
||||
export default modelProvider;
|
||||
@@ -1,3 +0,0 @@
|
||||
import { type RefinementAction } from "../types";
|
||||
|
||||
export const refinementActions: Record<string, RefinementAction> = {};
|
||||
@@ -1,72 +0,0 @@
|
||||
import { type JSONSchema4 } from "json-schema";
|
||||
import { type IconType } from "react-icons";
|
||||
import { type JsonValue } from "type-fest";
|
||||
import { z } from "zod";
|
||||
|
||||
export const ZodSupportedProvider = z.union([
|
||||
z.literal("openai/ChatCompletion"),
|
||||
z.literal("replicate/llama2"),
|
||||
z.literal("anthropic/completion"),
|
||||
]);
|
||||
|
||||
export type SupportedProvider = z.infer<typeof ZodSupportedProvider>;
|
||||
|
||||
export type Model = {
|
||||
name: string;
|
||||
contextWindow: number;
|
||||
promptTokenPrice?: number;
|
||||
completionTokenPrice?: number;
|
||||
pricePerSecond?: number;
|
||||
speed: "fast" | "medium" | "slow";
|
||||
provider: SupportedProvider;
|
||||
description?: string;
|
||||
learnMoreUrl?: string;
|
||||
apiDocsUrl?: string;
|
||||
};
|
||||
|
||||
export type ProviderModel = { provider: z.infer<typeof ZodSupportedProvider>; model: string };
|
||||
|
||||
export type RefinementAction = { icon?: IconType; description: string; instructions: string };
|
||||
|
||||
export type FrontendModelProvider<SupportedModels extends string, OutputSchema> = {
|
||||
name: string;
|
||||
models: Record<SupportedModels, Model>;
|
||||
refinementActions?: Record<string, RefinementAction>;
|
||||
|
||||
normalizeOutput: (output: OutputSchema) => NormalizedOutput;
|
||||
};
|
||||
|
||||
export type CompletionResponse<T> =
|
||||
| { type: "error"; message: string; autoRetry: boolean; statusCode?: number }
|
||||
| {
|
||||
type: "success";
|
||||
value: T;
|
||||
timeToComplete: number;
|
||||
statusCode: number;
|
||||
promptTokens?: number;
|
||||
completionTokens?: number;
|
||||
cost?: number;
|
||||
};
|
||||
|
||||
export type ModelProvider<SupportedModels extends string, InputSchema, OutputSchema> = {
|
||||
getModel: (input: InputSchema) => SupportedModels | null;
|
||||
canStream: boolean;
|
||||
inputSchema: JSONSchema4;
|
||||
getCompletion: (
|
||||
input: InputSchema,
|
||||
onStream: ((partialOutput: OutputSchema) => void) | null,
|
||||
) => Promise<CompletionResponse<OutputSchema>>;
|
||||
|
||||
// This is just a convenience for type inference, don't use it at runtime
|
||||
_outputSchema?: OutputSchema | null;
|
||||
} & FrontendModelProvider<SupportedModels, OutputSchema>;
|
||||
|
||||
export type NormalizedOutput =
|
||||
| {
|
||||
type: "text";
|
||||
value: string;
|
||||
}
|
||||
| {
|
||||
type: "json";
|
||||
value: JsonValue;
|
||||
};
|
||||
@@ -1,50 +0,0 @@
|
||||
import { type Session } from "next-auth";
|
||||
import { SessionProvider } from "next-auth/react";
|
||||
import { type AppType } from "next/app";
|
||||
import { api } from "~/utils/api";
|
||||
import Favicon from "~/components/Favicon";
|
||||
import Head from "next/head";
|
||||
import { ChakraThemeProvider } from "~/theme/ChakraThemeProvider";
|
||||
import { SyncAppStore } from "~/state/sync";
|
||||
import NextAdapterApp from "next-query-params/app";
|
||||
import { QueryParamProvider } from "use-query-params";
|
||||
import { SessionIdentifier } from "~/utils/analytics/clientAnalytics";
|
||||
|
||||
const MyApp: AppType<{ session: Session | null }> = ({
|
||||
Component,
|
||||
pageProps: { session, ...pageProps },
|
||||
}) => {
|
||||
return (
|
||||
<>
|
||||
<Head>
|
||||
<meta
|
||||
name="viewport"
|
||||
content="width=device-width, initial-scale=1, maximum-scale=1, user-scalable=0"
|
||||
/>
|
||||
<meta name="og:title" content="OpenPipe: Open-Source Lab for LLMs" key="title" />
|
||||
<meta
|
||||
name="og:description"
|
||||
content="OpenPipe is a powerful playground for quickly optimizing performance, cost, and speed across models."
|
||||
key="description"
|
||||
/>
|
||||
<meta name="og:image" content="/og.png" key="og-image" />
|
||||
<meta property="og:image:height" content="630" />
|
||||
<meta property="og:image:width" content="1200" />
|
||||
<meta name="twitter:card" content="summary_large_image" />
|
||||
<meta name="twitter:image" content="/og.png" />
|
||||
</Head>
|
||||
<SessionProvider session={session}>
|
||||
<SyncAppStore />
|
||||
<Favicon />
|
||||
<SessionIdentifier />
|
||||
<ChakraThemeProvider>
|
||||
<QueryParamProvider adapter={NextAdapterApp}>
|
||||
<Component {...pageProps} />
|
||||
</QueryParamProvider>
|
||||
</ChakraThemeProvider>
|
||||
</SessionProvider>
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
export default api.withTRPC(MyApp);
|
||||
@@ -1,81 +0,0 @@
|
||||
import { ImageResponse } from "@vercel/og";
|
||||
import { type NextApiRequest, type NextApiResponse } from "next";
|
||||
|
||||
export const config = {
|
||||
runtime: "experimental-edge",
|
||||
};
|
||||
|
||||
const inconsolataRegularFontP = fetch(
|
||||
new URL("../../../../public/fonts/Inconsolata_SemiExpanded-Medium.ttf", import.meta.url),
|
||||
).then((res) => res.arrayBuffer());
|
||||
|
||||
const OgImage = async (req: NextApiRequest, _res: NextApiResponse) => {
|
||||
// @ts-expect-error - nextUrl is not defined on NextApiRequest for some reason
|
||||
const searchParams = req.nextUrl?.searchParams as URLSearchParams;
|
||||
const experimentLabel = searchParams.get("experimentLabel");
|
||||
const variantsCount = searchParams.get("variantsCount");
|
||||
const scenariosCount = searchParams.get("scenariosCount");
|
||||
|
||||
const inconsolataRegularFont = await inconsolataRegularFontP;
|
||||
|
||||
return new ImageResponse(
|
||||
(
|
||||
<div
|
||||
style={{
|
||||
width: "100%",
|
||||
height: "100%",
|
||||
display: "flex",
|
||||
flexDirection: "column",
|
||||
alignItems: "center",
|
||||
justifyContent: "center",
|
||||
fontSize: 48,
|
||||
padding: "48px",
|
||||
background: "white",
|
||||
position: "relative",
|
||||
}}
|
||||
>
|
||||
<div
|
||||
style={{
|
||||
position: "absolute",
|
||||
top: 0,
|
||||
left: 0,
|
||||
display: "flex",
|
||||
alignItems: "center",
|
||||
padding: 48,
|
||||
}}
|
||||
>
|
||||
{/* eslint-disable-next-line @next/next/no-img-element */}
|
||||
<img
|
||||
src="https://app.openpipe.ai/logo.svg"
|
||||
alt="OpenPipe Logo"
|
||||
height={100}
|
||||
width={120}
|
||||
/>
|
||||
<div style={{ marginLeft: 24, fontSize: 64, fontFamily: "Inconsolata" }}>OpenPipe</div>
|
||||
</div>
|
||||
|
||||
<div style={{ display: "flex", fontSize: 72, marginTop: 108 }}>{experimentLabel}</div>
|
||||
<div style={{ display: "flex", flexDirection: "column", marginTop: 36 }}>
|
||||
<div style={{ display: "flex" }}>
|
||||
<span style={{ width: 320 }}>Variants:</span> {variantsCount}
|
||||
</div>
|
||||
<div style={{ display: "flex", marginTop: 24 }}>
|
||||
<span style={{ width: 320 }}>Scenarios:</span> {scenariosCount}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
),
|
||||
{
|
||||
fonts: [
|
||||
{
|
||||
name: "inconsolata",
|
||||
data: inconsolataRegularFont,
|
||||
style: "normal",
|
||||
weight: 400,
|
||||
},
|
||||
],
|
||||
},
|
||||
);
|
||||
};
|
||||
|
||||
export default OgImage;
|
||||
@@ -1,6 +0,0 @@
|
||||
// A faulty API route to test Sentry's error monitoring
|
||||
// @ts-expect-error just a test file, don't care about types
|
||||
export default function handler(_req, res) {
|
||||
throw new Error("Sentry Example API Route Error");
|
||||
res.status(200).json({ name: "John Doe" });
|
||||
}
|
||||
@@ -1,99 +0,0 @@
|
||||
import {
|
||||
Box,
|
||||
Breadcrumb,
|
||||
BreadcrumbItem,
|
||||
Center,
|
||||
Flex,
|
||||
Icon,
|
||||
Input,
|
||||
VStack,
|
||||
} from "@chakra-ui/react";
|
||||
import Link from "next/link";
|
||||
|
||||
import { useRouter } from "next/router";
|
||||
import { useState, useEffect } from "react";
|
||||
import { RiDatabase2Line } from "react-icons/ri";
|
||||
import AppShell from "~/components/nav/AppShell";
|
||||
import { api } from "~/utils/api";
|
||||
import { useDataset, useHandledAsyncCallback } from "~/utils/hooks";
|
||||
import DatasetEntriesTable from "~/components/datasets/DatasetEntriesTable";
|
||||
import { DatasetHeaderButtons } from "~/components/datasets/DatasetHeaderButtons/DatasetHeaderButtons";
|
||||
|
||||
export default function Dataset() {
|
||||
const router = useRouter();
|
||||
const utils = api.useContext();
|
||||
|
||||
const dataset = useDataset();
|
||||
const datasetId = router.query.id as string;
|
||||
|
||||
const [name, setName] = useState(dataset.data?.name || "");
|
||||
useEffect(() => {
|
||||
setName(dataset.data?.name || "");
|
||||
}, [dataset.data?.name]);
|
||||
|
||||
const updateMutation = api.datasets.update.useMutation();
|
||||
const [onSaveName] = useHandledAsyncCallback(async () => {
|
||||
if (name && name !== dataset.data?.name && dataset.data?.id) {
|
||||
await updateMutation.mutateAsync({
|
||||
id: dataset.data.id,
|
||||
updates: { name: name },
|
||||
});
|
||||
await Promise.all([utils.datasets.list.invalidate(), utils.datasets.get.invalidate()]);
|
||||
}
|
||||
}, [updateMutation, dataset.data?.id, dataset.data?.name, name]);
|
||||
|
||||
if (!dataset.isLoading && !dataset.data) {
|
||||
return (
|
||||
<AppShell title="Dataset not found">
|
||||
<Center h="100%">
|
||||
<div>Dataset not found 😕</div>
|
||||
</Center>
|
||||
</AppShell>
|
||||
);
|
||||
}
|
||||
|
||||
return (
|
||||
<AppShell title={dataset.data?.name}>
|
||||
<VStack h="full">
|
||||
<Flex
|
||||
pl={4}
|
||||
pr={8}
|
||||
py={2}
|
||||
w="full"
|
||||
direction={{ base: "column", sm: "row" }}
|
||||
alignItems={{ base: "flex-start", sm: "center" }}
|
||||
>
|
||||
<Breadcrumb flex={1} mt={1}>
|
||||
<BreadcrumbItem>
|
||||
<Link href="/data">
|
||||
<Flex alignItems="center" _hover={{ textDecoration: "underline" }}>
|
||||
<Icon as={RiDatabase2Line} boxSize={4} mr={2} /> Datasets
|
||||
</Flex>
|
||||
</Link>
|
||||
</BreadcrumbItem>
|
||||
<BreadcrumbItem isCurrentPage>
|
||||
<Input
|
||||
size="sm"
|
||||
value={name}
|
||||
onChange={(e) => setName(e.target.value)}
|
||||
onBlur={onSaveName}
|
||||
borderWidth={1}
|
||||
borderColor="transparent"
|
||||
fontSize={16}
|
||||
px={0}
|
||||
minW={{ base: 100, lg: 300 }}
|
||||
flex={1}
|
||||
_hover={{ borderColor: "gray.300" }}
|
||||
_focus={{ borderColor: "blue.500", outline: "none" }}
|
||||
/>
|
||||
</BreadcrumbItem>
|
||||
</Breadcrumb>
|
||||
<DatasetHeaderButtons />
|
||||
</Flex>
|
||||
<Box w="full" overflowX="auto" flex={1} pl={4} pr={8} pt={8} pb={16}>
|
||||
{datasetId && <DatasetEntriesTable />}
|
||||
</Box>
|
||||
</VStack>
|
||||
</AppShell>
|
||||
);
|
||||
}
|
||||
@@ -1,83 +0,0 @@
|
||||
import {
|
||||
SimpleGrid,
|
||||
Icon,
|
||||
VStack,
|
||||
Breadcrumb,
|
||||
BreadcrumbItem,
|
||||
Flex,
|
||||
Center,
|
||||
Text,
|
||||
Link,
|
||||
HStack,
|
||||
} from "@chakra-ui/react";
|
||||
import AppShell from "~/components/nav/AppShell";
|
||||
import { api } from "~/utils/api";
|
||||
import { signIn, useSession } from "next-auth/react";
|
||||
import { RiDatabase2Line } from "react-icons/ri";
|
||||
import {
|
||||
DatasetCard,
|
||||
DatasetCardSkeleton,
|
||||
NewDatasetCard,
|
||||
} from "~/components/datasets/DatasetCard";
|
||||
|
||||
export default function DatasetsPage() {
|
||||
const datasets = api.datasets.list.useQuery();
|
||||
|
||||
const user = useSession().data;
|
||||
const authLoading = useSession().status === "loading";
|
||||
|
||||
if (user === null || authLoading) {
|
||||
return (
|
||||
<AppShell title="Data">
|
||||
<Center h="100%">
|
||||
{!authLoading && (
|
||||
<Text>
|
||||
<Link
|
||||
onClick={() => {
|
||||
signIn("github").catch(console.error);
|
||||
}}
|
||||
textDecor="underline"
|
||||
>
|
||||
Sign in
|
||||
</Link>{" "}
|
||||
to view or create new datasets!
|
||||
</Text>
|
||||
)}
|
||||
</Center>
|
||||
</AppShell>
|
||||
);
|
||||
}
|
||||
|
||||
return (
|
||||
<AppShell title="Data">
|
||||
<VStack alignItems={"flex-start"} px={4} py={2}>
|
||||
<HStack minH={8} align="center" pt={2}>
|
||||
<Breadcrumb flex={1}>
|
||||
<BreadcrumbItem>
|
||||
<Flex alignItems="center">
|
||||
<Icon as={RiDatabase2Line} boxSize={4} mr={2} /> Datasets
|
||||
</Flex>
|
||||
</BreadcrumbItem>
|
||||
</Breadcrumb>
|
||||
</HStack>
|
||||
<SimpleGrid w="full" columns={{ base: 1, md: 2, lg: 3, xl: 4 }} spacing={8} p="4">
|
||||
<NewDatasetCard />
|
||||
{datasets.data && !datasets.isLoading ? (
|
||||
datasets?.data?.map((dataset) => (
|
||||
<DatasetCard
|
||||
key={dataset.id}
|
||||
dataset={{ ...dataset, numEntries: dataset._count.datasetEntries }}
|
||||
/>
|
||||
))
|
||||
) : (
|
||||
<>
|
||||
<DatasetCardSkeleton />
|
||||
<DatasetCardSkeleton />
|
||||
<DatasetCardSkeleton />
|
||||
</>
|
||||
)}
|
||||
</SimpleGrid>
|
||||
</VStack>
|
||||
</AppShell>
|
||||
);
|
||||
}
|
||||
@@ -1,155 +0,0 @@
|
||||
import {
|
||||
Box,
|
||||
Breadcrumb,
|
||||
BreadcrumbItem,
|
||||
Center,
|
||||
Flex,
|
||||
Icon,
|
||||
Input,
|
||||
Text,
|
||||
VStack,
|
||||
} from "@chakra-ui/react";
|
||||
import Link from "next/link";
|
||||
|
||||
import { useRouter } from "next/router";
|
||||
import { useState, useEffect } from "react";
|
||||
import { RiFlaskLine } from "react-icons/ri";
|
||||
import OutputsTable from "~/components/OutputsTable";
|
||||
import ExperimentSettingsDrawer from "~/components/ExperimentSettingsDrawer/ExperimentSettingsDrawer";
|
||||
import AppShell from "~/components/nav/AppShell";
|
||||
import { api } from "~/utils/api";
|
||||
import { useExperiment, useHandledAsyncCallback } from "~/utils/hooks";
|
||||
import { useAppStore } from "~/state/store";
|
||||
import { useSyncVariantEditor } from "~/state/sync";
|
||||
import { ExperimentHeaderButtons } from "~/components/experiments/ExperimentHeaderButtons/ExperimentHeaderButtons";
|
||||
import Head from "next/head";
|
||||
|
||||
// TODO: import less to fix deployment with server side props
|
||||
// export const getServerSideProps = async (context: GetServerSidePropsContext<{ id: string }>) => {
|
||||
// const experimentId = context.params?.id as string;
|
||||
|
||||
// const helpers = createServerSideHelpers({
|
||||
// router: appRouter,
|
||||
// ctx: createInnerTRPCContext({ session: null }),
|
||||
// transformer: superjson, // optional - adds superjson serialization
|
||||
// });
|
||||
|
||||
// // prefetch query
|
||||
// await helpers.experiments.stats.prefetch({ id: experimentId });
|
||||
|
||||
// return {
|
||||
// props: {
|
||||
// trpcState: helpers.dehydrate(),
|
||||
// },
|
||||
// };
|
||||
// };
|
||||
|
||||
export default function Experiment() {
|
||||
const router = useRouter();
|
||||
const utils = api.useContext();
|
||||
useSyncVariantEditor();
|
||||
|
||||
const experiment = useExperiment();
|
||||
const experimentStats = api.experiments.stats.useQuery(
|
||||
{ id: router.query.id as string },
|
||||
{
|
||||
enabled: !!router.query.id,
|
||||
},
|
||||
);
|
||||
const stats = experimentStats.data;
|
||||
|
||||
useEffect(() => {
|
||||
useAppStore.getState().sharedVariantEditor.loadMonaco().catch(console.error);
|
||||
});
|
||||
|
||||
const [label, setLabel] = useState(experiment.data?.label || "");
|
||||
useEffect(() => {
|
||||
setLabel(experiment.data?.label || "");
|
||||
}, [experiment.data?.label]);
|
||||
|
||||
const updateMutation = api.experiments.update.useMutation();
|
||||
const [onSaveLabel] = useHandledAsyncCallback(async () => {
|
||||
if (label && label !== experiment.data?.label && experiment.data?.id) {
|
||||
await updateMutation.mutateAsync({
|
||||
id: experiment.data.id,
|
||||
updates: { label: label },
|
||||
});
|
||||
await Promise.all([utils.experiments.list.invalidate(), utils.experiments.get.invalidate()]);
|
||||
}
|
||||
}, [updateMutation, experiment.data?.id, experiment.data?.label, label]);
|
||||
|
||||
if (!experiment.isLoading && !experiment.data) {
|
||||
return (
|
||||
<AppShell title="Experiment not found">
|
||||
<Center h="100%">
|
||||
<div>Experiment not found 😕</div>
|
||||
</Center>
|
||||
</AppShell>
|
||||
);
|
||||
}
|
||||
|
||||
const canModify = experiment.data?.access.canModify ?? false;
|
||||
|
||||
return (
|
||||
<>
|
||||
{stats && (
|
||||
<Head>
|
||||
<meta property="og:title" content={stats.experimentLabel} key="title" />
|
||||
<meta
|
||||
property="og:image"
|
||||
content={`/api/experiments/og-image?experimentLabel=${stats.experimentLabel}&variantsCount=${stats.promptVariantCount}&scenariosCount=${stats.testScenarioCount}`}
|
||||
key="og-image"
|
||||
/>
|
||||
</Head>
|
||||
)}
|
||||
<AppShell title={experiment.data?.label}>
|
||||
<VStack h="full">
|
||||
<Flex
|
||||
px={4}
|
||||
py={2}
|
||||
w="full"
|
||||
direction={{ base: "column", sm: "row" }}
|
||||
alignItems={{ base: "flex-start", sm: "center" }}
|
||||
>
|
||||
<Breadcrumb flex={1}>
|
||||
<BreadcrumbItem>
|
||||
<Link href="/experiments">
|
||||
<Flex alignItems="center" _hover={{ textDecoration: "underline" }}>
|
||||
<Icon as={RiFlaskLine} boxSize={4} mr={2} /> Experiments
|
||||
</Flex>
|
||||
</Link>
|
||||
</BreadcrumbItem>
|
||||
<BreadcrumbItem isCurrentPage>
|
||||
{canModify ? (
|
||||
<Input
|
||||
size="sm"
|
||||
value={label}
|
||||
onChange={(e) => setLabel(e.target.value)}
|
||||
onBlur={onSaveLabel}
|
||||
borderWidth={1}
|
||||
borderColor="transparent"
|
||||
fontSize={16}
|
||||
px={0}
|
||||
minW={{ base: 100, lg: 300 }}
|
||||
flex={1}
|
||||
_hover={{ borderColor: "gray.300" }}
|
||||
_focus={{ borderColor: "blue.500", outline: "none" }}
|
||||
/>
|
||||
) : (
|
||||
<Text fontSize={16} px={0} minW={{ base: 100, lg: 300 }} flex={1}>
|
||||
{experiment.data?.label}
|
||||
</Text>
|
||||
)}
|
||||
</BreadcrumbItem>
|
||||
</Breadcrumb>
|
||||
<ExperimentHeaderButtons />
|
||||
</Flex>
|
||||
<ExperimentSettingsDrawer />
|
||||
<Box w="100%" overflowX="auto" flex={1}>
|
||||
<OutputsTable experimentId={router.query.id as string | undefined} />
|
||||
</Box>
|
||||
</VStack>
|
||||
</AppShell>
|
||||
</>
|
||||
);
|
||||
}
|
||||
@@ -1,84 +0,0 @@
|
||||
import Head from "next/head";
|
||||
import * as Sentry from "@sentry/nextjs";
|
||||
|
||||
export default function Home() {
|
||||
return (
|
||||
<div>
|
||||
<Head>
|
||||
<title>Sentry Onboarding</title>
|
||||
<meta name="description" content="Test Sentry for your Next.js app!" />
|
||||
</Head>
|
||||
|
||||
<main
|
||||
style={{
|
||||
minHeight: "100vh",
|
||||
display: "flex",
|
||||
flexDirection: "column",
|
||||
justifyContent: "center",
|
||||
alignItems: "center",
|
||||
}}
|
||||
>
|
||||
<h1 style={{ fontSize: "4rem", margin: "14px 0" }}>
|
||||
<svg
|
||||
style={{
|
||||
height: "1em",
|
||||
}}
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
viewBox="0 0 200 44"
|
||||
>
|
||||
<path
|
||||
fill="currentColor"
|
||||
d="M124.32,28.28,109.56,9.22h-3.68V34.77h3.73V15.19l15.18,19.58h3.26V9.22h-3.73ZM87.15,23.54h13.23V20.22H87.14V12.53h14.93V9.21H83.34V34.77h18.92V31.45H87.14ZM71.59,20.3h0C66.44,19.06,65,18.08,65,15.7c0-2.14,1.89-3.59,4.71-3.59a12.06,12.06,0,0,1,7.07,2.55l2-2.83a14.1,14.1,0,0,0-9-3c-5.06,0-8.59,3-8.59,7.27,0,4.6,3,6.19,8.46,7.52C74.51,24.74,76,25.78,76,28.11s-2,3.77-5.09,3.77a12.34,12.34,0,0,1-8.3-3.26l-2.25,2.69a15.94,15.94,0,0,0,10.42,3.85c5.48,0,9-2.95,9-7.51C79.75,23.79,77.47,21.72,71.59,20.3ZM195.7,9.22l-7.69,12-7.64-12h-4.46L186,24.67V34.78h3.84V24.55L200,9.22Zm-64.63,3.46h8.37v22.1h3.84V12.68h8.37V9.22H131.08ZM169.41,24.8c3.86-1.07,6-3.77,6-7.63,0-4.91-3.59-8-9.38-8H154.67V34.76h3.8V25.58h6.45l6.48,9.2h4.44l-7-9.82Zm-10.95-2.5V12.6h7.17c3.74,0,5.88,1.77,5.88,4.84s-2.29,4.86-5.84,4.86Z M29,2.26a4.67,4.67,0,0,0-8,0L14.42,13.53A32.21,32.21,0,0,1,32.17,40.19H27.55A27.68,27.68,0,0,0,12.09,17.47L6,28a15.92,15.92,0,0,1,9.23,12.17H4.62A.76.76,0,0,1,4,39.06l2.94-5a10.74,10.74,0,0,0-3.36-1.9l-2.91,5a4.54,4.54,0,0,0,1.69,6.24A4.66,4.66,0,0,0,4.62,44H19.15a19.4,19.4,0,0,0-8-17.31l2.31-4A23.87,23.87,0,0,1,23.76,44H36.07a35.88,35.88,0,0,0-16.41-31.8l4.67-8a.77.77,0,0,1,1.05-.27c.53.29,20.29,34.77,20.66,35.17a.76.76,0,0,1-.68,1.13H40.6q.09,1.91,0,3.81h4.78A4.59,4.59,0,0,0,50,39.43a4.49,4.49,0,0,0-.62-2.28Z"
|
||||
></path>
|
||||
</svg>
|
||||
</h1>
|
||||
|
||||
<p>Get started by sending us a sample error:</p>
|
||||
<button
|
||||
type="button"
|
||||
style={{
|
||||
padding: "12px",
|
||||
cursor: "pointer",
|
||||
backgroundColor: "#AD6CAA",
|
||||
borderRadius: "4px",
|
||||
border: "none",
|
||||
color: "white",
|
||||
fontSize: "14px",
|
||||
margin: "18px",
|
||||
}}
|
||||
onClick={async () => {
|
||||
const transaction = Sentry.startTransaction({
|
||||
name: "Example Frontend Transaction",
|
||||
});
|
||||
|
||||
Sentry.configureScope((scope) => {
|
||||
scope.setSpan(transaction);
|
||||
});
|
||||
|
||||
try {
|
||||
const res = await fetch("/api/sentry-example-api");
|
||||
if (!res.ok) {
|
||||
throw new Error("Sentry Example Frontend Error");
|
||||
}
|
||||
} finally {
|
||||
transaction.finish();
|
||||
}
|
||||
}}
|
||||
>
|
||||
Throw error!
|
||||
</button>
|
||||
|
||||
<p>
|
||||
Next, look for the error on the{" "}
|
||||
<a href="https://openpipe.sentry.io/issues/?project=4505642011394048">Issues Page</a>.
|
||||
</p>
|
||||
<p style={{ marginTop: "24px" }}>
|
||||
For more information, see{" "}
|
||||
<a href="https://docs.sentry.io/platforms/javascript/guides/nextjs/">
|
||||
https://docs.sentry.io/platforms/javascript/guides/nextjs/
|
||||
</a>
|
||||
</p>
|
||||
</main>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
@@ -1,15 +0,0 @@
|
||||
import { type GetServerSideProps } from "next";
|
||||
|
||||
// eslint-disable-next-line @typescript-eslint/require-await
|
||||
export const getServerSideProps: GetServerSideProps = async () => {
|
||||
return {
|
||||
redirect: {
|
||||
destination: "/world-champs/signup",
|
||||
permanent: false,
|
||||
},
|
||||
};
|
||||
};
|
||||
|
||||
export default function WorldChamps() {
|
||||
return null;
|
||||
}
|
||||
@@ -1,265 +0,0 @@
|
||||
import {
|
||||
Box,
|
||||
type BoxProps,
|
||||
Button,
|
||||
DarkMode,
|
||||
GlobalStyle,
|
||||
HStack,
|
||||
Heading,
|
||||
Icon,
|
||||
Link,
|
||||
Table,
|
||||
Tbody,
|
||||
Td,
|
||||
Text,
|
||||
type TextProps,
|
||||
Th,
|
||||
Tr,
|
||||
VStack,
|
||||
useInterval,
|
||||
Image,
|
||||
Flex,
|
||||
} from "@chakra-ui/react";
|
||||
import { signIn, useSession } from "next-auth/react";
|
||||
import Head from "next/head";
|
||||
import { useCallback, useState } from "react";
|
||||
import { BsGithub } from "react-icons/bs";
|
||||
import UserMenu from "~/components/nav/UserMenu";
|
||||
import { api } from "~/utils/api";
|
||||
import dayjs from "~/utils/dayjs";
|
||||
import { useHandledAsyncCallback } from "~/utils/hooks";
|
||||
import GitHubButton from "react-github-btn";
|
||||
|
||||
const TopNavbar = () => (
|
||||
<HStack px={4} py={2} align="center" justify="center">
|
||||
<HStack
|
||||
as={Link}
|
||||
href="/"
|
||||
_hover={{ textDecoration: "none" }}
|
||||
spacing={0}
|
||||
py={2}
|
||||
pr={16}
|
||||
flex={1}
|
||||
sx={{
|
||||
".widget": {
|
||||
display: "block",
|
||||
},
|
||||
}}
|
||||
>
|
||||
<Image src="/logo.svg" alt="" boxSize={6} mr={4} />
|
||||
<Heading size="md" fontFamily="inconsolata, monospace">
|
||||
OpenPipe
|
||||
</Heading>
|
||||
</HStack>
|
||||
<Box pt="6px">
|
||||
<GitHubButton
|
||||
href="https://github.com/openpipe/openpipe"
|
||||
data-color-scheme="no-preference: dark; light: dark; dark: dark;"
|
||||
data-size="large"
|
||||
aria-label="Follow @openpipe on GitHub"
|
||||
>
|
||||
Github
|
||||
</GitHubButton>
|
||||
</Box>
|
||||
</HStack>
|
||||
);
|
||||
|
||||
// Shows how long until the competition starts. Refreshes every second
|
||||
function CountdownTimer(props: { date: Date } & TextProps) {
|
||||
const [now, setNow] = useState(dayjs());
|
||||
|
||||
useInterval(() => {
|
||||
setNow(dayjs());
|
||||
}, 1000);
|
||||
|
||||
const { date, ...rest } = props;
|
||||
|
||||
const kickoff = dayjs(date);
|
||||
const diff = kickoff.diff(now, "second");
|
||||
const days = Math.floor(diff / 86400);
|
||||
const hours = Math.floor((diff % 86400) / 3600);
|
||||
const minutes = Math.floor((diff % 3600) / 60);
|
||||
const seconds = Math.floor(diff % 60);
|
||||
|
||||
return (
|
||||
<Text {...rest} suppressHydrationWarning>
|
||||
<Text as="span" fontWeight="bold">
|
||||
Kickoff in
|
||||
</Text>{" "}
|
||||
{days}d {hours}h {minutes}m {seconds}s
|
||||
</Text>
|
||||
);
|
||||
}
|
||||
|
||||
function ApplicationStatus(props: BoxProps) {
|
||||
const user = useSession().data;
|
||||
const entrant = api.worldChamps.userStatus.useQuery().data;
|
||||
const applyMutation = api.worldChamps.apply.useMutation();
|
||||
|
||||
const utils = api.useContext();
|
||||
|
||||
const [onSignIn] = useHandledAsyncCallback(async () => {
|
||||
await signIn("github");
|
||||
}, []);
|
||||
|
||||
const [onApply] = useHandledAsyncCallback(async () => {
|
||||
await applyMutation.mutateAsync();
|
||||
await utils.worldChamps.userStatus.invalidate();
|
||||
}, []);
|
||||
|
||||
const Wrapper = useCallback(
|
||||
(wrapperProps: BoxProps) => (
|
||||
<Box {...props} {...wrapperProps} minH="120px" alignItems="center" justifyItems="center" />
|
||||
),
|
||||
[props],
|
||||
);
|
||||
|
||||
if (user === null) {
|
||||
return (
|
||||
<Wrapper>
|
||||
<Button onClick={onSignIn} colorScheme="orange" leftIcon={<Icon as={BsGithub} />}>
|
||||
Connect GitHub to apply
|
||||
</Button>
|
||||
</Wrapper>
|
||||
);
|
||||
} else if (user) {
|
||||
return (
|
||||
<Wrapper>
|
||||
<Flex flexDirection={{ base: "column", md: "row" }} alignItems="center">
|
||||
<UserMenu
|
||||
user={user}
|
||||
borderRadius={2}
|
||||
borderColor={"gray.700"}
|
||||
borderWidth={1}
|
||||
pr={6}
|
||||
mr={{ base: 0, md: 8 }}
|
||||
mb={{ base: 8, md: 0 }}
|
||||
/>
|
||||
<Box flex={1}>
|
||||
{entrant?.approved ? (
|
||||
<Text fontSize="sm">
|
||||
You're accepted! We'll send you more details before August 14th.
|
||||
</Text>
|
||||
) : entrant ? (
|
||||
<Text fontSize="sm">
|
||||
✅ Application submitted successfully. We'll notify you by email before August 14th.{" "}
|
||||
<Link
|
||||
href="https://github.com/openpipe/openpipe"
|
||||
isExternal
|
||||
textDecor="underline"
|
||||
fontWeight="bold"
|
||||
>
|
||||
Star our Github ⭐
|
||||
</Link>{" "}
|
||||
for updates while you wait!
|
||||
</Text>
|
||||
) : (
|
||||
<Button onClick={onApply} colorScheme="orange">
|
||||
Apply to compete
|
||||
</Button>
|
||||
)}
|
||||
</Box>
|
||||
</Flex>
|
||||
</Wrapper>
|
||||
);
|
||||
}
|
||||
|
||||
return <Wrapper />;
|
||||
}
|
||||
|
||||
export default function Signup() {
|
||||
return (
|
||||
<DarkMode>
|
||||
<GlobalStyle />
|
||||
|
||||
<Head>
|
||||
<title>🏆 Prompt Engineering World Championships</title>
|
||||
<meta property="og:title" content="🏆 Prompt Engineering World Championships" key="title" />
|
||||
<meta
|
||||
property="og:description"
|
||||
content="Think you have what it takes to be the best? Compete with the world's top prompt engineers and see where you rank!"
|
||||
key="description"
|
||||
/>
|
||||
</Head>
|
||||
|
||||
<Box color="gray.200" minH="100vh" w="full">
|
||||
<TopNavbar />
|
||||
<VStack mx="auto" py={24} maxW="2xl" px={4} align="center" fontSize="lg">
|
||||
<Heading size="lg" textAlign="center">
|
||||
🏆 Prompt Engineering World Championships
|
||||
</Heading>
|
||||
<CountdownTimer
|
||||
date={new Date("2023-08-14T00:00:00Z")}
|
||||
fontSize="2xl"
|
||||
alignSelf="center"
|
||||
color="gray.500"
|
||||
/>
|
||||
|
||||
<ApplicationStatus py={8} alignSelf="center" />
|
||||
|
||||
<Text fontSize="lg" textAlign="left">
|
||||
Think you have what it takes to be the best? Compete with the world's top prompt
|
||||
engineers and see where you rank!
|
||||
</Text>
|
||||
|
||||
<Heading size="lg" pt={12} alignSelf="left">
|
||||
Event Details
|
||||
</Heading>
|
||||
<Table variant="simple">
|
||||
<Tbody
|
||||
sx={{
|
||||
th: {
|
||||
base: { px: 0 },
|
||||
md: { px: 6 },
|
||||
},
|
||||
}}
|
||||
>
|
||||
<Tr>
|
||||
<Th>Kickoff</Th>
|
||||
<Td>August 14</Td>
|
||||
</Tr>
|
||||
<Tr>
|
||||
<Th>Prize</Th>
|
||||
<Td>$15,000 grand prize + smaller category prizes.</Td>
|
||||
</Tr>
|
||||
<Tr>
|
||||
<Th>Events</Th>
|
||||
<Td>
|
||||
Optimize prompts for multiple tasks selected from academic benchmarks and
|
||||
real-world applications.
|
||||
</Td>
|
||||
</Tr>
|
||||
<Tr>
|
||||
<Th>Models</Th>
|
||||
<Td>Separate "weight classes" for GPT 3.5, Claude Instant, and Llama 2.</Td>
|
||||
</Tr>
|
||||
<Tr>
|
||||
<Th>Qualifications</Th>
|
||||
<Td>Open to entrants with any level of experience.</Td>
|
||||
</Tr>
|
||||
<Tr>
|
||||
<Th>Certificates</Th>
|
||||
<Td>Certificate of mastery for all qualifying participants.</Td>
|
||||
</Tr>
|
||||
<Tr>
|
||||
<Th>Cost</Th>
|
||||
<Td>
|
||||
<strong>Free</strong>. We'll cover your inference budget.
|
||||
</Td>
|
||||
</Tr>
|
||||
<Tr>
|
||||
<Th>Questions?</Th>
|
||||
<Td>
|
||||
<Link href="mailto:world-champs@openpipe.ai" textDecor="underline">
|
||||
Email us
|
||||
</Link>{" "}
|
||||
with any follow-up questions!
|
||||
</Td>
|
||||
</Tr>
|
||||
</Tbody>
|
||||
</Table>
|
||||
</VStack>
|
||||
</Box>
|
||||
</DarkMode>
|
||||
);
|
||||
}
|
||||
@@ -1,125 +0,0 @@
|
||||
import "dotenv/config";
|
||||
import * as recast from "recast";
|
||||
import { type ASTNode } from "ast-types";
|
||||
import { fileURLToPath } from "url";
|
||||
import parsePromptConstructor from "./parse";
|
||||
import { prisma } from "~/server/db";
|
||||
import { promptConstructorVersion } from "./version";
|
||||
const { builders: b } = recast.types;
|
||||
|
||||
export const migrate1to2 = (fnBody: string): string => {
|
||||
const ast: ASTNode = recast.parse(fnBody);
|
||||
|
||||
recast.visit(ast, {
|
||||
visitAssignmentExpression(path) {
|
||||
const node = path.node;
|
||||
if ("name" in node.left && node.left.name === "prompt") {
|
||||
const functionCall = b.callExpression(b.identifier("definePrompt"), [
|
||||
b.literal("openai/ChatCompletion"),
|
||||
node.right,
|
||||
]);
|
||||
path.replace(functionCall);
|
||||
}
|
||||
return false;
|
||||
},
|
||||
});
|
||||
|
||||
return recast.print(ast).code;
|
||||
};
|
||||
|
||||
export const migrate2to3 = (fnBody: string): string => {
|
||||
const ast: ASTNode = recast.parse(fnBody);
|
||||
|
||||
recast.visit(ast, {
|
||||
visitCallExpression(path) {
|
||||
const node = path.node;
|
||||
|
||||
// Check if the function being called is 'definePrompt'
|
||||
if (
|
||||
recast.types.namedTypes.Identifier.check(node.callee) &&
|
||||
node.callee.name === "definePrompt" &&
|
||||
node.arguments.length > 0 &&
|
||||
recast.types.namedTypes.Literal.check(node.arguments[0]) &&
|
||||
node.arguments[0].value === "anthropic"
|
||||
) {
|
||||
node.arguments[0].value = "anthropic/completion";
|
||||
}
|
||||
|
||||
return false;
|
||||
},
|
||||
});
|
||||
|
||||
return recast.print(ast).code;
|
||||
};
|
||||
|
||||
const migrations: Record<number, (fnBody: string) => string> = {
|
||||
2: migrate1to2,
|
||||
3: migrate2to3,
|
||||
};
|
||||
|
||||
const applyMigrations = (
|
||||
promptConstructor: string,
|
||||
currentVersion: number,
|
||||
targetVersion: number,
|
||||
) => {
|
||||
let migratedFn = promptConstructor;
|
||||
|
||||
for (let v = currentVersion + 1; v <= targetVersion; v++) {
|
||||
const migrationFn = migrations[v];
|
||||
if (migrationFn) {
|
||||
migratedFn = migrationFn(migratedFn);
|
||||
}
|
||||
}
|
||||
|
||||
return migratedFn;
|
||||
};
|
||||
|
||||
export default async function migrateConstructFns(targetVersion: number) {
|
||||
const prompts = await prisma.promptVariant.findMany({
|
||||
where: { promptConstructorVersion: { lt: targetVersion } },
|
||||
});
|
||||
console.log(`Migrating ${prompts.length} prompts to version ${targetVersion}`);
|
||||
await Promise.all(
|
||||
prompts.map(async (variant) => {
|
||||
const currentVersion = variant.promptConstructorVersion;
|
||||
|
||||
try {
|
||||
const migratedFn = applyMigrations(
|
||||
variant.promptConstructor,
|
||||
currentVersion,
|
||||
targetVersion,
|
||||
);
|
||||
|
||||
const parsedFn = await parsePromptConstructor(migratedFn);
|
||||
if ("error" in parsedFn) {
|
||||
throw new Error(parsedFn.error);
|
||||
}
|
||||
await prisma.promptVariant.update({
|
||||
where: {
|
||||
id: variant.id,
|
||||
},
|
||||
data: {
|
||||
promptConstructor: migratedFn,
|
||||
promptConstructorVersion: targetVersion,
|
||||
modelProvider: parsedFn.modelProvider,
|
||||
model: parsedFn.model,
|
||||
},
|
||||
});
|
||||
} catch (e) {
|
||||
console.error("Error migrating promptConstructor for variant", variant.id, e);
|
||||
}
|
||||
}),
|
||||
);
|
||||
}
|
||||
|
||||
// If we're running this file directly, run the migration to the latest version
|
||||
if (process.argv.at(-1) === fileURLToPath(import.meta.url)) {
|
||||
const latestVersion = Math.max(...Object.keys(migrations).map(Number));
|
||||
if (latestVersion !== promptConstructorVersion) {
|
||||
throw new Error(
|
||||
`The latest migration is ${latestVersion}, but the promptConstructorVersion is ${promptConstructorVersion}`,
|
||||
);
|
||||
}
|
||||
await migrateConstructFns(promptConstructorVersion);
|
||||
console.log("Done");
|
||||
}
|
||||
@@ -1 +0,0 @@
|
||||
export const promptConstructorVersion = 3;
|
||||
@@ -1,108 +0,0 @@
|
||||
import { type ChatCompletion } from "openai/resources/chat";
|
||||
import { openai } from "../../utils/openai";
|
||||
import { isAxiosError } from "./utils";
|
||||
import { type APIResponse } from "openai/core";
|
||||
import { sleep } from "~/server/utils/sleep";
|
||||
|
||||
const MAX_AUTO_RETRIES = 50;
|
||||
const MIN_DELAY = 500; // milliseconds
|
||||
const MAX_DELAY = 15000; // milliseconds
|
||||
|
||||
function calculateDelay(numPreviousTries: number): number {
|
||||
const baseDelay = Math.min(MAX_DELAY, MIN_DELAY * Math.pow(2, numPreviousTries));
|
||||
const jitter = Math.random() * baseDelay;
|
||||
return baseDelay + jitter;
|
||||
}
|
||||
|
||||
const getCompletionWithBackoff = async (
|
||||
getCompletion: () => Promise<APIResponse<ChatCompletion>>,
|
||||
) => {
|
||||
let completion;
|
||||
let tries = 0;
|
||||
while (tries < MAX_AUTO_RETRIES) {
|
||||
try {
|
||||
completion = await getCompletion();
|
||||
break;
|
||||
} catch (e) {
|
||||
if (isAxiosError(e)) {
|
||||
console.error(e?.response?.data?.error?.message);
|
||||
} else {
|
||||
await sleep(calculateDelay(tries));
|
||||
console.error(e);
|
||||
}
|
||||
}
|
||||
tries++;
|
||||
}
|
||||
return completion;
|
||||
};
|
||||
// TODO: Add seeds to ensure batches don't contain duplicate data
|
||||
const MAX_BATCH_SIZE = 5;
|
||||
|
||||
export const autogenerateDatasetEntries = async (
|
||||
numToGenerate: number,
|
||||
inputDescription: string,
|
||||
outputDescription: string,
|
||||
): Promise<{ input: string; output: string }[]> => {
|
||||
const batchSizes = Array.from({ length: Math.ceil(numToGenerate / MAX_BATCH_SIZE) }, (_, i) =>
|
||||
i === Math.ceil(numToGenerate / MAX_BATCH_SIZE) - 1 && numToGenerate % MAX_BATCH_SIZE
|
||||
? numToGenerate % MAX_BATCH_SIZE
|
||||
: MAX_BATCH_SIZE,
|
||||
);
|
||||
|
||||
const getCompletion = (batchSize: number) =>
|
||||
openai.chat.completions.create({
|
||||
model: "gpt-4",
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: `The user needs ${batchSize} rows of data, each with an input and an output.\n---\n The input should follow these requirements: ${inputDescription}\n---\n The output should follow these requirements: ${outputDescription}`,
|
||||
},
|
||||
],
|
||||
functions: [
|
||||
{
|
||||
name: "add_list_of_data",
|
||||
description: "Add a list of data to the database",
|
||||
parameters: {
|
||||
type: "object",
|
||||
properties: {
|
||||
rows: {
|
||||
type: "array",
|
||||
description: "The rows of data that match the description",
|
||||
items: {
|
||||
type: "object",
|
||||
properties: {
|
||||
input: {
|
||||
type: "string",
|
||||
description: "The input for this row",
|
||||
},
|
||||
output: {
|
||||
type: "string",
|
||||
description: "The output for this row",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
],
|
||||
|
||||
function_call: { name: "add_list_of_data" },
|
||||
temperature: 0.5,
|
||||
});
|
||||
|
||||
const completionCallbacks = batchSizes.map((batchSize) =>
|
||||
getCompletionWithBackoff(() => getCompletion(batchSize)),
|
||||
);
|
||||
|
||||
const completions = await Promise.all(completionCallbacks);
|
||||
|
||||
const rows = completions.flatMap((completion) => {
|
||||
const parsed = JSON.parse(
|
||||
completion?.choices[0]?.message?.function_call?.arguments ?? "{rows: []}",
|
||||
) as { rows: { input: string; output: string }[] };
|
||||
return parsed.rows;
|
||||
});
|
||||
|
||||
return rows;
|
||||
};
|
||||
@@ -1,18 +0,0 @@
|
||||
type AxiosError = {
|
||||
response?: {
|
||||
data?: {
|
||||
error?: {
|
||||
message?: string;
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
export function isAxiosError(error: unknown): error is AxiosError {
|
||||
if (typeof error === "object" && error !== null) {
|
||||
// Initial check
|
||||
const err = error as AxiosError;
|
||||
return err.response?.data?.error?.message !== undefined; // Check structure
|
||||
}
|
||||
return false;
|
||||
}
|
||||
@@ -1,149 +0,0 @@
|
||||
import { z } from "zod";
|
||||
import { createTRPCRouter, protectedProcedure } from "~/server/api/trpc";
|
||||
import { prisma } from "~/server/db";
|
||||
import { requireCanModifyDataset, requireCanViewDataset } from "~/utils/accessControl";
|
||||
import { autogenerateDatasetEntries } from "../autogenerate/autogenerateDatasetEntries";
|
||||
|
||||
const PAGE_SIZE = 10;
|
||||
|
||||
export const datasetEntries = createTRPCRouter({
|
||||
list: protectedProcedure
|
||||
.input(z.object({ datasetId: z.string(), page: z.number() }))
|
||||
.query(async ({ input, ctx }) => {
|
||||
await requireCanViewDataset(input.datasetId, ctx);
|
||||
|
||||
const { datasetId, page } = input;
|
||||
|
||||
const entries = await prisma.datasetEntry.findMany({
|
||||
where: {
|
||||
datasetId,
|
||||
},
|
||||
orderBy: { createdAt: "desc" },
|
||||
skip: (page - 1) * PAGE_SIZE,
|
||||
take: PAGE_SIZE,
|
||||
});
|
||||
|
||||
const count = await prisma.datasetEntry.count({
|
||||
where: {
|
||||
datasetId,
|
||||
},
|
||||
});
|
||||
|
||||
return {
|
||||
entries,
|
||||
startIndex: (page - 1) * PAGE_SIZE + 1,
|
||||
lastPage: Math.ceil(count / PAGE_SIZE),
|
||||
count,
|
||||
};
|
||||
}),
|
||||
createOne: protectedProcedure
|
||||
.input(
|
||||
z.object({
|
||||
datasetId: z.string(),
|
||||
input: z.string(),
|
||||
output: z.string().optional(),
|
||||
}),
|
||||
)
|
||||
.mutation(async ({ input, ctx }) => {
|
||||
await requireCanModifyDataset(input.datasetId, ctx);
|
||||
|
||||
return await prisma.datasetEntry.create({
|
||||
data: {
|
||||
datasetId: input.datasetId,
|
||||
input: input.input,
|
||||
output: input.output,
|
||||
},
|
||||
});
|
||||
}),
|
||||
|
||||
autogenerateEntries: protectedProcedure
|
||||
.input(
|
||||
z.object({
|
||||
datasetId: z.string(),
|
||||
numToGenerate: z.number(),
|
||||
inputDescription: z.string(),
|
||||
outputDescription: z.string(),
|
||||
}),
|
||||
)
|
||||
.mutation(async ({ input, ctx }) => {
|
||||
await requireCanModifyDataset(input.datasetId, ctx);
|
||||
|
||||
const dataset = await prisma.dataset.findUnique({
|
||||
where: {
|
||||
id: input.datasetId,
|
||||
},
|
||||
});
|
||||
|
||||
if (!dataset) {
|
||||
throw new Error(`Dataset with id ${input.datasetId} does not exist`);
|
||||
}
|
||||
|
||||
const entries = await autogenerateDatasetEntries(
|
||||
input.numToGenerate,
|
||||
input.inputDescription,
|
||||
input.outputDescription,
|
||||
);
|
||||
|
||||
const createdEntries = await prisma.datasetEntry.createMany({
|
||||
data: entries.map((entry) => ({
|
||||
datasetId: input.datasetId,
|
||||
input: entry.input,
|
||||
output: entry.output,
|
||||
})),
|
||||
});
|
||||
|
||||
return createdEntries;
|
||||
}),
|
||||
|
||||
delete: protectedProcedure
|
||||
.input(z.object({ id: z.string() }))
|
||||
.mutation(async ({ input, ctx }) => {
|
||||
const datasetId = (
|
||||
await prisma.datasetEntry.findUniqueOrThrow({
|
||||
where: { id: input.id },
|
||||
})
|
||||
).datasetId;
|
||||
|
||||
await requireCanModifyDataset(datasetId, ctx);
|
||||
|
||||
return await prisma.datasetEntry.delete({
|
||||
where: {
|
||||
id: input.id,
|
||||
},
|
||||
});
|
||||
}),
|
||||
|
||||
update: protectedProcedure
|
||||
.input(
|
||||
z.object({
|
||||
id: z.string(),
|
||||
updates: z.object({
|
||||
input: z.string(),
|
||||
output: z.string().optional(),
|
||||
}),
|
||||
}),
|
||||
)
|
||||
.mutation(async ({ input, ctx }) => {
|
||||
const existing = await prisma.datasetEntry.findUnique({
|
||||
where: {
|
||||
id: input.id,
|
||||
},
|
||||
});
|
||||
|
||||
if (!existing) {
|
||||
throw new Error(`dataEntry with id ${input.id} does not exist`);
|
||||
}
|
||||
|
||||
await requireCanModifyDataset(existing.datasetId, ctx);
|
||||
|
||||
return await prisma.datasetEntry.update({
|
||||
where: {
|
||||
id: input.id,
|
||||
},
|
||||
data: {
|
||||
input: input.updates.input,
|
||||
output: input.updates.output,
|
||||
},
|
||||
});
|
||||
}),
|
||||
});
|
||||
@@ -1,91 +0,0 @@
|
||||
import { z } from "zod";
|
||||
import { createTRPCRouter, protectedProcedure, publicProcedure } from "~/server/api/trpc";
|
||||
import { prisma } from "~/server/db";
|
||||
import {
|
||||
requireCanModifyDataset,
|
||||
requireCanViewDataset,
|
||||
requireNothing,
|
||||
} from "~/utils/accessControl";
|
||||
import userOrg from "~/server/utils/userOrg";
|
||||
|
||||
export const datasetsRouter = createTRPCRouter({
|
||||
list: protectedProcedure.query(async ({ ctx }) => {
|
||||
// Anyone can list experiments
|
||||
requireNothing(ctx);
|
||||
|
||||
const datasets = await prisma.dataset.findMany({
|
||||
where: {
|
||||
organization: {
|
||||
organizationUsers: {
|
||||
some: { userId: ctx.session.user.id },
|
||||
},
|
||||
},
|
||||
},
|
||||
orderBy: {
|
||||
createdAt: "desc",
|
||||
},
|
||||
include: {
|
||||
_count: {
|
||||
select: { datasetEntries: true },
|
||||
},
|
||||
},
|
||||
});
|
||||
|
||||
return datasets;
|
||||
}),
|
||||
|
||||
get: publicProcedure.input(z.object({ id: z.string() })).query(async ({ input, ctx }) => {
|
||||
await requireCanViewDataset(input.id, ctx);
|
||||
return await prisma.dataset.findFirstOrThrow({
|
||||
where: { id: input.id },
|
||||
});
|
||||
}),
|
||||
|
||||
create: protectedProcedure.input(z.object({})).mutation(async ({ ctx }) => {
|
||||
// Anyone can create an experiment
|
||||
requireNothing(ctx);
|
||||
|
||||
const numDatasets = await prisma.dataset.count({
|
||||
where: {
|
||||
organization: {
|
||||
organizationUsers: {
|
||||
some: { userId: ctx.session.user.id },
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
|
||||
return await prisma.dataset.create({
|
||||
data: {
|
||||
name: `Dataset ${numDatasets + 1}`,
|
||||
organizationId: (await userOrg(ctx.session.user.id)).id,
|
||||
},
|
||||
});
|
||||
}),
|
||||
|
||||
update: protectedProcedure
|
||||
.input(z.object({ id: z.string(), updates: z.object({ name: z.string() }) }))
|
||||
.mutation(async ({ input, ctx }) => {
|
||||
await requireCanModifyDataset(input.id, ctx);
|
||||
return await prisma.dataset.update({
|
||||
where: {
|
||||
id: input.id,
|
||||
},
|
||||
data: {
|
||||
name: input.updates.name,
|
||||
},
|
||||
});
|
||||
}),
|
||||
|
||||
delete: protectedProcedure
|
||||
.input(z.object({ id: z.string() }))
|
||||
.mutation(async ({ input, ctx }) => {
|
||||
await requireCanModifyDataset(input.id, ctx);
|
||||
|
||||
await prisma.dataset.delete({
|
||||
where: {
|
||||
id: input.id,
|
||||
},
|
||||
});
|
||||
}),
|
||||
});
|
||||
@@ -1,419 +0,0 @@
|
||||
import { z } from "zod";
|
||||
import { v4 as uuidv4 } from "uuid";
|
||||
import { createTRPCRouter, protectedProcedure, publicProcedure } from "~/server/api/trpc";
|
||||
import { type Prisma } from "@prisma/client";
|
||||
import { prisma } from "~/server/db";
|
||||
import dedent from "dedent";
|
||||
import { generateNewCell } from "~/server/utils/generateNewCell";
|
||||
import {
|
||||
canModifyExperiment,
|
||||
requireCanModifyExperiment,
|
||||
requireCanViewExperiment,
|
||||
requireNothing,
|
||||
} from "~/utils/accessControl";
|
||||
import userOrg from "~/server/utils/userOrg";
|
||||
import generateTypes from "~/modelProviders/generateTypes";
|
||||
import { promptConstructorVersion } from "~/promptConstructor/version";
|
||||
|
||||
export const experimentsRouter = createTRPCRouter({
|
||||
stats: publicProcedure.input(z.object({ id: z.string() })).query(async ({ input, ctx }) => {
|
||||
await requireCanViewExperiment(input.id, ctx);
|
||||
|
||||
const [experiment, promptVariantCount, testScenarioCount] = await prisma.$transaction([
|
||||
prisma.experiment.findFirstOrThrow({
|
||||
where: { id: input.id },
|
||||
}),
|
||||
prisma.promptVariant.count({
|
||||
where: {
|
||||
experimentId: input.id,
|
||||
visible: true,
|
||||
},
|
||||
}),
|
||||
prisma.testScenario.count({
|
||||
where: {
|
||||
experimentId: input.id,
|
||||
visible: true,
|
||||
},
|
||||
}),
|
||||
]);
|
||||
|
||||
return {
|
||||
experimentLabel: experiment.label,
|
||||
promptVariantCount,
|
||||
testScenarioCount,
|
||||
};
|
||||
}),
|
||||
list: protectedProcedure.query(async ({ ctx }) => {
|
||||
// Anyone can list experiments
|
||||
requireNothing(ctx);
|
||||
|
||||
const experiments = await prisma.experiment.findMany({
|
||||
where: {
|
||||
organization: {
|
||||
organizationUsers: {
|
||||
some: { userId: ctx.session.user.id },
|
||||
},
|
||||
},
|
||||
},
|
||||
orderBy: {
|
||||
sortIndex: "desc",
|
||||
},
|
||||
});
|
||||
|
||||
// TODO: look for cleaner way to do this. Maybe aggregate?
|
||||
const experimentsWithCounts = await Promise.all(
|
||||
experiments.map(async (experiment) => {
|
||||
const visibleTestScenarioCount = await prisma.testScenario.count({
|
||||
where: {
|
||||
experimentId: experiment.id,
|
||||
visible: true,
|
||||
},
|
||||
});
|
||||
|
||||
const visiblePromptVariantCount = await prisma.promptVariant.count({
|
||||
where: {
|
||||
experimentId: experiment.id,
|
||||
visible: true,
|
||||
},
|
||||
});
|
||||
|
||||
return {
|
||||
...experiment,
|
||||
testScenarioCount: visibleTestScenarioCount,
|
||||
promptVariantCount: visiblePromptVariantCount,
|
||||
};
|
||||
}),
|
||||
);
|
||||
|
||||
return experimentsWithCounts;
|
||||
}),
|
||||
|
||||
get: publicProcedure.input(z.object({ id: z.string() })).query(async ({ input, ctx }) => {
|
||||
await requireCanViewExperiment(input.id, ctx);
|
||||
const experiment = await prisma.experiment.findFirstOrThrow({
|
||||
where: { id: input.id },
|
||||
});
|
||||
|
||||
const canModify = ctx.session?.user.id
|
||||
? await canModifyExperiment(experiment.id, ctx.session?.user.id)
|
||||
: false;
|
||||
|
||||
return {
|
||||
...experiment,
|
||||
access: {
|
||||
canView: true,
|
||||
canModify,
|
||||
},
|
||||
};
|
||||
}),
|
||||
|
||||
fork: protectedProcedure.input(z.object({ id: z.string() })).mutation(async ({ input, ctx }) => {
|
||||
await requireCanViewExperiment(input.id, ctx);
|
||||
|
||||
const [
|
||||
existingExp,
|
||||
existingVariants,
|
||||
existingScenarios,
|
||||
existingCells,
|
||||
evaluations,
|
||||
templateVariables,
|
||||
] = await prisma.$transaction([
|
||||
prisma.experiment.findUniqueOrThrow({
|
||||
where: {
|
||||
id: input.id,
|
||||
},
|
||||
}),
|
||||
prisma.promptVariant.findMany({
|
||||
where: {
|
||||
experimentId: input.id,
|
||||
visible: true,
|
||||
},
|
||||
}),
|
||||
prisma.testScenario.findMany({
|
||||
where: {
|
||||
experimentId: input.id,
|
||||
visible: true,
|
||||
},
|
||||
}),
|
||||
prisma.scenarioVariantCell.findMany({
|
||||
where: {
|
||||
testScenario: {
|
||||
visible: true,
|
||||
},
|
||||
promptVariant: {
|
||||
experimentId: input.id,
|
||||
visible: true,
|
||||
},
|
||||
},
|
||||
include: {
|
||||
modelResponses: {
|
||||
include: {
|
||||
outputEvaluations: true,
|
||||
},
|
||||
},
|
||||
},
|
||||
}),
|
||||
prisma.evaluation.findMany({
|
||||
where: {
|
||||
experimentId: input.id,
|
||||
},
|
||||
}),
|
||||
prisma.templateVariable.findMany({
|
||||
where: {
|
||||
experimentId: input.id,
|
||||
},
|
||||
}),
|
||||
]);
|
||||
|
||||
const newExperimentId = uuidv4();
|
||||
|
||||
const existingToNewVariantIds = new Map<string, string>();
|
||||
const variantsToCreate: Prisma.PromptVariantCreateManyInput[] = [];
|
||||
for (const variant of existingVariants) {
|
||||
const newVariantId = uuidv4();
|
||||
existingToNewVariantIds.set(variant.id, newVariantId);
|
||||
variantsToCreate.push({
|
||||
...variant,
|
||||
id: newVariantId,
|
||||
experimentId: newExperimentId,
|
||||
});
|
||||
}
|
||||
|
||||
const existingToNewScenarioIds = new Map<string, string>();
|
||||
const scenariosToCreate: Prisma.TestScenarioCreateManyInput[] = [];
|
||||
for (const scenario of existingScenarios) {
|
||||
const newScenarioId = uuidv4();
|
||||
existingToNewScenarioIds.set(scenario.id, newScenarioId);
|
||||
scenariosToCreate.push({
|
||||
...scenario,
|
||||
id: newScenarioId,
|
||||
experimentId: newExperimentId,
|
||||
variableValues: scenario.variableValues as Prisma.InputJsonValue,
|
||||
});
|
||||
}
|
||||
|
||||
const existingToNewEvaluationIds = new Map<string, string>();
|
||||
const evaluationsToCreate: Prisma.EvaluationCreateManyInput[] = [];
|
||||
for (const evaluation of evaluations) {
|
||||
const newEvaluationId = uuidv4();
|
||||
existingToNewEvaluationIds.set(evaluation.id, newEvaluationId);
|
||||
evaluationsToCreate.push({
|
||||
...evaluation,
|
||||
id: newEvaluationId,
|
||||
experimentId: newExperimentId,
|
||||
});
|
||||
}
|
||||
|
||||
const cellsToCreate: Prisma.ScenarioVariantCellCreateManyInput[] = [];
|
||||
const modelResponsesToCreate: Prisma.ModelResponseCreateManyInput[] = [];
|
||||
const outputEvaluationsToCreate: Prisma.OutputEvaluationCreateManyInput[] = [];
|
||||
for (const cell of existingCells) {
|
||||
const newCellId = uuidv4();
|
||||
const { modelResponses, ...cellData } = cell;
|
||||
cellsToCreate.push({
|
||||
...cellData,
|
||||
id: newCellId,
|
||||
promptVariantId: existingToNewVariantIds.get(cell.promptVariantId) ?? "",
|
||||
testScenarioId: existingToNewScenarioIds.get(cell.testScenarioId) ?? "",
|
||||
prompt: (cell.prompt as Prisma.InputJsonValue) ?? undefined,
|
||||
});
|
||||
for (const modelResponse of modelResponses) {
|
||||
const newModelResponseId = uuidv4();
|
||||
const { outputEvaluations, ...modelResponseData } = modelResponse;
|
||||
modelResponsesToCreate.push({
|
||||
...modelResponseData,
|
||||
id: newModelResponseId,
|
||||
scenarioVariantCellId: newCellId,
|
||||
output: (modelResponse.output as Prisma.InputJsonValue) ?? undefined,
|
||||
});
|
||||
for (const evaluation of outputEvaluations) {
|
||||
outputEvaluationsToCreate.push({
|
||||
...evaluation,
|
||||
id: uuidv4(),
|
||||
modelResponseId: newModelResponseId,
|
||||
evaluationId: existingToNewEvaluationIds.get(evaluation.evaluationId) ?? "",
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const templateVariablesToCreate: Prisma.TemplateVariableCreateManyInput[] = [];
|
||||
for (const templateVariable of templateVariables) {
|
||||
templateVariablesToCreate.push({
|
||||
...templateVariable,
|
||||
id: uuidv4(),
|
||||
experimentId: newExperimentId,
|
||||
});
|
||||
}
|
||||
|
||||
const maxSortIndex =
|
||||
(
|
||||
await prisma.experiment.aggregate({
|
||||
_max: {
|
||||
sortIndex: true,
|
||||
},
|
||||
})
|
||||
)._max?.sortIndex ?? 0;
|
||||
|
||||
await prisma.$transaction([
|
||||
prisma.experiment.create({
|
||||
data: {
|
||||
id: newExperimentId,
|
||||
sortIndex: maxSortIndex + 1,
|
||||
label: `${existingExp.label} (forked)`,
|
||||
organizationId: (await userOrg(ctx.session.user.id)).id,
|
||||
},
|
||||
}),
|
||||
prisma.promptVariant.createMany({
|
||||
data: variantsToCreate,
|
||||
}),
|
||||
prisma.testScenario.createMany({
|
||||
data: scenariosToCreate,
|
||||
}),
|
||||
prisma.scenarioVariantCell.createMany({
|
||||
data: cellsToCreate,
|
||||
}),
|
||||
prisma.modelResponse.createMany({
|
||||
data: modelResponsesToCreate,
|
||||
}),
|
||||
prisma.evaluation.createMany({
|
||||
data: evaluationsToCreate,
|
||||
}),
|
||||
prisma.outputEvaluation.createMany({
|
||||
data: outputEvaluationsToCreate,
|
||||
}),
|
||||
prisma.templateVariable.createMany({
|
||||
data: templateVariablesToCreate,
|
||||
}),
|
||||
]);
|
||||
|
||||
return newExperimentId;
|
||||
}),
|
||||
|
||||
create: protectedProcedure.input(z.object({})).mutation(async ({ ctx }) => {
|
||||
// Anyone can create an experiment
|
||||
requireNothing(ctx);
|
||||
|
||||
const organizationId = (await userOrg(ctx.session.user.id)).id;
|
||||
|
||||
const maxSortIndex =
|
||||
(
|
||||
await prisma.experiment.aggregate({
|
||||
_max: {
|
||||
sortIndex: true,
|
||||
},
|
||||
where: { organizationId },
|
||||
})
|
||||
)._max?.sortIndex ?? 0;
|
||||
|
||||
const exp = await prisma.experiment.create({
|
||||
data: {
|
||||
sortIndex: maxSortIndex + 1,
|
||||
label: `Experiment ${maxSortIndex + 1}`,
|
||||
organizationId,
|
||||
},
|
||||
});
|
||||
|
||||
const [variant, _, scenario1, scenario2, scenario3] = await prisma.$transaction([
|
||||
prisma.promptVariant.create({
|
||||
data: {
|
||||
experimentId: exp.id,
|
||||
label: "Prompt Variant 1",
|
||||
sortIndex: 0,
|
||||
// The interpolated $ is necessary until dedent incorporates
|
||||
// https://github.com/dmnd/dedent/pull/46
|
||||
promptConstructor: dedent`
|
||||
/**
|
||||
* Use Javascript to define an OpenAI chat completion
|
||||
* (https://platform.openai.com/docs/api-reference/chat/create).
|
||||
*
|
||||
* You have access to the current scenario in the \`scenario\`
|
||||
* variable.
|
||||
*/
|
||||
|
||||
definePrompt("openai/ChatCompletion", {
|
||||
model: "gpt-3.5-turbo-0613",
|
||||
stream: true,
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: \`Write 'Start experimenting!' in ${"$"}{scenario.language}\`,
|
||||
},
|
||||
],
|
||||
});`,
|
||||
model: "gpt-3.5-turbo-0613",
|
||||
modelProvider: "openai/ChatCompletion",
|
||||
promptConstructorVersion,
|
||||
},
|
||||
}),
|
||||
prisma.templateVariable.create({
|
||||
data: {
|
||||
experimentId: exp.id,
|
||||
label: "language",
|
||||
},
|
||||
}),
|
||||
prisma.testScenario.create({
|
||||
data: {
|
||||
experimentId: exp.id,
|
||||
variableValues: {
|
||||
language: "English",
|
||||
},
|
||||
},
|
||||
}),
|
||||
prisma.testScenario.create({
|
||||
data: {
|
||||
experimentId: exp.id,
|
||||
variableValues: {
|
||||
language: "Spanish",
|
||||
},
|
||||
},
|
||||
}),
|
||||
prisma.testScenario.create({
|
||||
data: {
|
||||
experimentId: exp.id,
|
||||
variableValues: {
|
||||
language: "German",
|
||||
},
|
||||
},
|
||||
}),
|
||||
]);
|
||||
|
||||
await generateNewCell(variant.id, scenario1.id);
|
||||
await generateNewCell(variant.id, scenario2.id);
|
||||
await generateNewCell(variant.id, scenario3.id);
|
||||
|
||||
return exp;
|
||||
}),
|
||||
|
||||
update: protectedProcedure
|
||||
.input(z.object({ id: z.string(), updates: z.object({ label: z.string() }) }))
|
||||
.mutation(async ({ input, ctx }) => {
|
||||
await requireCanModifyExperiment(input.id, ctx);
|
||||
return await prisma.experiment.update({
|
||||
where: {
|
||||
id: input.id,
|
||||
},
|
||||
data: {
|
||||
label: input.updates.label,
|
||||
},
|
||||
});
|
||||
}),
|
||||
|
||||
delete: protectedProcedure
|
||||
.input(z.object({ id: z.string() }))
|
||||
.mutation(async ({ input, ctx }) => {
|
||||
await requireCanModifyExperiment(input.id, ctx);
|
||||
|
||||
await prisma.experiment.delete({
|
||||
where: {
|
||||
id: input.id,
|
||||
},
|
||||
});
|
||||
}),
|
||||
|
||||
// Keeping these on `experiment` for now because we might want to limit the
|
||||
// providers based on your account/experiment
|
||||
promptTypes: publicProcedure.query(async () => {
|
||||
return await generateTypes();
|
||||
}),
|
||||
});
|
||||
@@ -1,36 +0,0 @@
|
||||
import { createTRPCRouter, protectedProcedure, publicProcedure } from "~/server/api/trpc";
|
||||
import { prisma } from "~/server/db";
|
||||
import { requireNothing } from "~/utils/accessControl";
|
||||
|
||||
export const worldChampsRouter = createTRPCRouter({
|
||||
userStatus: publicProcedure.query(async ({ ctx }) => {
|
||||
const userId = ctx.session?.user.id;
|
||||
|
||||
if (!userId) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return await prisma.worldChampEntrant.findUnique({
|
||||
where: { userId },
|
||||
});
|
||||
}),
|
||||
|
||||
apply: protectedProcedure.mutation(async ({ ctx }) => {
|
||||
const userId = ctx.session.user.id;
|
||||
requireNothing(ctx);
|
||||
|
||||
const existingEntrant = await prisma.worldChampEntrant.findUnique({
|
||||
where: { userId },
|
||||
});
|
||||
|
||||
if (existingEntrant) {
|
||||
return existingEntrant;
|
||||
}
|
||||
|
||||
return await prisma.worldChampEntrant.create({
|
||||
data: {
|
||||
userId,
|
||||
},
|
||||
});
|
||||
}),
|
||||
});
|
||||
@@ -1,26 +0,0 @@
|
||||
/* eslint-disable */
|
||||
|
||||
import "dotenv/config";
|
||||
import Replicate from "replicate";
|
||||
|
||||
const replicate = new Replicate({
|
||||
auth: process.env.REPLICATE_API_TOKEN || "",
|
||||
});
|
||||
|
||||
console.log("going to run");
|
||||
const prediction = await replicate.predictions.create({
|
||||
version: "3725a659b5afff1a0ba9bead5fac3899d998feaad00e07032ca2b0e35eb14f8a",
|
||||
input: {
|
||||
prompt: "...",
|
||||
},
|
||||
});
|
||||
|
||||
console.log("waiting");
|
||||
setInterval(() => {
|
||||
replicate.predictions.get(prediction.id).then((prediction) => {
|
||||
console.log(prediction);
|
||||
});
|
||||
}, 500);
|
||||
// const output = await replicate.wait(prediction, {});
|
||||
|
||||
// console.log(output);
|
||||
@@ -1,12 +0,0 @@
|
||||
#! /bin/bash
|
||||
|
||||
set -e
|
||||
cd "$(dirname "$0")/../../.."
|
||||
|
||||
|
||||
set -o allexport
|
||||
source .env
|
||||
set +o allexport
|
||||
|
||||
echo "Connecting to prod db"
|
||||
DATABASE_URL=$PROD_DATABASE_URL pnpm prisma studio
|
||||
@@ -1,63 +0,0 @@
|
||||
import dayjs from "dayjs";
|
||||
import { prisma } from "../db";
|
||||
|
||||
const projectId = "1234";
|
||||
|
||||
// Find all calls in the last 24 hours
|
||||
const responses = await prisma.loggedCall.findMany({
|
||||
where: {
|
||||
organizationId: projectId,
|
||||
startTime: {
|
||||
gt: dayjs()
|
||||
.subtract(24 * 3600)
|
||||
.toDate(),
|
||||
},
|
||||
},
|
||||
include: {
|
||||
modelResponse: true,
|
||||
},
|
||||
orderBy: {
|
||||
startTime: "desc",
|
||||
},
|
||||
});
|
||||
|
||||
// Find all calls in the last 24 hours with promptId 'hello-world'
|
||||
const helloWorld = await prisma.loggedCall.findMany({
|
||||
where: {
|
||||
organizationId: projectId,
|
||||
startTime: {
|
||||
gt: dayjs()
|
||||
.subtract(24 * 3600)
|
||||
.toDate(),
|
||||
},
|
||||
tags: {
|
||||
some: {
|
||||
name: "promptId",
|
||||
value: "hello-world",
|
||||
},
|
||||
},
|
||||
},
|
||||
include: {
|
||||
modelResponse: true,
|
||||
},
|
||||
orderBy: {
|
||||
startTime: "desc",
|
||||
},
|
||||
});
|
||||
|
||||
// Total spent on OpenAI in the last month
|
||||
const totalSpent = await prisma.loggedCallModelResponse.aggregate({
|
||||
_sum: {
|
||||
totalCost: true,
|
||||
},
|
||||
where: {
|
||||
createdBy: {
|
||||
organizationId: projectId,
|
||||
},
|
||||
startTime: {
|
||||
gt: dayjs()
|
||||
.subtract(30 * 24 * 3600)
|
||||
.toDate(),
|
||||
},
|
||||
},
|
||||
});
|
||||
@@ -1,188 +0,0 @@
|
||||
import { type Prisma } from "@prisma/client";
|
||||
import { type JsonObject } from "type-fest";
|
||||
import modelProviders from "~/modelProviders/modelProviders";
|
||||
import { prisma } from "~/server/db";
|
||||
import { wsConnection } from "~/utils/wsConnection";
|
||||
import { runEvalsForOutput } from "../utils/evaluations";
|
||||
import hashPrompt from "../utils/hashPrompt";
|
||||
import defineTask from "./defineTask";
|
||||
import parsePromptConstructor from "~/promptConstructor/parse";
|
||||
|
||||
export type QueryModelJob = {
|
||||
cellId: string;
|
||||
stream: boolean;
|
||||
numPreviousTries: number;
|
||||
};
|
||||
|
||||
const MAX_AUTO_RETRIES = 50;
|
||||
const MIN_DELAY = 500; // milliseconds
|
||||
const MAX_DELAY = 15000; // milliseconds
|
||||
|
||||
function calculateDelay(numPreviousTries: number): number {
|
||||
const baseDelay = Math.min(MAX_DELAY, MIN_DELAY * Math.pow(2, numPreviousTries));
|
||||
const jitter = Math.random() * baseDelay;
|
||||
return baseDelay + jitter;
|
||||
}
|
||||
|
||||
export const queryModel = defineTask<QueryModelJob>("queryModel", async (task) => {
|
||||
console.log("RUNNING TASK", task);
|
||||
const { cellId, stream, numPreviousTries } = task;
|
||||
const cell = await prisma.scenarioVariantCell.findUnique({
|
||||
where: { id: cellId },
|
||||
include: { modelResponses: true },
|
||||
});
|
||||
if (!cell) {
|
||||
return;
|
||||
}
|
||||
|
||||
// If cell is not pending, then some other job is already processing it
|
||||
if (cell.retrievalStatus !== "PENDING") {
|
||||
return;
|
||||
}
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: cellId },
|
||||
data: {
|
||||
retrievalStatus: "IN_PROGRESS",
|
||||
jobStartedAt: new Date(),
|
||||
},
|
||||
});
|
||||
|
||||
const variant = await prisma.promptVariant.findUnique({
|
||||
where: { id: cell.promptVariantId },
|
||||
});
|
||||
if (!variant) {
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: cellId },
|
||||
data: {
|
||||
errorMessage: "Prompt Variant not found",
|
||||
retrievalStatus: "ERROR",
|
||||
},
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const scenario = await prisma.testScenario.findUnique({
|
||||
where: { id: cell.testScenarioId },
|
||||
});
|
||||
if (!scenario) {
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: cellId },
|
||||
data: {
|
||||
errorMessage: "Scenario not found",
|
||||
retrievalStatus: "ERROR",
|
||||
},
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const prompt = await parsePromptConstructor(
|
||||
variant.promptConstructor,
|
||||
scenario.variableValues as JsonObject,
|
||||
);
|
||||
|
||||
if ("error" in prompt) {
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: cellId },
|
||||
data: {
|
||||
errorMessage: prompt.error,
|
||||
retrievalStatus: "ERROR",
|
||||
},
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const provider = modelProviders[prompt.modelProvider];
|
||||
|
||||
const onStream = stream
|
||||
? (partialOutput: (typeof provider)["_outputSchema"]) => {
|
||||
wsConnection.emit("message", { channel: cell.id, payload: partialOutput });
|
||||
}
|
||||
: null;
|
||||
|
||||
const inputHash = hashPrompt(prompt);
|
||||
|
||||
let modelResponse = await prisma.modelResponse.create({
|
||||
data: {
|
||||
inputHash,
|
||||
scenarioVariantCellId: cellId,
|
||||
requestedAt: new Date(),
|
||||
},
|
||||
});
|
||||
const response = await provider.getCompletion(prompt.modelInput, onStream);
|
||||
if (response.type === "success") {
|
||||
modelResponse = await prisma.modelResponse.update({
|
||||
where: { id: modelResponse.id },
|
||||
data: {
|
||||
output: response.value as Prisma.InputJsonObject,
|
||||
statusCode: response.statusCode,
|
||||
receivedAt: new Date(),
|
||||
promptTokens: response.promptTokens,
|
||||
completionTokens: response.completionTokens,
|
||||
cost: response.cost,
|
||||
},
|
||||
});
|
||||
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: cellId },
|
||||
data: {
|
||||
retrievalStatus: "COMPLETE",
|
||||
},
|
||||
});
|
||||
|
||||
await runEvalsForOutput(variant.experimentId, scenario, modelResponse, prompt.modelProvider);
|
||||
} else {
|
||||
const shouldRetry = response.autoRetry && numPreviousTries < MAX_AUTO_RETRIES;
|
||||
const delay = calculateDelay(numPreviousTries);
|
||||
const retryTime = new Date(Date.now() + delay);
|
||||
|
||||
await prisma.modelResponse.update({
|
||||
where: { id: modelResponse.id },
|
||||
data: {
|
||||
statusCode: response.statusCode,
|
||||
errorMessage: response.message,
|
||||
receivedAt: new Date(),
|
||||
retryTime: shouldRetry ? retryTime : null,
|
||||
},
|
||||
});
|
||||
|
||||
if (shouldRetry) {
|
||||
await queryModel.enqueue(
|
||||
{
|
||||
cellId,
|
||||
stream,
|
||||
numPreviousTries: numPreviousTries + 1,
|
||||
},
|
||||
retryTime,
|
||||
);
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: cellId },
|
||||
data: {
|
||||
retrievalStatus: "PENDING",
|
||||
},
|
||||
});
|
||||
} else {
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: cellId },
|
||||
data: {
|
||||
retrievalStatus: "ERROR",
|
||||
},
|
||||
});
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
export const queueQueryModel = async (cellId: string, stream: boolean) => {
|
||||
await Promise.all([
|
||||
prisma.scenarioVariantCell.update({
|
||||
where: {
|
||||
id: cellId,
|
||||
},
|
||||
data: {
|
||||
retrievalStatus: "PENDING",
|
||||
errorMessage: null,
|
||||
jobQueuedAt: new Date(),
|
||||
},
|
||||
}),
|
||||
queryModel.enqueue({ cellId, stream, numPreviousTries: 0 }),
|
||||
]);
|
||||
};
|
||||
@@ -1,17 +0,0 @@
|
||||
import { runAllEvals } from "../utils/evaluations";
|
||||
import defineTask from "./defineTask";
|
||||
|
||||
export type RunNewEvalJob = {
|
||||
experimentId: string;
|
||||
};
|
||||
|
||||
// When a new eval is created, we want to run it on all existing outputs, but return the new eval first
|
||||
export const runNewEval = defineTask<RunNewEvalJob>("runNewEval", async (task) => {
|
||||
console.log("RUNNING TASK", task);
|
||||
const { experimentId } = task;
|
||||
await runAllEvals(experimentId);
|
||||
});
|
||||
|
||||
export const queueRunNewEval = async (experimentId: string) => {
|
||||
await runNewEval.enqueue({ experimentId });
|
||||
};
|
||||
@@ -1,29 +0,0 @@
|
||||
import { type TaskList, run } from "graphile-worker";
|
||||
import "dotenv/config";
|
||||
|
||||
import { env } from "~/env.mjs";
|
||||
import { queryModel } from "./queryModel.task";
|
||||
import { runNewEval } from "./runNewEval.task";
|
||||
|
||||
console.log("Starting worker");
|
||||
|
||||
const registeredTasks = [queryModel, runNewEval];
|
||||
|
||||
const taskList = registeredTasks.reduce((acc, task) => {
|
||||
acc[task.task.identifier] = task.task.handler;
|
||||
return acc;
|
||||
}, {} as TaskList);
|
||||
|
||||
// Run a worker to execute jobs:
|
||||
const runner = await run({
|
||||
connectionString: env.DATABASE_URL,
|
||||
concurrency: 50,
|
||||
// Install signal handlers for graceful shutdown on SIGINT, SIGTERM, etc
|
||||
noHandleSignals: false,
|
||||
pollInterval: 1000,
|
||||
taskList,
|
||||
});
|
||||
|
||||
console.log("Worker successfully started");
|
||||
|
||||
await runner.promise;
|
||||
@@ -1,99 +0,0 @@
|
||||
import { type ModelResponse, type Evaluation, Prisma } from "@prisma/client";
|
||||
import { prisma } from "../db";
|
||||
import { runOneEval } from "./runOneEval";
|
||||
import { type Scenario } from "~/components/OutputsTable/types";
|
||||
import { type SupportedProvider } from "~/modelProviders/types";
|
||||
|
||||
const runAndSaveEval = async (
|
||||
evaluation: Evaluation,
|
||||
scenario: Scenario,
|
||||
modelResponse: ModelResponse,
|
||||
provider: SupportedProvider,
|
||||
) => {
|
||||
const result = await runOneEval(evaluation, scenario, modelResponse, provider);
|
||||
return await prisma.outputEvaluation.upsert({
|
||||
where: {
|
||||
modelResponseId_evaluationId: {
|
||||
modelResponseId: modelResponse.id,
|
||||
evaluationId: evaluation.id,
|
||||
},
|
||||
},
|
||||
create: {
|
||||
modelResponseId: modelResponse.id,
|
||||
evaluationId: evaluation.id,
|
||||
...result,
|
||||
},
|
||||
update: {
|
||||
...result,
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
export const runEvalsForOutput = async (
|
||||
experimentId: string,
|
||||
scenario: Scenario,
|
||||
modelResponse: ModelResponse,
|
||||
provider: SupportedProvider,
|
||||
) => {
|
||||
const evaluations = await prisma.evaluation.findMany({
|
||||
where: { experimentId },
|
||||
});
|
||||
|
||||
await Promise.all(
|
||||
evaluations.map(
|
||||
async (evaluation) => await runAndSaveEval(evaluation, scenario, modelResponse, provider),
|
||||
),
|
||||
);
|
||||
};
|
||||
|
||||
// Will not run eval-output pairs that already exist in the database
|
||||
export const runAllEvals = async (experimentId: string) => {
|
||||
const outputs = await prisma.modelResponse.findMany({
|
||||
where: {
|
||||
outdated: false,
|
||||
output: {
|
||||
not: Prisma.AnyNull,
|
||||
},
|
||||
scenarioVariantCell: {
|
||||
promptVariant: {
|
||||
experimentId,
|
||||
visible: true,
|
||||
},
|
||||
testScenario: {
|
||||
visible: true,
|
||||
},
|
||||
},
|
||||
},
|
||||
include: {
|
||||
scenarioVariantCell: {
|
||||
include: {
|
||||
testScenario: true,
|
||||
promptVariant: true,
|
||||
},
|
||||
},
|
||||
outputEvaluations: true,
|
||||
},
|
||||
});
|
||||
const evals = await prisma.evaluation.findMany({
|
||||
where: { experimentId },
|
||||
});
|
||||
|
||||
await Promise.all(
|
||||
outputs.map(async (output) => {
|
||||
const evalsToBeRun = evals.filter(
|
||||
(evaluation) => !output.outputEvaluations.find((e) => e.evaluationId === evaluation.id),
|
||||
);
|
||||
|
||||
await Promise.all(
|
||||
evalsToBeRun.map(async (evaluation) => {
|
||||
await runAndSaveEval(
|
||||
evaluation,
|
||||
output.scenarioVariantCell.testScenario,
|
||||
output,
|
||||
output.scenarioVariantCell.promptVariant.modelProvider as SupportedProvider,
|
||||
);
|
||||
}),
|
||||
);
|
||||
}),
|
||||
);
|
||||
};
|
||||
@@ -1,126 +0,0 @@
|
||||
import { Prisma } from "@prisma/client";
|
||||
import { prisma } from "../db";
|
||||
import { type JsonObject } from "type-fest";
|
||||
import hashPrompt from "./hashPrompt";
|
||||
import { omit } from "lodash-es";
|
||||
import { queueQueryModel } from "../tasks/queryModel.task";
|
||||
import parsePromptConstructor from "~/promptConstructor/parse";
|
||||
|
||||
export const generateNewCell = async (
|
||||
variantId: string,
|
||||
scenarioId: string,
|
||||
options?: { stream?: boolean },
|
||||
): Promise<void> => {
|
||||
const stream = options?.stream ?? false;
|
||||
|
||||
const variant = await prisma.promptVariant.findUnique({
|
||||
where: {
|
||||
id: variantId,
|
||||
},
|
||||
});
|
||||
|
||||
const scenario = await prisma.testScenario.findUnique({
|
||||
where: {
|
||||
id: scenarioId,
|
||||
},
|
||||
});
|
||||
|
||||
if (!variant || !scenario) return;
|
||||
|
||||
let cell = await prisma.scenarioVariantCell.findUnique({
|
||||
where: {
|
||||
promptVariantId_testScenarioId: {
|
||||
promptVariantId: variantId,
|
||||
testScenarioId: scenarioId,
|
||||
},
|
||||
},
|
||||
include: {
|
||||
modelResponses: true,
|
||||
},
|
||||
});
|
||||
|
||||
if (cell) return;
|
||||
|
||||
const parsedConstructFn = await parsePromptConstructor(
|
||||
variant.promptConstructor,
|
||||
scenario.variableValues as JsonObject,
|
||||
);
|
||||
|
||||
if ("error" in parsedConstructFn) {
|
||||
await prisma.scenarioVariantCell.create({
|
||||
data: {
|
||||
promptVariantId: variantId,
|
||||
testScenarioId: scenarioId,
|
||||
retrievalStatus: "ERROR",
|
||||
},
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const inputHash = hashPrompt(parsedConstructFn);
|
||||
|
||||
cell = await prisma.scenarioVariantCell.create({
|
||||
data: {
|
||||
promptVariantId: variantId,
|
||||
testScenarioId: scenarioId,
|
||||
prompt: parsedConstructFn.modelInput as unknown as Prisma.InputJsonValue,
|
||||
retrievalStatus: "PENDING",
|
||||
},
|
||||
include: {
|
||||
modelResponses: true,
|
||||
},
|
||||
});
|
||||
|
||||
const matchingModelResponse = await prisma.modelResponse.findFirst({
|
||||
where: {
|
||||
inputHash,
|
||||
output: {
|
||||
not: Prisma.AnyNull,
|
||||
},
|
||||
},
|
||||
orderBy: {
|
||||
receivedAt: "desc",
|
||||
},
|
||||
include: {
|
||||
scenarioVariantCell: true,
|
||||
},
|
||||
take: 1,
|
||||
});
|
||||
|
||||
if (matchingModelResponse) {
|
||||
const newModelResponse = await prisma.modelResponse.create({
|
||||
data: {
|
||||
...omit(matchingModelResponse, ["id", "scenarioVariantCell"]),
|
||||
scenarioVariantCellId: cell.id,
|
||||
output: matchingModelResponse.output as Prisma.InputJsonValue,
|
||||
},
|
||||
});
|
||||
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: cell.id },
|
||||
data: {
|
||||
retrievalStatus: "COMPLETE",
|
||||
jobStartedAt: matchingModelResponse.scenarioVariantCell.jobStartedAt,
|
||||
jobQueuedAt: matchingModelResponse.scenarioVariantCell.jobQueuedAt,
|
||||
},
|
||||
});
|
||||
|
||||
// Copy over all eval results as well
|
||||
await Promise.all(
|
||||
(
|
||||
await prisma.outputEvaluation.findMany({
|
||||
where: { modelResponseId: matchingModelResponse.id },
|
||||
})
|
||||
).map(async (evaluation) => {
|
||||
await prisma.outputEvaluation.create({
|
||||
data: {
|
||||
...omit(evaluation, ["id"]),
|
||||
modelResponseId: newModelResponse.id,
|
||||
},
|
||||
});
|
||||
}),
|
||||
);
|
||||
} else {
|
||||
await queueQueryModel(cell.id, stream);
|
||||
}
|
||||
};
|
||||
@@ -1,6 +0,0 @@
|
||||
import { env } from "~/env.mjs";
|
||||
|
||||
import OpenAI from "openai";
|
||||
|
||||
// Set a dummy key so it doesn't fail at build time
|
||||
export const openai = new OpenAI({ apiKey: env.OPENAI_API_KEY ?? "dummy-key" });
|
||||
@@ -1,31 +0,0 @@
|
||||
import { type Session } from "next-auth";
|
||||
import { useSession } from "next-auth/react";
|
||||
import { useEffect } from "react";
|
||||
|
||||
import posthog from "posthog-js";
|
||||
import { env } from "~/env.mjs";
|
||||
|
||||
// Make sure we're in the browser
|
||||
const enableBrowserAnalytics = typeof window !== "undefined";
|
||||
|
||||
if (env.NEXT_PUBLIC_POSTHOG_KEY && enableBrowserAnalytics) {
|
||||
posthog.init(env.NEXT_PUBLIC_POSTHOG_KEY, {
|
||||
api_host: `${env.NEXT_PUBLIC_HOST}/ingest`,
|
||||
});
|
||||
}
|
||||
|
||||
export const identifySession = (session: Session) => {
|
||||
if (!session.user) return;
|
||||
posthog.identify(session.user.id, {
|
||||
name: session.user.name,
|
||||
email: session.user.email,
|
||||
});
|
||||
};
|
||||
|
||||
export const SessionIdentifier = () => {
|
||||
const session = useSession().data;
|
||||
useEffect(() => {
|
||||
if (session && enableBrowserAnalytics) identifySession(session);
|
||||
}, [session]);
|
||||
return null;
|
||||
};
|
||||
@@ -1,14 +0,0 @@
|
||||
import { type Session } from "next-auth";
|
||||
import { PostHog } from "posthog-node";
|
||||
import { env } from "~/env.mjs";
|
||||
|
||||
export const posthogServerClient = env.NEXT_PUBLIC_POSTHOG_KEY
|
||||
? new PostHog(env.NEXT_PUBLIC_POSTHOG_KEY, {
|
||||
host: "https://app.posthog.com",
|
||||
})
|
||||
: null;
|
||||
|
||||
export const capturePath = (session: Session, path: string) => {
|
||||
if (!session.user || !posthogServerClient) return;
|
||||
posthogServerClient?.capture({ distinctId: session.user.id, event: path });
|
||||
};
|
||||
@@ -1,12 +0,0 @@
|
||||
import frontendModelProviders from "~/modelProviders/frontendModelProviders";
|
||||
import { type ProviderModel } from "~/modelProviders/types";
|
||||
|
||||
export const truthyFilter = <T>(x: T | null | undefined): x is T => Boolean(x);
|
||||
|
||||
export const lookupModel = (provider: string, model: string) => {
|
||||
const modelObj = frontendModelProviders[provider as ProviderModel["provider"]]?.models[model];
|
||||
return modelObj ? { ...modelObj, provider } : null;
|
||||
};
|
||||
|
||||
export const modelLabel = (provider: string, model: string) =>
|
||||
`${provider}/${lookupModel(provider, model)?.name ?? model}`;
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user