mirror of
https://github.com/ViralLab/TurkishBERTweet.git
synced 2023-12-19 18:19:59 +03:00
Update README.md
This commit is contained in:
11
README.md
11
README.md
@@ -23,13 +23,13 @@
|
||||
# <a name="trainedModels"></a> Model
|
||||
Model | #params | Arch. | Max length | Pre-training data
|
||||
---|---|---|---|---
|
||||
`VRLLab/TurkishBERTweet` | 163M | base | 128 | 894M Turkish Tweets (uncased)
|
||||
[`VRLLab/TurkishBERTweet`](https://huggingface.co/VRLLab/TurkishBERTweet) | 163M | base | 128 | 894M Turkish Tweets (uncased)
|
||||
|
||||
# <a name="loraAdapter"></a> Lora Adapters
|
||||
Model | train f1 | dev f1 | test f1 | Dataset Size
|
||||
---|---|---|---|---
|
||||
`VRLLab/TurkishBERTweet-Lora-SA` | 0.799 | 0.687 | 0.692 | 42,476 Turkish Tweets
|
||||
`VRLLab/TurkishBERTweet-Lora-HS` | 0.915 | 0.796 | 0.831 | 4,683 Turkish Tweets
|
||||
[`VRLLab/TurkishBERTweet-Lora-SA`](https://huggingface.co/VRLLab/TurkishBERTweet-Lora-SA) | 0.799 | 0.687 | 0.692 | 42,476 Turkish Tweets
|
||||
[`VRLLab/TurkishBERTweet-Lora-HS`](https://huggingface.co/VRLLab/TurkishBERTweet-Lora-HS) | 0.915 | 0.796 | 0.831 | 4,683 Turkish Tweets
|
||||
# <a name="usage2"></a> Example usage
|
||||
|
||||
|
||||
@@ -178,13 +178,14 @@ Yes : kasmayin artik ya kac kere tanik olduk bu azgin tehlikeli “multecilerin
|
||||
# <a name="citation"></a> Citation
|
||||
```bibtex
|
||||
@article{najafi2022TurkishBERTweet,
|
||||
title={TurkishBERTweet in the shadow of Large Language Models},
|
||||
title={TurkishBERTweet: Fast and Reliable Large Language Model for Social Media Analysis},
|
||||
author={Najafi, Ali and Varol, Onur},
|
||||
journal={arXiv preprint },
|
||||
journal={arXiv preprint 2311.18063},
|
||||
year={2023}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## Acknowledgments
|
||||
We thank [Fatih Amasyali](https://avesis.yildiz.edu.tr/amasyali) for providing access to Tweet Sentiment datasets from Kemik group.
|
||||
This material is based upon work supported by the Google Cloud Research Credits program with the award GCP19980904. We also thank TUBITAK (121C220 and 222N311) for funding this project.
|
||||
|
||||
Reference in New Issue
Block a user