mirror of
https://github.com/HKUDS/VideoRAG.git
synced 2025-05-11 03:54:36 +03:00
Added a Jupyter notebook to test own videos
This commit is contained in:
115
notesbooks/videorag.ipynb
Normal file
115
notesbooks/videorag.ipynb
Normal file
@@ -0,0 +1,115 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c1e12bf6-a8ae-4fec-9fbd-99ea74bcc563",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import logging\n",
|
||||
"import warnings\n",
|
||||
"import multiprocessing\n",
|
||||
"import nest_asyncio\n",
|
||||
" \n",
|
||||
"nest_asyncio.apply()\n",
|
||||
"\n",
|
||||
"warnings.filterwarnings(\"ignore\")\n",
|
||||
"logging.getLogger(\"httpx\").setLevel(logging.WARNING)\n",
|
||||
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = '0'\n",
|
||||
"\n",
|
||||
"from videorag._llm import *\n",
|
||||
"from videorag import VideoRAG, QueryParam\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f04cee24-fd8e-41dc-93ea-888229d2a9af",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"video_paths = [\n",
|
||||
" '/mnt/data3/AI/software/VideoRAG/Lexington/GMT20241112-164602_Recording_gallery_1280x720.mp4',\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1a8b5f05-12e8-4b53-b84c-e4555fc99022",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"multiprocessing.set_start_method('spawn')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "7539e57b-11c2-42a9-b8f1-2363e0f561df",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"videorag = VideoRAG(cheap_model_func=ollama_mini_complete, best_model_func=ollama_complete, working_dir=f\"./videorag-workdir/lexington\")\n",
|
||||
"videorag.insert_video(video_path_list=video_paths)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6a938da7-5c33-44a3-a66e-a2e07636ce70",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"videorag.load_caption_model(debug=False)\n",
|
||||
"param = QueryParam(mode=\"videorag\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "15d51fb9-06e9-44e0-83ef-f3269c50480f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query = \"Can you summarize this video?\"\n",
|
||||
"param.wo_reference = False\n",
|
||||
"response = videorag.query(query=query, param=param)\n",
|
||||
"print(response)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4d517d22-a482-47a1-a4ac-89d0042b016f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python [conda env:videorag]",
|
||||
"language": "python",
|
||||
"name": "conda-env-videorag-py"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Reference in New Issue
Block a user