mirror of
https://github.com/kernc/backtesting.py.git
synced 2024-01-28 15:29:30 +03:00
Add initial Backtesting.py (squashed dev branch)
This commit is contained in:
10
.codecov.yml
Normal file
10
.codecov.yml
Normal file
@@ -0,0 +1,10 @@
|
||||
coverage:
|
||||
range: 75..95
|
||||
precision: 0
|
||||
status:
|
||||
patch:
|
||||
default:
|
||||
target: '95'
|
||||
project:
|
||||
default:
|
||||
target: auto
|
||||
15
.coveragerc
Normal file
15
.coveragerc
Normal file
@@ -0,0 +1,15 @@
|
||||
[run]
|
||||
parallel = 1
|
||||
concurrency =
|
||||
multiprocessing
|
||||
source =
|
||||
backtesting
|
||||
doc/examples
|
||||
omit =
|
||||
|
||||
[report]
|
||||
exclude_lines =
|
||||
return
|
||||
raise
|
||||
except
|
||||
warnings.warn
|
||||
18
.gitignore
vendored
Normal file
18
.gitignore
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
*.py[cod]
|
||||
*.html
|
||||
*.png
|
||||
_version.py
|
||||
|
||||
*.egg-info
|
||||
__pycache__/*
|
||||
dist/*
|
||||
|
||||
.coverage
|
||||
.coverage.*
|
||||
htmlcov/*
|
||||
|
||||
doc/build/*
|
||||
|
||||
.idea/*
|
||||
**/.ipynb_checkpoints
|
||||
*~*
|
||||
40
.travis.yml
Normal file
40
.travis.yml
Normal file
@@ -0,0 +1,40 @@
|
||||
language: python
|
||||
dist: trusty
|
||||
sudo: false
|
||||
cache:
|
||||
pip: true
|
||||
|
||||
matrix:
|
||||
fast_finish: true
|
||||
include:
|
||||
- python: '3.5'
|
||||
- python: '3.7'
|
||||
|
||||
- python: '3.6'
|
||||
name: 'Lint, Test w/ Coverage'
|
||||
before_script:
|
||||
- pip install flake8 coverage
|
||||
script:
|
||||
- flake8 --max-line-length=120 --exclude doc/examples .
|
||||
- BOKEH_BROWSER=none catchsegv coverage run setup.py test
|
||||
after_success:
|
||||
- bash <(curl -s https://codecov.io/bash)
|
||||
|
||||
- python: '3.6'
|
||||
name: 'Docs'
|
||||
stage: deploy
|
||||
install:
|
||||
- pip install .[doc]
|
||||
script:
|
||||
- doc/build.sh
|
||||
after_success:
|
||||
- if [ "$TRAVIS_BRANCH" = "$TRAVIS_TAG" ]; then bash doc/deploy.sh; fi
|
||||
|
||||
before_install:
|
||||
- set -eu
|
||||
|
||||
install:
|
||||
- pip install .
|
||||
|
||||
script:
|
||||
- time catchsegv python setup.py test
|
||||
660
LICENSE.md
Normal file
660
LICENSE.md
Normal file
@@ -0,0 +1,660 @@
|
||||
### GNU AFFERO GENERAL PUBLIC LICENSE
|
||||
|
||||
Version 3, 19 November 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc.
|
||||
<https://fsf.org/>
|
||||
|
||||
Everyone is permitted to copy and distribute verbatim copies of this
|
||||
license document, but changing it is not allowed.
|
||||
|
||||
### Preamble
|
||||
|
||||
The GNU Affero General Public License is a free, copyleft license for
|
||||
software and other kinds of works, specifically designed to ensure
|
||||
cooperation with the community in the case of network server software.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
our General Public Licenses are intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains
|
||||
free software for all its users.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
Developers that use our General Public Licenses protect your rights
|
||||
with two steps: (1) assert copyright on the software, and (2) offer
|
||||
you this License which gives you legal permission to copy, distribute
|
||||
and/or modify the software.
|
||||
|
||||
A secondary benefit of defending all users' freedom is that
|
||||
improvements made in alternate versions of the program, if they
|
||||
receive widespread use, become available for other developers to
|
||||
incorporate. Many developers of free software are heartened and
|
||||
encouraged by the resulting cooperation. However, in the case of
|
||||
software used on network servers, this result may fail to come about.
|
||||
The GNU General Public License permits making a modified version and
|
||||
letting the public access it on a server without ever releasing its
|
||||
source code to the public.
|
||||
|
||||
The GNU Affero General Public License is designed specifically to
|
||||
ensure that, in such cases, the modified source code becomes available
|
||||
to the community. It requires the operator of a network server to
|
||||
provide the source code of the modified version running there to the
|
||||
users of that server. Therefore, public use of a modified version, on
|
||||
a publicly accessible server, gives the public access to the source
|
||||
code of the modified version.
|
||||
|
||||
An older license, called the Affero General Public License and
|
||||
published by Affero, was designed to accomplish similar goals. This is
|
||||
a different license, not a version of the Affero GPL, but Affero has
|
||||
released a new version of the Affero GPL which permits relicensing
|
||||
under this license.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
### TERMS AND CONDITIONS
|
||||
|
||||
#### 0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU Affero General Public
|
||||
License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds
|
||||
of works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of
|
||||
an exact copy. The resulting work is called a "modified version" of
|
||||
the earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user
|
||||
through a computer network, with no transfer of a copy, is not
|
||||
conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices" to
|
||||
the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
#### 1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work for
|
||||
making modifications to it. "Object code" means any non-source form of
|
||||
a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users can
|
||||
regenerate automatically from other parts of the Corresponding Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that same
|
||||
work.
|
||||
|
||||
#### 2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not convey,
|
||||
without conditions so long as your license otherwise remains in force.
|
||||
You may convey covered works to others for the sole purpose of having
|
||||
them make modifications exclusively for you, or provide you with
|
||||
facilities for running those works, provided that you comply with the
|
||||
terms of this License in conveying all material for which you do not
|
||||
control copyright. Those thus making or running the covered works for
|
||||
you must do so exclusively on your behalf, under your direction and
|
||||
control, on terms that prohibit them from making any copies of your
|
||||
copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under the
|
||||
conditions stated below. Sublicensing is not allowed; section 10 makes
|
||||
it unnecessary.
|
||||
|
||||
#### 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such
|
||||
circumvention is effected by exercising rights under this License with
|
||||
respect to the covered work, and you disclaim any intention to limit
|
||||
operation or modification of the work as a means of enforcing, against
|
||||
the work's users, your or third parties' legal rights to forbid
|
||||
circumvention of technological measures.
|
||||
|
||||
#### 4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
#### 5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these
|
||||
conditions:
|
||||
|
||||
- a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
- b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under
|
||||
section 7. This requirement modifies the requirement in section 4
|
||||
to "keep intact all notices".
|
||||
- c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
- d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
#### 6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms of
|
||||
sections 4 and 5, provided that you also convey the machine-readable
|
||||
Corresponding Source under the terms of this License, in one of these
|
||||
ways:
|
||||
|
||||
- a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
- b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the Corresponding
|
||||
Source from a network server at no charge.
|
||||
- c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
- d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
- e) Convey the object code using peer-to-peer transmission,
|
||||
provided you inform other peers where the object code and
|
||||
Corresponding Source of the work are being offered to the general
|
||||
public at no charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal,
|
||||
family, or household purposes, or (2) anything designed or sold for
|
||||
incorporation into a dwelling. In determining whether a product is a
|
||||
consumer product, doubtful cases shall be resolved in favor of
|
||||
coverage. For a particular product received by a particular user,
|
||||
"normally used" refers to a typical or common use of that class of
|
||||
product, regardless of the status of the particular user or of the way
|
||||
in which the particular user actually uses, or expects or is expected
|
||||
to use, the product. A product is a consumer product regardless of
|
||||
whether the product has substantial commercial, industrial or
|
||||
non-consumer uses, unless such uses represent the only significant
|
||||
mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to
|
||||
install and execute modified versions of a covered work in that User
|
||||
Product from a modified version of its Corresponding Source. The
|
||||
information must suffice to ensure that the continued functioning of
|
||||
the modified object code is in no case prevented or interfered with
|
||||
solely because modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or
|
||||
updates for a work that has been modified or installed by the
|
||||
recipient, or for the User Product in which it has been modified or
|
||||
installed. Access to a network may be denied when the modification
|
||||
itself materially and adversely affects the operation of the network
|
||||
or violates the rules and protocols for communication across the
|
||||
network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
#### 7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders
|
||||
of that material) supplement the terms of this License with terms:
|
||||
|
||||
- a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
- b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
- c) Prohibiting misrepresentation of the origin of that material,
|
||||
or requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
- d) Limiting the use for publicity purposes of names of licensors
|
||||
or authors of the material; or
|
||||
- e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
- f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions
|
||||
of it) with contractual assumptions of liability to the recipient,
|
||||
for any liability that these contractual assumptions directly
|
||||
impose on those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions; the
|
||||
above requirements apply either way.
|
||||
|
||||
#### 8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your license
|
||||
from a particular copyright holder is reinstated (a) provisionally,
|
||||
unless and until the copyright holder explicitly and finally
|
||||
terminates your license, and (b) permanently, if the copyright holder
|
||||
fails to notify you of the violation by some reasonable means prior to
|
||||
60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
#### 9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or run
|
||||
a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
#### 10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
#### 11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims owned
|
||||
or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within the
|
||||
scope of its coverage, prohibits the exercise of, or is conditioned on
|
||||
the non-exercise of one or more of the rights that are specifically
|
||||
granted under this License. You may not convey a covered work if you
|
||||
are a party to an arrangement with a third party that is in the
|
||||
business of distributing software, under which you make payment to the
|
||||
third party based on the extent of your activity of conveying the
|
||||
work, and under which the third party grants, to any of the parties
|
||||
who would receive the covered work from you, a discriminatory patent
|
||||
license (a) in connection with copies of the covered work conveyed by
|
||||
you (or copies made from those copies), or (b) primarily for and in
|
||||
connection with specific products or compilations that contain the
|
||||
covered work, unless you entered into that arrangement, or that patent
|
||||
license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
#### 12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under
|
||||
this License and any other pertinent obligations, then as a
|
||||
consequence you may not convey it at all. For example, if you agree to
|
||||
terms that obligate you to collect a royalty for further conveying
|
||||
from those to whom you convey the Program, the only way you could
|
||||
satisfy both those terms and this License would be to refrain entirely
|
||||
from conveying the Program.
|
||||
|
||||
#### 13. Remote Network Interaction; Use with the GNU General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, if you modify the
|
||||
Program, your modified version must prominently offer all users
|
||||
interacting with it remotely through a computer network (if your
|
||||
version supports such interaction) an opportunity to receive the
|
||||
Corresponding Source of your version by providing access to the
|
||||
Corresponding Source from a network server at no charge, through some
|
||||
standard or customary means of facilitating copying of software. This
|
||||
Corresponding Source shall include the Corresponding Source for any
|
||||
work covered by version 3 of the GNU General Public License that is
|
||||
incorporated pursuant to the following paragraph.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the work with which it is combined will remain governed by version
|
||||
3 of the GNU General Public License.
|
||||
|
||||
#### 14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions
|
||||
of the GNU Affero General Public License from time to time. Such new
|
||||
versions will be similar in spirit to the present version, but may
|
||||
differ in detail to address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Program
|
||||
specifies that a certain numbered version of the GNU Affero General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU Affero General Public License, you may choose any version ever
|
||||
published by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future versions
|
||||
of the GNU Affero General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
#### 15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
|
||||
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
|
||||
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
|
||||
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
|
||||
CORRECTION.
|
||||
|
||||
#### 16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
|
||||
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
||||
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
|
||||
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
|
||||
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
|
||||
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
|
||||
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
|
||||
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
|
||||
|
||||
#### 17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
### How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these
|
||||
terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest to
|
||||
attach them to the start of each source file to most effectively state
|
||||
the exclusion of warranty; and each file should have at least the
|
||||
"copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License as
|
||||
published by the Free Software Foundation, either version 3 of the
|
||||
License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper
|
||||
mail.
|
||||
|
||||
If your software can interact with users remotely through a computer
|
||||
network, you should also make sure that it provides a way for users to
|
||||
get its source. For example, if your program is a web application, its
|
||||
interface could display a "Source" link that leads users to an archive
|
||||
of the code. There are many ways you could offer source, and different
|
||||
solutions will be better for different programs; see section 13 for
|
||||
the specific requirements.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or
|
||||
school, if any, to sign a "copyright disclaimer" for the program, if
|
||||
necessary. For more information on this, and how to apply and follow
|
||||
the GNU AGPL, see <https://www.gnu.org/licenses/>.
|
||||
19
README.md
Normal file
19
README.md
Normal file
@@ -0,0 +1,19 @@
|
||||
Backtesting.py
|
||||
==============
|
||||
Backtest trading strategies with Python.
|
||||
|
||||
[](https://travis-ci.org/kernc/backtesting.py)
|
||||
[](https://codecov.io/gh/kernc/backtesting.py)
|
||||
[](https://pypi.org/project/backtesting/)
|
||||
|
||||
[**Project website**](https://kernc.github.io/backtesting.py/)
|
||||
|
||||
[Documentation](https://kernc.github.io/backtesting.py/doc/backtesting/)
|
||||
|
||||
Development
|
||||
-----------
|
||||
Fork the project. Then:
|
||||
|
||||
git clone git@github.com:YOUR_USERNAME/backtesting.py
|
||||
cd backtesting.py
|
||||
pip3 install -e .[doc]
|
||||
40
backtesting/__init__.py
Normal file
40
backtesting/__init__.py
Normal file
@@ -0,0 +1,40 @@
|
||||
"""
|
||||
# Backtesting.py Documentation
|
||||
|
||||
## Manuals
|
||||
|
||||
* [Quick Start User Guide](../examples/Quick Start User Guide.html)
|
||||
|
||||
## Tutorials
|
||||
|
||||
* [Library of Utilities and Composable Base Strategies](../examples/Strategies Library.html)
|
||||
* [Multiple Time Frames](../examples/Multiple Time Frames.html)
|
||||
* [Parameter Heatmap](../examples/Parameter Heatmap.html)
|
||||
|
||||
You can also [try these out] live.
|
||||
|
||||
[try these out]: https://mybinder.org/v2/gh/kernc/backtesting.py/master?urlpath=lab%2Ftree%2Fdoc%2Fexamples
|
||||
|
||||
## Example Strategies
|
||||
|
||||
* (contributions welcome)
|
||||
|
||||
## License
|
||||
|
||||
This software is licensed under the terms of [AGPL 3.0],
|
||||
meaning you can use it for any reasonable purpose and remain in
|
||||
complete ownership of all the excellent trading strategies you produce,
|
||||
but you are also encouraged to make sure any upgrades to `backtesting`
|
||||
itself find their way back to the community.
|
||||
|
||||
[AGPL 3.0]: https://www.gnu.org/licenses/agpl-3.0.html
|
||||
|
||||
# API Reference Documentation
|
||||
"""
|
||||
try:
|
||||
from ._version import version as __version__ # noqa: F401
|
||||
except ImportError:
|
||||
pass # Package not installed
|
||||
|
||||
from .backtesting import Backtest, Strategy, Orders, Position # noqa: F401
|
||||
from . import lib # noqa: F401
|
||||
599
backtesting/_plotting.py
Normal file
599
backtesting/_plotting.py
Normal file
@@ -0,0 +1,599 @@
|
||||
import os
|
||||
import warnings
|
||||
from itertools import cycle, combinations
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from bokeh.plotting import figure as _figure
|
||||
from bokeh.models import (
|
||||
CustomJS,
|
||||
ColumnDataSource,
|
||||
NumeralTickFormatter,
|
||||
Span,
|
||||
HoverTool,
|
||||
Range1d,
|
||||
DatetimeTickFormatter,
|
||||
FuncTickFormatter,
|
||||
WheelZoomTool,
|
||||
LinearColorMapper,
|
||||
)
|
||||
from bokeh.io import output_notebook, output_file, show
|
||||
from bokeh.io.state import curstate
|
||||
from bokeh.layouts import gridplot
|
||||
from bokeh.palettes import Category10
|
||||
from bokeh.transform import factor_cmap
|
||||
|
||||
from backtesting._util import _data_period
|
||||
|
||||
|
||||
IS_JUPYTER_NOTEBOOK = 'JPY_PARENT_PID' in os.environ
|
||||
|
||||
if IS_JUPYTER_NOTEBOOK:
|
||||
warnings.warn('Jupyter Notebook detected. '
|
||||
'Setting Bokeh output to notebook. '
|
||||
'This may not work in Jupyter clients without JavaScript '
|
||||
'support (e.g. PyCharm, Spyder IDE). '
|
||||
'Reset with `bokeh.io.reset_output()`.')
|
||||
output_notebook()
|
||||
|
||||
|
||||
with open(os.path.join(os.path.dirname(__file__), 'autoscale_cb.js'),
|
||||
encoding='utf-8') as _f:
|
||||
_AUTOSCALE_JS_CALLBACK = _f.read()
|
||||
|
||||
|
||||
def _bokeh_reset(filename=None):
|
||||
curstate().reset()
|
||||
# Test if we are in Jupyter notebook
|
||||
if IS_JUPYTER_NOTEBOOK:
|
||||
curstate().output_notebook()
|
||||
elif filename:
|
||||
if not filename.endswith('.html'):
|
||||
filename += '.html'
|
||||
|
||||
output_file(filename, title=filename)
|
||||
|
||||
|
||||
def colorgen():
|
||||
yield from cycle(Category10[10])
|
||||
|
||||
|
||||
def plot(*, results, df, indicators, filename='', plot_width=1200,
|
||||
plot_equity=True, plot_pl=True,
|
||||
plot_volume=True, plot_drawdown=False,
|
||||
smooth_equity=False, relative_equity=True, omit_missing=True,
|
||||
superimpose=True, show_legend=True, open_browser=True):
|
||||
"""
|
||||
Like much of GUI code everywhere, this is a mess.
|
||||
"""
|
||||
|
||||
# We need to reset global Bokeh state, otherwise subsequent runs of
|
||||
# plot() contain some previous run's cruft data (was noticed when
|
||||
# TestPlot.test_file_size() test was failing).
|
||||
_bokeh_reset(filename)
|
||||
|
||||
COLORS = ['tomato', 'lime']
|
||||
COLORS_LIGHT = ['#ffe3e3', '#e3ffe3']
|
||||
|
||||
orig_trade_data = trade_data = results._trade_data.copy(False)
|
||||
|
||||
orig_df = df = df.copy(False)
|
||||
df.index.name = None # Provides source name @index
|
||||
index = df.index
|
||||
time_resolution = getattr(index, 'resolution', None)
|
||||
is_datetime_index = index.is_all_dates
|
||||
|
||||
# If all Volume is NaN, don't plot volume
|
||||
plot_volume = plot_volume and not df.Volume.isnull().all()
|
||||
|
||||
# OHLC vbar width in msec.
|
||||
# +1 will work in case of non-datetime index where vbar width should just be =1
|
||||
width = 1 + dict(day=86400,
|
||||
hour=3600,
|
||||
minute=60,
|
||||
second=1).get(time_resolution, 0) * 1000 * .85
|
||||
|
||||
if is_datetime_index:
|
||||
# Add index as a separate data source column because true .index is offset to align vbars
|
||||
df['datetime'] = index
|
||||
df.index = df.index + pd.Timedelta(width / 2, unit='ms')
|
||||
|
||||
if omit_missing:
|
||||
width = .8
|
||||
df = df.reset_index(drop=True)
|
||||
trade_data = trade_data.reset_index(drop=True)
|
||||
index = df.index
|
||||
|
||||
new_bokeh_figure = partial(
|
||||
_figure,
|
||||
x_axis_type='datetime' if is_datetime_index and not omit_missing else 'linear',
|
||||
plot_width=plot_width,
|
||||
plot_height=400,
|
||||
tools="xpan,xwheel_zoom,box_zoom,undo,redo,reset,crosshair,save",
|
||||
active_drag='xpan',
|
||||
active_scroll='xwheel_zoom')
|
||||
|
||||
pad = (index[-1] - index[0]) / 20
|
||||
|
||||
fig_ohlc = new_bokeh_figure(
|
||||
x_range=Range1d(index[0], index[-1],
|
||||
bounds=(index[0] - pad,
|
||||
index[-1] + pad)) if index.size > 1 else None)
|
||||
figs_above_ohlc, figs_below_ohlc = [], []
|
||||
|
||||
source = ColumnDataSource(df)
|
||||
source.add((df.Close >= df.Open).values.astype(np.uint8).astype(str), 'inc')
|
||||
returns = trade_data['Returns'].dropna()
|
||||
trade_source = ColumnDataSource(dict(
|
||||
index=returns.index,
|
||||
datetime=orig_trade_data['Returns'].dropna().index,
|
||||
exit_price=trade_data['Exit Price'].dropna(),
|
||||
returns_pos=(returns > 0).astype(np.int8).astype(str),
|
||||
))
|
||||
|
||||
inc_cmap = factor_cmap('inc', COLORS, ['0', '1'])
|
||||
cmap = factor_cmap('returns_pos', COLORS, ['0', '1'])
|
||||
|
||||
if is_datetime_index and omit_missing:
|
||||
fig_ohlc.xaxis.formatter = FuncTickFormatter(
|
||||
args=dict(axis=fig_ohlc.xaxis[0],
|
||||
formatter=DatetimeTickFormatter(days=['%d %b', '%a %d'],
|
||||
months=['%m/%Y', "%b'%y"]),
|
||||
source=source),
|
||||
code='''
|
||||
this.labels = this.labels || formatter.doFormat(ticks
|
||||
.map(i => source.data.datetime[i])
|
||||
.filter(t => t !== undefined));
|
||||
return this.labels[index] || "";
|
||||
''')
|
||||
|
||||
NBSP = ' ' * 4
|
||||
ohlc_extreme_values = df[['High', 'Low']].copy(False)
|
||||
ohlc_tooltips = [
|
||||
('x, y', NBSP.join(('$index',
|
||||
'$y{0,0.0[0000]}'))),
|
||||
('OHLC', NBSP.join(('@Open{0,0.0[0000]}',
|
||||
'@High{0,0.0[0000]}',
|
||||
'@Low{0,0.0[0000]}',
|
||||
'@Close{0,0.0[0000]}'))),
|
||||
('Volume', '@Volume{0,0}')]
|
||||
|
||||
def new_indicator_figure(**kwargs):
|
||||
kwargs.setdefault('plot_height', 90)
|
||||
fig = new_bokeh_figure(x_range=fig_ohlc.x_range,
|
||||
active_scroll='xwheel_zoom',
|
||||
active_drag='xpan',
|
||||
**kwargs)
|
||||
fig.xaxis.visible = False
|
||||
fig.yaxis.minor_tick_line_color = None
|
||||
return fig
|
||||
|
||||
def set_tooltips(fig, tooltips=(), vline=True, renderers=(), show_arrow=True):
|
||||
tooltips = list(tooltips)
|
||||
renderers = list(renderers)
|
||||
|
||||
if is_datetime_index:
|
||||
formatters = dict(datetime='datetime')
|
||||
tooltips = [("Date", "@datetime{%c}")] + tooltips
|
||||
else:
|
||||
formatters = {}
|
||||
tooltips = [("#", "@index")] + tooltips
|
||||
fig.add_tools(HoverTool(
|
||||
point_policy='follow_mouse',
|
||||
renderers=renderers, formatters=formatters, show_arrow=show_arrow,
|
||||
tooltips=tooltips, mode='vline' if vline else 'mouse'))
|
||||
|
||||
def _plot_equity_section():
|
||||
"""Equity section"""
|
||||
# Max DD Dur. line
|
||||
equity = trade_data['Equity']
|
||||
argmax = trade_data['Drawdown Duration'].idxmax()
|
||||
try:
|
||||
dd_start = equity[:argmax].idxmax()
|
||||
except Exception: # ValueError: attempt to get argmax of an empty sequence
|
||||
dd_start = dd_end = equity.index[0]
|
||||
timedelta = 0
|
||||
else:
|
||||
dd_end = (equity[argmax:] > equity[dd_start]).idxmax()
|
||||
if dd_end == argmax:
|
||||
dd_end = index[-1]
|
||||
if is_datetime_index and omit_missing:
|
||||
# "Calendar" duration
|
||||
timedelta = df.datetime.iloc[dd_end] - df.datetime.iloc[dd_start]
|
||||
else:
|
||||
timedelta = dd_end - dd_start
|
||||
# Get point intersection
|
||||
if dd_end != index[-1]:
|
||||
x1, x2 = index.get_loc(dd_end) - 1, index.get_loc(dd_end)
|
||||
y, y1, y2 = equity[dd_start], equity[x1], equity[x2]
|
||||
dd_end -= (1 - (y - y1) / (y2 - y1)) * (dd_end - index[x1]) # y = a x + b
|
||||
|
||||
if smooth_equity:
|
||||
select = (trade_data[['Entry Price',
|
||||
'Exit Price']].dropna(how='all').index |
|
||||
# Include beginning
|
||||
equity.index[:1] |
|
||||
# Include max dd end points. Otherwise, the MaxDD line looks amiss.
|
||||
pd.Index([dd_start, dd_end]))
|
||||
equity = equity[select].reindex(equity.index)
|
||||
equity.interpolate(inplace=True)
|
||||
|
||||
if relative_equity:
|
||||
equity /= equity.iloc[0]
|
||||
|
||||
source.add(equity, 'equity')
|
||||
fig = new_indicator_figure(
|
||||
y_axis_label="Equity",
|
||||
**({} if plot_drawdown else dict(plot_height=110)))
|
||||
|
||||
# High-watermark drawdown dents
|
||||
fig.patch('index', 'equity_dd',
|
||||
source=ColumnDataSource(dict(
|
||||
index=np.r_[index, index[::-1]],
|
||||
equity_dd=np.r_[equity, equity.cummax()[::-1]]
|
||||
)),
|
||||
fill_color='#ffffea', line_color='#ffcb66')
|
||||
|
||||
# Equity line
|
||||
r = fig.line('index', 'equity', source=source, line_width=1.5, line_alpha=1)
|
||||
if relative_equity:
|
||||
tooltip_format = '@equity{+0,0.[000]%}'
|
||||
tick_format = '0,0.[00]%'
|
||||
legend_format = '{:,.0f}%'
|
||||
else:
|
||||
tooltip_format = '@equity{$ 0,0}'
|
||||
tick_format = '$ 0.0 a'
|
||||
legend_format = '${:,.0f}'
|
||||
set_tooltips(fig, [('Equity', tooltip_format)], renderers=[r])
|
||||
fig.yaxis.formatter = NumeralTickFormatter(format=tick_format)
|
||||
|
||||
# Peaks
|
||||
argmax = equity.idxmax()
|
||||
fig.scatter(argmax, equity[argmax],
|
||||
legend='Peak ({})'.format(
|
||||
legend_format.format(equity[argmax] * (100 if relative_equity else 1))),
|
||||
color='cyan', size=8)
|
||||
fig.scatter(index[-1], equity.values[-1],
|
||||
legend='Final ({})'.format(
|
||||
legend_format.format(equity.iloc[-1] * (100 if relative_equity else 1))),
|
||||
color='blue', size=8)
|
||||
|
||||
if not plot_drawdown:
|
||||
drawdown = trade_data['Drawdown']
|
||||
argmax = drawdown.idxmax()
|
||||
fig.scatter(argmax, equity[argmax],
|
||||
legend='Max Drawdown (-{:.1f}%)'.format(100 * drawdown[argmax]),
|
||||
color='red', size=8)
|
||||
fig.line([dd_start, dd_end], equity[dd_start],
|
||||
line_color='red', line_width=2,
|
||||
legend='Max Dd Dur. ({})'.format(timedelta)
|
||||
.replace(' 00:00:00', '')
|
||||
.replace('(0 days ', '('))
|
||||
|
||||
figs_above_ohlc.append(fig)
|
||||
|
||||
def _plot_drawdown_section():
|
||||
"""Drawdown section"""
|
||||
fig = new_indicator_figure(y_axis_label="Drawdown")
|
||||
drawdown = trade_data['Drawdown']
|
||||
argmax = drawdown.idxmax()
|
||||
source.add(drawdown, 'drawdown')
|
||||
r = fig.line('index', 'drawdown', source=source, line_width=1.3)
|
||||
fig.scatter(argmax, drawdown[argmax],
|
||||
legend='Peak (-{:.1f}%)'.format(100 * drawdown[argmax]),
|
||||
color='red', size=8)
|
||||
set_tooltips(fig, [('Drawdown', '@drawdown{-0.[0]%}')], renderers=[r])
|
||||
fig.yaxis.formatter = NumeralTickFormatter(format="-0.[0]%")
|
||||
return fig
|
||||
|
||||
def _plot_pl_section():
|
||||
"""Profit/Loss markers section"""
|
||||
fig = new_indicator_figure(y_axis_label="Profit / Loss")
|
||||
fig.add_layout(Span(location=0, dimension='width', line_color='#666666',
|
||||
line_dash='dashed', line_width=1))
|
||||
position = trade_data['Exit Position'].dropna()
|
||||
returns_long = returns.copy()
|
||||
returns_short = returns.copy()
|
||||
returns_long[position < 0] = np.nan
|
||||
returns_short[position > 0] = np.nan
|
||||
trade_source.add(returns_long, 'returns_long')
|
||||
trade_source.add(returns_short, 'returns_short')
|
||||
MARKER_SIZE = 13
|
||||
r1 = fig.scatter('index', 'returns_long', source=trade_source, fill_color=cmap,
|
||||
marker='triangle', line_color='black', size=MARKER_SIZE)
|
||||
r2 = fig.scatter('index', 'returns_short', source=trade_source, fill_color=cmap,
|
||||
marker='inverted_triangle', line_color='black', size=MARKER_SIZE)
|
||||
set_tooltips(fig, [("P/L", "@returns_long{+0.[000]%}")], vline=False, renderers=[r1])
|
||||
set_tooltips(fig, [("P/L", "@returns_short{+0.[000]%}")], vline=False, renderers=[r2])
|
||||
fig.yaxis.formatter = NumeralTickFormatter(format="0.[00]%")
|
||||
return fig
|
||||
|
||||
def _plot_volume_section():
|
||||
"""Volume section"""
|
||||
fig = new_indicator_figure(y_axis_label="Volume")
|
||||
fig.xaxis.formatter = fig_ohlc.xaxis[0].formatter
|
||||
fig.xaxis.visible = True
|
||||
fig_ohlc.xaxis.visible = False # Show only Volume's xaxis
|
||||
r = fig.vbar('index', width, 'Volume', source=source, color=inc_cmap)
|
||||
set_tooltips(fig, [('Volume', '@Volume{0.00 a}')], renderers=[r])
|
||||
fig.yaxis.formatter = NumeralTickFormatter(format="0 a")
|
||||
return fig
|
||||
|
||||
def _plot_superimposed_ohlc():
|
||||
"""Superimposed, downsampled vbars"""
|
||||
resample_rule = (superimpose if isinstance(superimpose, str) else
|
||||
dict(day='W',
|
||||
hour='D',
|
||||
minute='H',
|
||||
second='T',
|
||||
millisecond='S').get(time_resolution))
|
||||
if not resample_rule:
|
||||
warnings.warn(
|
||||
"'Can't superimpose OHLC data with rule '{}' (index datetime resolution: '{}'). "
|
||||
"Skipping.".format(resample_rule, time_resolution),
|
||||
stacklevel=4)
|
||||
return
|
||||
|
||||
orig_df['_width'] = 1
|
||||
from .lib import OHLCV_AGG
|
||||
df2 = orig_df.resample(resample_rule, label='left').agg(dict(OHLCV_AGG, _width='count'))
|
||||
|
||||
# Check if resampling was downsampling; error on upsampling
|
||||
orig_freq = _data_period(orig_df)
|
||||
resample_freq = _data_period(df2)
|
||||
if resample_freq < orig_freq:
|
||||
raise ValueError('Invalid value for `superimpose`: Upsampling not supported.')
|
||||
if resample_freq == orig_freq:
|
||||
warnings.warn('Superimposed OHLC plot matches the original plot. Skipping.',
|
||||
stacklevel=4)
|
||||
return
|
||||
|
||||
if omit_missing:
|
||||
width2 = '_width'
|
||||
df2.index = df2['_width'].cumsum().shift(1).fillna(0)
|
||||
df2.index += df2['_width'] / 2 - .5
|
||||
df2['_width'] -= .1 # Candles don't touch
|
||||
else:
|
||||
del df['_width']
|
||||
width2 = dict(day=86400 * 5,
|
||||
hour=86400,
|
||||
minute=3600,
|
||||
second=60)[time_resolution] * 1000
|
||||
df2.index += pd.Timedelta(
|
||||
width2 / 2 +
|
||||
(width2 / 5 if resample_rule == 'W' else 0), # Sunday week start
|
||||
unit='ms')
|
||||
df2['inc'] = (df2.Close >= df2.Open).astype(np.uint8).astype(str)
|
||||
df2.index.name = None
|
||||
source2 = ColumnDataSource(df2)
|
||||
fig_ohlc.segment('index', 'High', 'index', 'Low', source=source2, color='#bbbbbb')
|
||||
fig_ohlc.vbar('index', width2, 'Open', 'Close', source=source2, line_color=None,
|
||||
fill_color=factor_cmap('inc', COLORS_LIGHT, ['0', '1']))
|
||||
|
||||
def _plot_ohlc():
|
||||
"""Main OHLC bars"""
|
||||
fig_ohlc.segment('index', 'High', 'index', 'Low', source=source, color="black")
|
||||
r = fig_ohlc.vbar('index', width, 'Open', 'Close', source=source,
|
||||
line_color="black", fill_color=inc_cmap)
|
||||
return r
|
||||
|
||||
def _plot_ohlc_orders():
|
||||
"""Order entry / exit markers on OHLC plot"""
|
||||
exit_price = trade_data['Exit Price'].dropna()
|
||||
entry_price = trade_data['Entry Price'].dropna().iloc[:exit_price.size] # entry can be one more at the end # noqa: E501
|
||||
trade_source.add(np.column_stack((entry_price.index, exit_price.index)).tolist(),
|
||||
'position_lines_xs')
|
||||
trade_source.add(np.column_stack((entry_price, exit_price)).tolist(),
|
||||
'position_lines_ys')
|
||||
fig_ohlc.multi_line(xs='position_lines_xs', ys='position_lines_ys',
|
||||
source=trade_source, line_color=cmap,
|
||||
legend='Trades',
|
||||
line_width=8, line_alpha=1, line_dash='dotted')
|
||||
|
||||
def _plot_indicators():
|
||||
"""Strategy indicators"""
|
||||
|
||||
def _too_many_dims(value):
|
||||
assert value.ndim >= 2
|
||||
if value.ndim > 2:
|
||||
warnings.warn("Can't plot indicators with >2D ('{}')".format(value.name),
|
||||
stacklevel=5)
|
||||
return True
|
||||
return False
|
||||
|
||||
class LegendStr(str):
|
||||
# The legend string is such a string that only matches
|
||||
# itself if it's the exact same object. This ensures
|
||||
# legend items are listed separately even when they have the
|
||||
# same string contents. Otherwise, Bokeh would always consider
|
||||
# equal strings as one and the same legend item.
|
||||
# This also prevents legend items named the same as some
|
||||
# ColumnDataSource's column to be replaced with that column's
|
||||
# values.
|
||||
def __eq__(self, other):
|
||||
return self is other
|
||||
|
||||
ohlc_colors = colorgen()
|
||||
|
||||
for value in indicators:
|
||||
value = np.atleast_2d(value)
|
||||
|
||||
# Use .get()! A user might have assigned a Strategy.data-evolved
|
||||
# _Array without Strategy.I()
|
||||
if not value._opts.get('plot') or _too_many_dims(value):
|
||||
continue
|
||||
|
||||
color = value._opts['color']
|
||||
tooltips = []
|
||||
|
||||
# Overlay indicators on the OHLC figure
|
||||
if value._opts['overlay']:
|
||||
color = color or next(ohlc_colors)
|
||||
legend = LegendStr(value.name)
|
||||
for i, arr in enumerate(value):
|
||||
source_name = '{}_{}'.format(value.name, i)
|
||||
source.add(arr, source_name)
|
||||
fig_ohlc.line('index', source_name, source=source,
|
||||
line_width=1.3, line_color=color, legend=legend)
|
||||
ohlc_extreme_values[source_name] = arr
|
||||
tooltips.append('@{{{}}}{{0,0.0[0000]}}'.format(source_name))
|
||||
ohlc_tooltips.append((value.name, NBSP.join(tooltips)))
|
||||
else:
|
||||
# Standalone indicator sections at the bottom
|
||||
color = color or colorgen()
|
||||
fig = new_indicator_figure()
|
||||
for i, arr in enumerate(value, 1):
|
||||
legend = '{}-{}'.format(value.name, i) if len(value) > 1 else value.name
|
||||
name = legend + '_' # Otherwise fig.line(legend=) is interpreted as col of source # noqa: E501
|
||||
tooltips.append('@{{{}}}'.format(name))
|
||||
source.add(arr.astype(int if arr.dtype == bool else float), name)
|
||||
r = fig.line('index', name, source=source,
|
||||
line_color=next(color), line_width=1.3, legend=LegendStr(legend))
|
||||
|
||||
# Add dashed centerline just because
|
||||
mean = float(pd.Series(arr).mean())
|
||||
if not np.isnan(mean) and (abs(mean) < .1 or
|
||||
round(abs(mean), -1) in (50, 100, 200)):
|
||||
fig.add_layout(Span(location=float(mean), dimension='width',
|
||||
line_color='#666666', line_dash='dashed',
|
||||
line_width=.5))
|
||||
|
||||
set_tooltips(fig, [(value.name, NBSP.join(tooltips))], vline=True, renderers=[r])
|
||||
|
||||
# If the sole indicator line on this figure,
|
||||
# have the legend only contain text without the glyph
|
||||
if len(value) == 1:
|
||||
fig.legend.glyph_width = 0
|
||||
|
||||
figs_below_ohlc.append(fig)
|
||||
|
||||
# Construct figure ...
|
||||
|
||||
if plot_equity:
|
||||
_plot_equity_section()
|
||||
|
||||
if plot_drawdown:
|
||||
figs_above_ohlc.append(_plot_drawdown_section())
|
||||
|
||||
if plot_pl:
|
||||
figs_above_ohlc.append(_plot_pl_section())
|
||||
|
||||
if plot_volume:
|
||||
fig_volume = _plot_volume_section()
|
||||
figs_below_ohlc.append(fig_volume)
|
||||
|
||||
if superimpose and is_datetime_index:
|
||||
_plot_superimposed_ohlc()
|
||||
|
||||
ohlc_bars = _plot_ohlc()
|
||||
_plot_ohlc_orders()
|
||||
_plot_indicators()
|
||||
|
||||
set_tooltips(fig_ohlc, ohlc_tooltips, vline=True, renderers=[ohlc_bars])
|
||||
|
||||
source.add(ohlc_extreme_values.min(1), 'ohlc_low')
|
||||
source.add(ohlc_extreme_values.max(1), 'ohlc_high')
|
||||
|
||||
custom_js_args = dict(ohlc_range=fig_ohlc.y_range,
|
||||
source=source)
|
||||
if plot_volume:
|
||||
custom_js_args.update(volume_range=fig_volume.y_range)
|
||||
|
||||
fig_ohlc.x_range.callback = CustomJS(args=custom_js_args,
|
||||
code=_AUTOSCALE_JS_CALLBACK)
|
||||
|
||||
plots = figs_above_ohlc + [fig_ohlc] + figs_below_ohlc
|
||||
for f in plots:
|
||||
if f.legend:
|
||||
f.legend.location = 'top_left' if show_legend else None
|
||||
f.legend.border_line_width = 1
|
||||
f.legend.border_line_color = '#333333'
|
||||
f.legend.padding = 5
|
||||
f.legend.spacing = 0
|
||||
f.legend.margin = 0
|
||||
f.legend.label_text_font_size = '8pt'
|
||||
f.min_border_left = 0
|
||||
f.min_border_top = 3
|
||||
f.min_border_bottom = 6
|
||||
f.min_border_right = 10
|
||||
f.outline_line_color = '#666666'
|
||||
|
||||
wheelzoom_tool = next(wz for wz in f.tools if isinstance(wz, WheelZoomTool))
|
||||
wheelzoom_tool.maintain_focus = False
|
||||
|
||||
fig = gridplot(
|
||||
plots,
|
||||
ncols=1,
|
||||
toolbar_location='right',
|
||||
# sizing_mode='stretch_width',
|
||||
toolbar_options=dict(logo=None),
|
||||
merge_tools=True,
|
||||
)
|
||||
show(fig, browser=None if open_browser else 'none')
|
||||
return fig
|
||||
|
||||
|
||||
def plot_heatmaps(heatmap: pd.Series, agg: str, ncols: int,
|
||||
filename: str = '', plot_width: int = 1200, open_browser: bool = True):
|
||||
if not (isinstance(heatmap, pd.Series) and
|
||||
isinstance(heatmap.index, pd.MultiIndex)):
|
||||
raise ValueError('heatmap must be heatmap Series as returned by '
|
||||
'`Backtest.optimize(..., return_heatmap=True)`')
|
||||
|
||||
_bokeh_reset()
|
||||
if filename:
|
||||
output_file(filename)
|
||||
|
||||
param_combinations = combinations(heatmap.index.names, 2)
|
||||
dfs = [heatmap.groupby(list(dims)).agg(agg).to_frame(name='_Value')
|
||||
for dims in param_combinations]
|
||||
plots = []
|
||||
cmap = LinearColorMapper(palette='Viridis256',
|
||||
low=min(df.min().min() for df in dfs),
|
||||
high=max(df.max().max() for df in dfs),
|
||||
nan_color='white')
|
||||
for df in dfs:
|
||||
name1, name2 = df.index.names
|
||||
level1 = df.index.levels[0].astype(str).tolist()
|
||||
level2 = df.index.levels[1].astype(str).tolist()
|
||||
df = df.reset_index()
|
||||
df[name1] = df[name1].astype('str')
|
||||
df[name2] = df[name2].astype('str')
|
||||
|
||||
fig = _figure(x_range=level1,
|
||||
y_range=level2,
|
||||
x_axis_label=name1,
|
||||
y_axis_label=name2,
|
||||
plot_width=plot_width // ncols,
|
||||
plot_height=plot_width // ncols,
|
||||
tools='box_zoom,reset,save',
|
||||
tooltips=[(name1, '@' + name1),
|
||||
(name2, '@' + name2),
|
||||
('Value', '@_Value{0.[000]}')])
|
||||
fig.grid.grid_line_color = None
|
||||
fig.axis.axis_line_color = None
|
||||
fig.axis.major_tick_line_color = None
|
||||
fig.axis.major_label_standoff = 0
|
||||
|
||||
fig.rect(x=name1,
|
||||
y=name2,
|
||||
width=1,
|
||||
height=1,
|
||||
source=df,
|
||||
line_color=None,
|
||||
fill_color=dict(field='_Value',
|
||||
transform=cmap))
|
||||
plots.append(fig)
|
||||
|
||||
fig = gridplot(
|
||||
plots,
|
||||
ncols=ncols,
|
||||
toolbar_options=dict(logo=None),
|
||||
toolbar_location='above',
|
||||
merge_tools=True,
|
||||
)
|
||||
|
||||
show(fig, browser=None if open_browser else 'none')
|
||||
return fig
|
||||
135
backtesting/_util.py
Normal file
135
backtesting/_util.py
Normal file
@@ -0,0 +1,135 @@
|
||||
|
||||
from numbers import Number
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _as_str(value):
|
||||
if isinstance(value, (Number, str)):
|
||||
return str(value)
|
||||
name = str(getattr(value, 'name', '') or '')
|
||||
if callable(value):
|
||||
name = value.__name__.replace('<lambda>', '')
|
||||
if name in ('Open', 'High', 'Low', 'Close'):
|
||||
name = name[:1]
|
||||
if len(name) > 10:
|
||||
name = name[:9] + '…'
|
||||
return name
|
||||
|
||||
|
||||
def _data_period(df):
|
||||
"""Return data index period as pd.Timedelta"""
|
||||
return df.index[:100].to_series().diff().median()
|
||||
|
||||
|
||||
class _Array(np.ndarray):
|
||||
"""
|
||||
ndarray extended to supply .name and other arbitrary properties
|
||||
in ._opts dict.
|
||||
"""
|
||||
def __new__(cls, array, name=None, write=False, **kwargs):
|
||||
obj = np.asarray(array).view(cls)
|
||||
obj.name = name or array.name
|
||||
obj._opts = kwargs
|
||||
if not write:
|
||||
obj.setflags(write=False)
|
||||
return obj
|
||||
|
||||
def __array_finalize__(self, obj):
|
||||
if obj is not None:
|
||||
self.name = getattr(obj, 'name', '')
|
||||
self._opts = getattr(obj, '_opts', {})
|
||||
|
||||
def __bool__(self):
|
||||
try:
|
||||
return bool(self[-1])
|
||||
except IndexError:
|
||||
return super().__bool__()
|
||||
|
||||
def __float__(self):
|
||||
try:
|
||||
return float(self[-1])
|
||||
except IndexError:
|
||||
return super().__float__()
|
||||
|
||||
|
||||
class _Indicator(_Array):
|
||||
pass
|
||||
|
||||
|
||||
class _Data:
|
||||
"""
|
||||
A data array accessor. Provides access to OHLCV "columns"
|
||||
as a standard `pd.DataFrame` would, except it's not a DataFrame
|
||||
and the returned "series" are _not_ `pd.Series` but `np.ndarray`
|
||||
for performance reasons.
|
||||
"""
|
||||
def __init__(self, df):
|
||||
self.__i = len(df)
|
||||
self.__pip = None
|
||||
self.__cache = {}
|
||||
|
||||
self.__arrays = {col: _Array(arr, data=self)
|
||||
for col, arr in df.items()}
|
||||
# Leave index as Series because pd.Timestamp nicer API to work with
|
||||
self.__arrays['__index'] = df.index.copy()
|
||||
|
||||
def __getitem__(self, item):
|
||||
return getattr(self, item)
|
||||
|
||||
def __getattr__(self, item):
|
||||
try:
|
||||
return self.__get_array(item)
|
||||
except KeyError:
|
||||
raise KeyError("Column '{}' not in data".format(item)) from None
|
||||
|
||||
def _set_length(self, i):
|
||||
self.__i = i
|
||||
self.__cache.clear()
|
||||
|
||||
def __len__(self):
|
||||
return self.__i
|
||||
|
||||
@property
|
||||
def pip(self):
|
||||
if self.__pip is None:
|
||||
self.__pip = 10**-np.median([len(s.partition('.')[-1])
|
||||
for s in self.__arrays['Close'].astype(str)])
|
||||
return self.__pip
|
||||
|
||||
def __get_array(self, key):
|
||||
arr = self.__cache.get(key)
|
||||
if arr is None:
|
||||
arr = self.__cache[key] = self.__arrays[key][:self.__i]
|
||||
return arr
|
||||
|
||||
@property
|
||||
def Open(self):
|
||||
return self.__get_array('Open')
|
||||
|
||||
@property
|
||||
def High(self):
|
||||
return self.__get_array('High')
|
||||
|
||||
@property
|
||||
def Low(self):
|
||||
return self.__get_array('Low')
|
||||
|
||||
@property
|
||||
def Close(self):
|
||||
return self.__get_array('Close')
|
||||
|
||||
@property
|
||||
def Volume(self):
|
||||
return self.__get_array('Volume')
|
||||
|
||||
@property
|
||||
def index(self):
|
||||
return self.__get_array('__index')
|
||||
|
||||
# Make pickling in Backtest.optimize() work with our catch-all __getattr__
|
||||
def __getstate__(self):
|
||||
return self.__dict__
|
||||
|
||||
def __setstate__(self, state):
|
||||
self.__dict__ = state
|
||||
64
backtesting/autoscale_cb.js
Normal file
64
backtesting/autoscale_cb.js
Normal file
@@ -0,0 +1,64 @@
|
||||
if (!window._bt_extremes)
|
||||
window._bt_extremes = function (arr, initial, agg_func) {
|
||||
const CHUNK = 32768;
|
||||
let extreme = initial;
|
||||
for (let i = 0, len = arr.length; i < len; i += CHUNK) {
|
||||
const subarr = CHUNK >= len ? arr : arr.slice(i, i + CHUNK);
|
||||
extreme = agg_func(extreme, agg_func.apply(null, subarr));
|
||||
}
|
||||
return extreme;
|
||||
};
|
||||
|
||||
if (!window._bt_bin_search)
|
||||
window._bt_bin_search = function (index, value) {
|
||||
let mid,
|
||||
min = 0,
|
||||
max = index.length - 1;
|
||||
|
||||
while (min < max) {
|
||||
mid = (min + max) / 2 | 0;
|
||||
if (index[mid] < value)
|
||||
min = mid + 1;
|
||||
else
|
||||
max = mid - 1;
|
||||
}
|
||||
return min;
|
||||
};
|
||||
|
||||
if (!window._bt_scale_range)
|
||||
window._bt_scale_range = function (range, highs, lows) {
|
||||
const max = _bt_extremes(highs, -Infinity, Math.max),
|
||||
min = lows && _bt_extremes(lows, Infinity, Math.min);
|
||||
if (min !== Infinity && max !== -Infinity) {
|
||||
const pad = (max - min) * .03;
|
||||
range.start = min - pad;
|
||||
range.end = max + pad;
|
||||
}
|
||||
};
|
||||
|
||||
clearTimeout(window._bt_autoscale_timeout);
|
||||
|
||||
window._bt_autoscale_timeout = setTimeout(function () {
|
||||
/**
|
||||
* @variable cb_obj `fig_ohlc.x_range`.
|
||||
* @variable source `ColumnDataSource`
|
||||
* @variable ohlc_range `fig_ohlc.y_range`.
|
||||
* @variable volume_range `fig_volume.y_range`.
|
||||
*/
|
||||
|
||||
let index = source.data['index'],
|
||||
i = Math.max(_bt_bin_search(index, cb_obj.start) - 1, 0),
|
||||
j = Math.min(_bt_bin_search(index, cb_obj.end) + 1, index.length);
|
||||
|
||||
_bt_scale_range(
|
||||
ohlc_range,
|
||||
source.data['ohlc_high'].slice(i, j),
|
||||
source.data['ohlc_low'].slice(i, j));
|
||||
try {
|
||||
_bt_scale_range(
|
||||
volume_range,
|
||||
source.data['Volume'].slice(i, j),
|
||||
0);
|
||||
} catch (e) {} // volume_range may be undefined
|
||||
|
||||
}, 50);
|
||||
987
backtesting/backtesting.py
Normal file
987
backtesting/backtesting.py
Normal file
@@ -0,0 +1,987 @@
|
||||
"""
|
||||
Core backtesting data structures.
|
||||
Stuff from this module can be imported from the top-level
|
||||
module directly, e.g.
|
||||
|
||||
from backtesting import Backtest, Strategy
|
||||
"""
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
import warnings
|
||||
from abc import abstractmethod, ABCMeta
|
||||
from collections import Sequence
|
||||
from concurrent.futures import ProcessPoolExecutor, as_completed
|
||||
from functools import partial
|
||||
from itertools import repeat, product, chain
|
||||
from numbers import Number
|
||||
from typing import Callable, Union, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from ._plotting import plot
|
||||
from ._util import _as_str, _Indicator, _Data, _data_period
|
||||
|
||||
|
||||
__pdoc__ = {
|
||||
'Strategy.__init__': None,
|
||||
'Orders.__init__': None,
|
||||
'Position.__init__': None,
|
||||
}
|
||||
|
||||
|
||||
_MARKET_PRICE = 'market'
|
||||
|
||||
|
||||
class Strategy(metaclass=ABCMeta):
|
||||
"""
|
||||
A trading strategy base class. Extend this class and
|
||||
override methods
|
||||
`backtesting.backtesting.Strategy.init` and
|
||||
`backtesting.backtesting.Strategy.next` to define
|
||||
your own strategy.
|
||||
"""
|
||||
def __init__(self, broker, data):
|
||||
self._indicators = []
|
||||
self._broker = broker # type: _Broker
|
||||
self._data = data # type: _Data
|
||||
self._params = {}
|
||||
|
||||
def __repr__(self):
|
||||
return '<Strategy ' + str(self) + '>'
|
||||
|
||||
def __str__(self):
|
||||
params = ','.join('{}={}'.format(*p) for p in zip(self._params.keys(),
|
||||
map(_as_str, self._params.values())))
|
||||
if params:
|
||||
params = '(' + params + ')'
|
||||
return '{}{}'.format(self.__class__.__name__, params)
|
||||
|
||||
def _set_params(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if not hasattr(self, k):
|
||||
raise AttributeError(
|
||||
"Strategy '{}' is missing parameter '{}'. Strategy class "
|
||||
"should define parameters as class variables before they "
|
||||
"can be optimized or run with.".format(self.__class__.__name__, k))
|
||||
|
||||
setattr(self, k, v)
|
||||
self._params = kwargs
|
||||
|
||||
def I(self, # noqa: E743
|
||||
func: Callable, *args,
|
||||
name=None, plot=True, overlay=None, color=None,
|
||||
**kwargs) -> np.ndarray:
|
||||
"""
|
||||
Declare indicator. An indicator is just an array of values,
|
||||
but one that is revealed gradually in
|
||||
`backtesting.backtesting.Strategy.next` much like
|
||||
`backtesting.backtesting.Strategy.data` is.
|
||||
Returns `np.ndarray` of indicator values.
|
||||
|
||||
`func` is a function that returns the indicator array of
|
||||
same length as `backtesting.backtesting.Strategy.data`.
|
||||
|
||||
In the plot legend, the indicator is labeled with
|
||||
function name, unless `name` overrides it.
|
||||
|
||||
If `plot` is `True`, the indicator is plotted on the resulting
|
||||
`backtesting.backtesting.Backtest.plot`.
|
||||
|
||||
If `overlay` is `True`, the indicator is plotted overlaying the
|
||||
price candlestick chart (suitable e.g. for moving averages).
|
||||
If `False`, the indicator is plotted standalone below the
|
||||
candlestick chart. By default, a heuristic is used which decides
|
||||
correctly most of the time.
|
||||
|
||||
`color` can be string hex RGB triplet. By default, the next
|
||||
available color is assigned.
|
||||
|
||||
Additional `*args` and `**kwargs` are passed to `func` and can
|
||||
be used for parameters.
|
||||
|
||||
For example, using simple moving average function from TA-Lib:
|
||||
|
||||
def init():
|
||||
self.sma = self.I(ta.SMA, self.data.Close, self.n_sma)
|
||||
"""
|
||||
if name is None:
|
||||
params = ','.join(filter(None, map(_as_str, chain(args, kwargs.values()))))
|
||||
func_name = func.__name__.replace('<lambda>', 'λ')
|
||||
name = ('{}({})' if params else '{}').format(func_name, params)
|
||||
else:
|
||||
name = name.format(*map(_as_str, args),
|
||||
**dict(zip(kwargs.keys(), map(_as_str, kwargs.values()))))
|
||||
|
||||
value = func(*args, **kwargs)
|
||||
|
||||
try:
|
||||
value = np.asarray(value)
|
||||
except Exception:
|
||||
raise ValueError('Indicators must return array-like sequences of values')
|
||||
if value.shape[-1] != len(self._data.Close):
|
||||
raise ValueError('Indicators must be arrays of same length as `data`')
|
||||
|
||||
if plot and overlay is None:
|
||||
x = value / self._data.Close
|
||||
# By default, overlay if strong majority of indicator values
|
||||
# is within 30% of Close
|
||||
with np.errstate(invalid='ignore'):
|
||||
overlay = ((x < 1.4) & (x > .6)).mean() > .6
|
||||
|
||||
value = _Indicator(value, name, plot=plot, overlay=overlay, color=color,
|
||||
# lib.resample_apply() uses this:
|
||||
data=self.data)
|
||||
self._indicators.append(value)
|
||||
return value
|
||||
|
||||
@abstractmethod
|
||||
def init(self):
|
||||
"""
|
||||
Initialize the strategy.
|
||||
Override this method.
|
||||
Declare indicators (with `backtesting.backtesting.Strategy.I`).
|
||||
Precompute what needs to be precomputed or can be precomputed
|
||||
in a vectorized fashion before the strategy starts.
|
||||
|
||||
If you extend composable strategies from `backtesting.lib`,
|
||||
make sure to call:
|
||||
|
||||
super().init()
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def next(self):
|
||||
"""
|
||||
Main strategy runtime method, called as each new
|
||||
`backtesting.backtesting.Strategy.data`
|
||||
instance (row; full candlestick bar) becomes available.
|
||||
This is the main method where strategy decisions
|
||||
upon data precomputed in `backtesting.backtesting.Strategy.init`
|
||||
take place.
|
||||
|
||||
If you extend composable strategies from `backtesting.lib`,
|
||||
make sure to call:
|
||||
|
||||
super().next()
|
||||
"""
|
||||
|
||||
def buy(self, price=None, *, sl=None, tp=None):
|
||||
"""
|
||||
Let the strategy close any current position and
|
||||
use _all available funds_ to
|
||||
buy the asset for `price`,
|
||||
optionally entering two other orders:
|
||||
one at stop-loss price (`sl`; stop-limit order) and
|
||||
one at take-profit price (`tp`; limit order).
|
||||
|
||||
If `price` is not set, market price is assumed.
|
||||
"""
|
||||
self._broker.buy(price and float(price),
|
||||
sl and float(sl),
|
||||
tp and float(tp))
|
||||
|
||||
def sell(self, price=None, *, sl=None, tp=None):
|
||||
"""
|
||||
Let the strategy close any current position and
|
||||
use _all available funds_ to
|
||||
short sell the asset for `price`,
|
||||
optionally entering two other orders:
|
||||
one at stop-loss price (`sl`; stop-limit order) and
|
||||
one at take-profit price (`tp`; limit order).
|
||||
|
||||
If `price` is not set, market price is assumed.
|
||||
"""
|
||||
self._broker.sell(price and float(price),
|
||||
sl and float(sl),
|
||||
tp and float(tp))
|
||||
|
||||
@property
|
||||
def equity(self):
|
||||
"""Current account equity (cash plus assets)."""
|
||||
return self._broker.equity
|
||||
|
||||
@property
|
||||
def data(self) -> _Data:
|
||||
"""
|
||||
Price data, roughly as passed into
|
||||
`backtesting.backtesting.Backtest.__init__`,
|
||||
but with two significant exceptions:
|
||||
|
||||
* `data` is _not_ a DataFrame, but a custom structure
|
||||
that serves customized numpy arrays for reasons of performance
|
||||
and convenience. Besides OHLCV columns, `.index` and length,
|
||||
it offers `.pip` property, the smallest price unit of change.
|
||||
* Within `backtesting.backtesting.Strategy.init`, `data` arrays
|
||||
are available in full length, as passed into
|
||||
`backtesting.backtesting.Backtest.__init__`
|
||||
(for precomputing indicators and such). However, within
|
||||
`backtesting.backtesting.Strategy.next`, `data` arrays are
|
||||
only as long as the current iteration, simulating gradual
|
||||
price point revelation. In each call of
|
||||
`backtesting.backtesting.Strategy.next` (iteratively called by
|
||||
`backtesting.backtesting.Backtest` internally),
|
||||
the last array value (e.g. `data.Close[-1]`)
|
||||
is always the _most recent_ value.
|
||||
|
||||
"""
|
||||
return self._data
|
||||
|
||||
@property
|
||||
def position(self):
|
||||
"""Instance of `backtesting.backtesting.Position`."""
|
||||
return self._broker.position
|
||||
|
||||
@property
|
||||
def orders(self):
|
||||
"""Instance of `backtesting.backtesting.Orders`."""
|
||||
return self._broker.orders
|
||||
|
||||
|
||||
class Orders:
|
||||
"""
|
||||
Orders waiting for execution, available as
|
||||
`backtesting.backtesting.Strategy.orders` within
|
||||
`backtesting.backtesting.Strategy.next`.
|
||||
|
||||
Implied limit and stop-limit orders (taking profits and stopping loss)
|
||||
are always present; set the limit price with
|
||||
`backtesting.backtesting.Orders.set_sl` and
|
||||
`backtesting.backtesting.Orders.set_tp`.
|
||||
"""
|
||||
def __init__(self, broker):
|
||||
self._broker = broker
|
||||
self._entry = self._sl = self._tp = self._close = self._is_long = None
|
||||
|
||||
def _update(self, entry, sl, tp, is_long=True):
|
||||
self._entry = entry and float(entry) or _MARKET_PRICE
|
||||
self._sl = sl and float(sl) or None
|
||||
self._tp = tp and float(tp) or None
|
||||
self._close = False
|
||||
self._is_long = is_long
|
||||
|
||||
@property
|
||||
def is_long(self):
|
||||
"""True if the waiting entry order is long."""
|
||||
return self._is_long
|
||||
|
||||
@property
|
||||
def is_short(self):
|
||||
"""True if the waiting entry order is short."""
|
||||
return not self._is_long
|
||||
|
||||
@property
|
||||
def entry(self):
|
||||
"""Price at which to enter the position if hit."""
|
||||
return self._entry
|
||||
|
||||
@property
|
||||
def sl(self):
|
||||
"""Stop-loss (stop-limit) price at which to exit the position if hit."""
|
||||
return self._sl
|
||||
|
||||
@property
|
||||
def tp(self):
|
||||
"""Take-profit (limit) price at which to exit the position if hit."""
|
||||
return self._tp
|
||||
|
||||
def __is_price_ok(self, price, is_limit_order):
|
||||
assert price is None or price > 0
|
||||
if not price:
|
||||
return
|
||||
market_price = self._broker.last_close
|
||||
# Entry (market/limit) or TP are limit orders, SL is stop order
|
||||
if (is_limit_order and (self._is_long and price < market_price or
|
||||
not self._is_long and price > market_price) or
|
||||
not is_limit_order and (self._is_long and price > market_price or
|
||||
not self._is_long and price < market_price)):
|
||||
raise ValueError("Setting the target price as sepcified would trigger "
|
||||
"the order immediately -- this is forbidden. "
|
||||
"Use `position.close()` to close the position, or similar.")
|
||||
|
||||
def set_entry(self, price):
|
||||
"""Set new entry price of the implied limit order)."""
|
||||
if self._entry is None and price is not None:
|
||||
raise RuntimeError("Can't reset order for position entry. "
|
||||
"The order has been already executed or no "
|
||||
"buy/sell order was put in place.")
|
||||
self.__is_price_ok(price, True)
|
||||
self._entry = price and float(price)
|
||||
|
||||
def set_sl(self, price):
|
||||
"""Set new stop-loss price (of the implied stop-limit order)."""
|
||||
if self._entry is None and not self._broker._position:
|
||||
raise RuntimeError("You don't currently hold a position to set "
|
||||
"stop-loss for.")
|
||||
self.__is_price_ok(price, False)
|
||||
self._sl = price and float(price)
|
||||
|
||||
def set_tp(self, price):
|
||||
"""Set new take-profit price (of the implied limit order)."""
|
||||
if self._entry is None and not self._broker._position:
|
||||
raise RuntimeError("You don't currently hold a position to set "
|
||||
"take-profit limit for.")
|
||||
self.__is_price_ok(price, True)
|
||||
self._tp = price and float(price)
|
||||
|
||||
def cancel(self):
|
||||
"""Cancel all implied orders."""
|
||||
self._entry = self._sl = self._tp = self._close = self._is_long = None
|
||||
|
||||
def __bool__(self):
|
||||
return bool(self._entry or self._sl or self._tp or self._close)
|
||||
|
||||
def __repr__(self):
|
||||
return '<Orders: %.6f %.6f %.6f %d>' % (self._entry or np.nan,
|
||||
self._sl or np.nan,
|
||||
self._tp or np.nan,
|
||||
self._close or 0)
|
||||
__str__ = __repr__
|
||||
|
||||
|
||||
class Position:
|
||||
"""
|
||||
Currently held asset position, available as
|
||||
`backtesting.backtesting.Strategy.position` within
|
||||
`backtesting.backtesting.Strategy.next`.
|
||||
Can be used in boolean contexts, e.g.
|
||||
|
||||
if self.position:
|
||||
... # we have a position, either long or short
|
||||
"""
|
||||
def __init__(self, broker):
|
||||
self._broker = broker
|
||||
|
||||
def __bool__(self):
|
||||
return self.size != 0
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
"""Position size in units of asset. Negative if position is short."""
|
||||
return self._broker._position
|
||||
|
||||
@property
|
||||
def open_price(self):
|
||||
"""Price at which the position was opened."""
|
||||
return self._broker._position_open_price
|
||||
|
||||
@property
|
||||
def open_time(self):
|
||||
"""Data index value at which the position was opened."""
|
||||
i = self._broker._position_open_i
|
||||
return i if i is None else self._broker._data.index[i]
|
||||
|
||||
def _pl(self, price):
|
||||
open, size = self.open_price, self.size
|
||||
pl = (price - open) * size
|
||||
pl -= open * self._broker._commission * abs(size)
|
||||
return pl
|
||||
|
||||
@property
|
||||
def pl(self):
|
||||
"""Profit (positive) or loss (negative) of current position."""
|
||||
return self._pl(self._broker._data.Close[-1])
|
||||
|
||||
@property
|
||||
def pl_pct(self):
|
||||
"""
|
||||
Profit (positive) or loss (negative) of current position,
|
||||
in percent of position open price.
|
||||
"""
|
||||
return self.pl / (self.open_price * abs(self.size))
|
||||
|
||||
@property
|
||||
def is_long(self):
|
||||
"""True if the position is long (position size is positive)."""
|
||||
return self.size > 0
|
||||
|
||||
@property
|
||||
def is_short(self):
|
||||
"""True if the position is short (position size is negative)."""
|
||||
return self.size < 0
|
||||
|
||||
def close(self):
|
||||
"""Close the position at current market price."""
|
||||
self._broker.close()
|
||||
|
||||
def __repr__(self):
|
||||
return '<Position: %d>' % self.size
|
||||
|
||||
|
||||
class _OutOfMoneyError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class _Broker:
|
||||
class _Log:
|
||||
def __init__(self, length):
|
||||
self.equity = np.tile(np.nan, length)
|
||||
self.exit_entry = np.tile(np.nan, length)
|
||||
self.exit_position = np.tile(np.nan, length)
|
||||
self.entry_price = np.tile(np.nan, length)
|
||||
self.exit_price = np.tile(np.nan, length)
|
||||
self.pl = np.tile(np.nan, length)
|
||||
|
||||
def __init__(self, *, data, cash, commission, margin, trade_on_close, length):
|
||||
assert 0 < cash, "cash shosuld be >0, is {}".format(cash)
|
||||
assert 0 <= commission < .1, "commission should be between 0-10%, is {}".format(commission)
|
||||
assert 0 < margin <= 1, "margin should be between 0 and 1, is {}".format(margin)
|
||||
self._data = data # type: _Data
|
||||
self._cash = cash
|
||||
self._commission = commission
|
||||
self._leverage = 1 / margin
|
||||
self._trade_on_close = trade_on_close
|
||||
self._position = 0
|
||||
self._position_open_price = 0
|
||||
self._position_open_i = None
|
||||
self.log = self._Log(length)
|
||||
self.position = Position(self)
|
||||
self.orders = Orders(self)
|
||||
|
||||
def __repr__(self):
|
||||
return '<Broker: {:.0f}{:+.1f}>'.format(self._cash, self.position.pl)
|
||||
|
||||
def buy(self, price=None, sl=None, tp=None):
|
||||
assert (sl or -np.inf) <= (price or self.last_close) <= (tp or np.inf), (sl, price or self.last_close, tp) # noqa: E501
|
||||
self.orders._update(price, sl, tp)
|
||||
|
||||
def sell(self, price=None, sl=None, tp=None):
|
||||
assert (tp or -np.inf) <= (price or self.last_close) <= (sl or np.inf), (tp, price or self.last_close, sl) # noqa: E501
|
||||
self.orders._update(price, sl, tp, is_long=False)
|
||||
|
||||
def close(self):
|
||||
self.orders.cancel()
|
||||
self.orders._close = True
|
||||
|
||||
def _get_market_price(self, price):
|
||||
i = self._i
|
||||
if price in (_MARKET_PRICE, None):
|
||||
price = self._data.Open[-1]
|
||||
if self._trade_on_close:
|
||||
price = self._data.Close[-2]
|
||||
i -= 1
|
||||
return i, price
|
||||
|
||||
@property
|
||||
def last_close(self):
|
||||
"""Return price at the last (current) close.
|
||||
Used e.g. in `Orders._is_price_ok()` to see if the set price is reasonable.
|
||||
"""
|
||||
return self._data.Close[-1]
|
||||
|
||||
def _open_position(self, price, is_long):
|
||||
assert not self._position
|
||||
self.orders.set_entry(None)
|
||||
|
||||
i, price = self._get_market_price(price)
|
||||
|
||||
position = float(self._cash * self._leverage / (price * (1 + self._commission)))
|
||||
self._position = position if is_long else -position
|
||||
self._position_open_price = price
|
||||
self._position_open_i = i
|
||||
|
||||
self.log.entry_price[i] = price
|
||||
|
||||
def _close_position(self, price=None):
|
||||
if not self._position:
|
||||
return
|
||||
|
||||
i, price = self._get_market_price(price)
|
||||
pl = self.position._pl(price)
|
||||
|
||||
self.log.pl[i] = pl
|
||||
self.log.exit_entry[i] = self._position_open_i
|
||||
self.log.exit_price[i] = price
|
||||
self.log.exit_position[i] = self._position
|
||||
|
||||
self._cash += pl
|
||||
self._position = 0
|
||||
|
||||
@property
|
||||
def equity(self):
|
||||
return self._cash + self.position.pl
|
||||
|
||||
def next(self):
|
||||
data = self._data
|
||||
i = self._i = len(data) - 1
|
||||
|
||||
if self.orders:
|
||||
orders = self.orders
|
||||
is_long = orders._is_long
|
||||
entry, sl, tp = orders._entry, orders._sl, orders._tp
|
||||
open, high, low = data.Open[-1], data.High[-1], data.Low[-1]
|
||||
|
||||
if entry or orders._close:
|
||||
self._close_position()
|
||||
orders._close = False
|
||||
|
||||
# First make the entry order, if hit
|
||||
if entry:
|
||||
if entry is _MARKET_PRICE or high > orders._entry > low:
|
||||
self._open_position(entry, is_long)
|
||||
|
||||
# Check if stop-loss threshold was hit
|
||||
if sl and self._position:
|
||||
price = (sl if low <= sl <= high else # hit
|
||||
open if (is_long and open < sl or # gapped hit
|
||||
not is_long and open > sl) else
|
||||
None) # not hit
|
||||
if price is not None:
|
||||
self._close_position(price)
|
||||
self.orders.cancel()
|
||||
|
||||
# Check if take-profit threshold was hit
|
||||
if tp and self._position:
|
||||
price = (tp if low < tp < high else
|
||||
open if (is_long and open > tp or
|
||||
not is_long and open > sl) else
|
||||
None)
|
||||
if price is not None:
|
||||
self._close_position(price)
|
||||
self.orders.cancel()
|
||||
|
||||
# Log account equity for the equity curve
|
||||
equity = self.equity
|
||||
self.log.equity[i] = equity
|
||||
|
||||
# Hovever, if negative, set all to 0 and stop the simulation
|
||||
if equity < 0:
|
||||
self._close_position()
|
||||
self._cash = 0
|
||||
self.log.equity[i:] = 0
|
||||
raise _OutOfMoneyError
|
||||
|
||||
|
||||
class Backtest:
|
||||
"""
|
||||
Backtest a particular (parameterized) strategy
|
||||
on particular data.
|
||||
|
||||
Upon initialization, call method
|
||||
`backtesting.backtesting.Backtest.run` to run a backtest
|
||||
instance, or `backtesting.backtesting.Backtest.optimize` to
|
||||
optimize it.
|
||||
"""
|
||||
def __init__(self,
|
||||
data: pd.DataFrame,
|
||||
strategy: type(Strategy),
|
||||
*,
|
||||
cash: float = 10000,
|
||||
commission: float = .0,
|
||||
margin: float = 1.,
|
||||
trade_on_close=False
|
||||
):
|
||||
"""
|
||||
Initialize a backtest. Requires data and a strategy to test.
|
||||
|
||||
`data` is a `pd.DataFrame` with columns:
|
||||
`Open`, `High`, `Low`, `Close`, and (optionally) `Volume`.
|
||||
If any columns are missing, set them to what you have available,
|
||||
e.g.
|
||||
|
||||
df['Open'] = df['High'] = df['Low'] = df['Close']
|
||||
|
||||
DataFrame index can be either datetime index (timestamps)
|
||||
or a monotonic range index (i.e. a sequence of periods).
|
||||
|
||||
`strategy` is a `backtesting.backtesting.Strategy`
|
||||
_subclass_ (not instance).
|
||||
|
||||
`cash` is the initial cash to start with.
|
||||
|
||||
`commission` is the commision ratio. E.g. if your broker's commission
|
||||
is 1% of trade value, set commission to `0.01`. Note, if you wish to
|
||||
account for bid-ask spread, you approximate doing so by increasing
|
||||
the commission, e.g. set it to `0.0002` for commission-less forex
|
||||
trading where average spread is roughly 0.2‰ of asking price.
|
||||
|
||||
`margin` is the required margin (ratio) of a leveraged account.
|
||||
No difference is made between initial and maintenance margins.
|
||||
To run the backtest using e.g. 50:1 leverge your broker allows,
|
||||
set margin to `0.02`.
|
||||
|
||||
If `trade_on_close` is `True`, market orders will be executed
|
||||
with respect to the current bar's closing price instead of the
|
||||
next bar's open.
|
||||
"""
|
||||
|
||||
if not (isinstance(strategy, type) and issubclass(strategy, Strategy)):
|
||||
raise TypeError('`strategy` must be a Strategy sub-type')
|
||||
if not isinstance(commission, Number):
|
||||
raise TypeError('`commission` must be a float value, percent of '
|
||||
'entry order price')
|
||||
|
||||
data = data.copy(False)
|
||||
|
||||
# Convert index to datetime index
|
||||
if (not data.index.is_all_dates and
|
||||
not isinstance(data.index, pd.RangeIndex) and
|
||||
# Numeric index with most large numbers
|
||||
(data.index.is_numeric() and
|
||||
(data.index > pd.Timestamp('1975').timestamp()).mean() > .8)):
|
||||
try:
|
||||
data.index = pd.to_datetime(data.index, infer_datetime_format=True)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
if 'Volume' not in data:
|
||||
data['Volume'] = np.nan
|
||||
|
||||
if len(data.columns & {'Open', 'High', 'Low', 'Close', 'Volume'}) != 5:
|
||||
raise ValueError("`data` must be a pandas.DataFrame with columns "
|
||||
"'Open', 'High', 'Low', 'Close', and (optionally) 'Volume'") from None
|
||||
if data[['Open', 'High', 'Low', 'Close']].max().isnull().any():
|
||||
raise ValueError('Some OHLC values are missing (NaN). '
|
||||
'Please strip those lines with `df.dropna()` or '
|
||||
'fill them in with `df.interpolate()` or whatever.')
|
||||
if not data.index.is_monotonic_increasing:
|
||||
warnings.warn('Data index is not sorted in ascending order. Sorting.',
|
||||
stacklevel=2)
|
||||
data = data.sort_index()
|
||||
if not data.index.is_all_dates:
|
||||
warnings.warn('Data index is not datetime. Assuming simple periods.',
|
||||
stacklevel=2)
|
||||
|
||||
self._data = data # type: pd.DataFrame
|
||||
self._broker = partial(
|
||||
_Broker, cash=cash, commission=commission, margin=margin,
|
||||
trade_on_close=trade_on_close, length=len(data)
|
||||
)
|
||||
self._strategy = strategy
|
||||
self._results = None
|
||||
|
||||
def run(self, **kwargs) -> pd.Series:
|
||||
"""
|
||||
Run the backtest. Returns `pd.Series` with results and statistics.
|
||||
|
||||
Keyword arguments are interpreted as strategy parameters.
|
||||
"""
|
||||
data = _Data(self._data)
|
||||
broker = self._broker(data=data) # type: _Broker
|
||||
strategy = self._strategy(broker, data) # type: Strategy
|
||||
|
||||
strategy._set_params(**kwargs)
|
||||
|
||||
strategy.init()
|
||||
indicator_attrs = {attr: indicator
|
||||
for attr, indicator in strategy.__dict__.items()
|
||||
if isinstance(indicator, _Indicator)}.items()
|
||||
|
||||
# Skip first few candles where indicators are still "warming up"
|
||||
# +1 to have at least two entries available
|
||||
start = 1 + max((np.isnan(indicator).argmin()
|
||||
for _, indicator in indicator_attrs), default=0)
|
||||
|
||||
# Disable "invalid value encountered in ..." warnings. Comparison
|
||||
# np.nan >= 3 is not invalid; it's False.
|
||||
with np.errstate(invalid='ignore'):
|
||||
|
||||
for i in range(start, len(self._data)):
|
||||
# Prepare data and indicators for `next` call
|
||||
data._set_length(i + 1)
|
||||
for attr, indicator in indicator_attrs:
|
||||
# Slice indicator on the last dimension (case of 2d indicator)
|
||||
setattr(strategy, attr, indicator[..., :i + 1])
|
||||
|
||||
# Handle orders processing and broker stuff
|
||||
try:
|
||||
broker.next()
|
||||
except _OutOfMoneyError:
|
||||
break
|
||||
|
||||
# Next tick, a moment before bar close
|
||||
strategy.next()
|
||||
|
||||
self._results = self._compute_stats(broker, strategy)
|
||||
return self._results
|
||||
|
||||
def optimize(self,
|
||||
maximize: Union[str, Callable[[pd.Series], float]] = 'SQN',
|
||||
constraint: Callable[[dict], bool] = None,
|
||||
return_heatmap: bool = False,
|
||||
**kwargs) -> Union[pd.Series, Tuple[pd.Series, pd.Series]]:
|
||||
"""
|
||||
Optimize strategy parameters to an optimal combination using
|
||||
parallel exhaustive search. Returns result `pd.Series` of
|
||||
the best run.
|
||||
|
||||
`maximize` is a string key from the
|
||||
`backtesting.backtesting.Backtest.run`-returned results series,
|
||||
or a function that accepts this series object and returns a number;
|
||||
the higher the better. By default, the method maximizes
|
||||
Van Tharp's [System Quality Number](https://google.com/search?q=System+Quality+Number).
|
||||
|
||||
`constraint` is a function that accepts a dict-like object of
|
||||
parameters (with values) and returns `True` when the combination
|
||||
is admissible to test with. By default, any parameters combination
|
||||
is considered admissible.
|
||||
|
||||
If `return_heatmap` is `True`, besides returning the result
|
||||
series, an additional `pd.Series` is returned with a multiindex
|
||||
of all admissible parameter combinations, which can be further
|
||||
inspected or projected onto 2D to plot a heatmap.
|
||||
|
||||
Additional keyword arguments represent strategy arguments with
|
||||
list-like collections of possible values. For example:
|
||||
|
||||
backtest.optimize(sma1=[5, 10, 15], sma2=[10, 20, 40],
|
||||
constraint=lambda p: p.sma1 < p.sma2)
|
||||
|
||||
finds and returns the "best" of the 7 admissible (of the
|
||||
9 possible) parameter combinations.
|
||||
"""
|
||||
if not kwargs:
|
||||
raise ValueError('Need some strategy parameters to optimize')
|
||||
|
||||
if isinstance(maximize, str):
|
||||
|
||||
stats = self._results if self._results is not None else self.run()
|
||||
if maximize not in stats:
|
||||
raise ValueError('`maximize`, if str, must match a key in pd.Series '
|
||||
'result of backtest.run()')
|
||||
|
||||
def maximize(stats: pd.Series, _key=maximize):
|
||||
return stats[_key]
|
||||
|
||||
elif not callable(maximize):
|
||||
raise TypeError('`maximize` must be str (a field of backtest.run() result '
|
||||
'Series) or a function that accepts result Series '
|
||||
'and returns a number; the higher the better')
|
||||
|
||||
if constraint is None:
|
||||
|
||||
def constraint(_):
|
||||
return True
|
||||
|
||||
elif not callable(constraint):
|
||||
raise TypeError("`constraint` must be a function that accepts a dict "
|
||||
"of strategy parameters and returns a bool whether "
|
||||
"the combination of parameters is admissible or not")
|
||||
|
||||
def _tuple(x):
|
||||
return x if isinstance(x, Sequence) and not isinstance(x, str) else (x,)
|
||||
|
||||
class AttrDict(dict):
|
||||
def __getattr__(self, item):
|
||||
return self[item]
|
||||
|
||||
param_combos = tuple(map(dict, # back to dict so it pickles
|
||||
filter(constraint, # constraints applied on our fancy dict
|
||||
map(AttrDict,
|
||||
product(*(zip(repeat(k), _tuple(v))
|
||||
for k, v in kwargs.items()))))))
|
||||
if not param_combos:
|
||||
raise ValueError('No admissible parameter combinations to test')
|
||||
|
||||
if len(param_combos) > 300:
|
||||
warnings.warn('Searching best of {} configurations.'.format(len(param_combos)),
|
||||
stacklevel=2)
|
||||
|
||||
heatmap = pd.Series(np.nan,
|
||||
index=pd.MultiIndex.from_tuples([p.values() for p in param_combos],
|
||||
names=next(iter(param_combos)).keys()))
|
||||
|
||||
# TODO: add parameter `max_tries:Union[int, float]=None` which switches
|
||||
# exhaustive grid search to random search. This might need to avoid
|
||||
# returning NaNs in stats on runs with no trades to differentiate those
|
||||
# from non-tested parameter combos in heatmap.
|
||||
|
||||
def _batch(seq):
|
||||
n = np.clip(len(param_combos) // (os.cpu_count() or 1), 5, 300)
|
||||
for i in range(0, len(seq), n):
|
||||
yield seq[i:i + n]
|
||||
|
||||
with ProcessPoolExecutor() as executor:
|
||||
for future in as_completed(executor.submit(self._mp_task, params)
|
||||
for params in _batch(param_combos)):
|
||||
for params, stats in future.result():
|
||||
heatmap[tuple(params.values())] = maximize(stats)
|
||||
|
||||
best_params = heatmap.idxmax()
|
||||
|
||||
if pd.isnull(best_params):
|
||||
# No trade was made in any of the runs. Just make a random
|
||||
# run so we get some, if empty, results
|
||||
self.run(**param_combos[0])
|
||||
else:
|
||||
# Re-run best strategy so that the next .plot() call will render it
|
||||
self.run(**dict(zip(heatmap.index.names, best_params)))
|
||||
|
||||
if return_heatmap:
|
||||
return self._results, heatmap
|
||||
return self._results
|
||||
|
||||
def _mp_task(self, param_combos):
|
||||
return [(params, stats) for params, stats in ((params, self.run(**params))
|
||||
for params in param_combos)
|
||||
if stats['# Trades']]
|
||||
|
||||
def _compute_stats(self, broker: _Broker, strategy: Strategy) -> pd.Series:
|
||||
data = self._data
|
||||
|
||||
def _drawdown_duration_peaks(dd, index):
|
||||
# XXX: possible to vectorize any of this?
|
||||
durations = [np.nan] * len(dd)
|
||||
peaks = [np.nan] * len(dd)
|
||||
i = 0
|
||||
for j in range(1, len(dd)):
|
||||
if dd[j] == 0:
|
||||
if dd[j - 1] != 0:
|
||||
durations[j - 1] = index[j] - index[i]
|
||||
peaks[j - 1] = dd[i:j].max()
|
||||
i = j
|
||||
return pd.Series(durations), pd.Series(peaks)
|
||||
|
||||
df = pd.DataFrame()
|
||||
df['Equity'] = pd.Series(broker.log.equity).bfill().fillna(broker._cash)
|
||||
equity = df.Equity.values
|
||||
df['Exit Entry'] = broker.log.exit_entry
|
||||
exits = df['Exit Entry']
|
||||
df['Exit Position'] = broker.log.exit_position
|
||||
df['Entry Price'] = broker.log.entry_price
|
||||
df['Exit Price'] = broker.log.exit_price
|
||||
df['P/L'] = broker.log.pl
|
||||
pl = df['P/L']
|
||||
df['Returns'] = returns = pl.dropna() / equity[exits.dropna().values.astype(int)]
|
||||
df['Drawdown'] = dd = 1 - equity / np.maximum.accumulate(equity)
|
||||
dd_dur, dd_peaks = _drawdown_duration_peaks(dd, data.index)
|
||||
df['Drawdown Duration'] = dd_dur
|
||||
dd_dur = df['Drawdown Duration']
|
||||
|
||||
df.index = data.index
|
||||
|
||||
def _round_timedelta(value, _period=_data_period(df)):
|
||||
return value.ceil(_period.resolution) if isinstance(value, pd.Timedelta) else value
|
||||
|
||||
s = pd.Series()
|
||||
s['Start'] = df.index[0]
|
||||
s['End'] = df.index[-1]
|
||||
# Assigning Timedeltas needs the key to exist beforehand,
|
||||
# otherwise the value is interpreted as nanosec *int*. See:
|
||||
# https://github.com/pandas-dev/pandas/issues/22717
|
||||
s['Duration'] = 0
|
||||
s['Duration'] = s.End - s.Start
|
||||
exits = df['Exit Entry'] # After reindexed
|
||||
durations = (exits.dropna().index - df.index[exits.dropna().values.astype(int)]).to_series()
|
||||
s['Exposure [%]'] = np.nan_to_num(durations.sum() / (s['Duration'] or np.nan) * 100)
|
||||
s['Equity Final [$]'] = equity[-1]
|
||||
s['Equity Peak [$]'] = equity.max()
|
||||
s['Return [%]'] = (equity[-1] - equity[0]) / equity[0] * 100
|
||||
c = data.Close.values
|
||||
s['Buy & Hold Return [%]'] = abs(c[-1] - c[0]) / c[0] * 100 # long OR short
|
||||
s['Max. Drawdown [%]'] = max_dd = -np.nan_to_num(dd.max()) * 100
|
||||
s['Avg. Drawdown [%]'] = -dd_peaks.mean() * 100
|
||||
s['Max. Drawdown Duration'] = 0
|
||||
s['Max. Drawdown Duration'] = _round_timedelta(dd_dur.max())
|
||||
s['Avg. Drawdown Duration'] = 0
|
||||
s['Avg. Drawdown Duration'] = _round_timedelta(dd_dur.mean())
|
||||
s['# Trades'] = n_trades = pl.count()
|
||||
s['Win Rate [%]'] = win_rate = np.nan if not n_trades else (pl > 0).sum() / n_trades * 100
|
||||
s['Best Trade [%]'] = returns.max() * 100
|
||||
s['Worst Trade [%]'] = returns.min() * 100
|
||||
mean_return = returns.mean()
|
||||
s['Avg. Trade [%]'] = mean_return * 100
|
||||
s['Max. Trade Duration'] = 0
|
||||
s['Max. Trade Duration'] = _round_timedelta(durations.max())
|
||||
s['Avg. Trade Duration'] = 0
|
||||
s['Avg. Trade Duration'] = _round_timedelta(durations.mean())
|
||||
s['Expectancy [%]'] = ((returns[returns > 0].mean() * win_rate -
|
||||
returns[returns < 0].mean() * (100 - win_rate)))
|
||||
pl = pl.dropna()
|
||||
s['SQN'] = np.sqrt(n_trades) * pl.mean() / pl.std()
|
||||
s['Sharpe Ratio'] = mean_return / (returns.std() or np.nan)
|
||||
s['Sortino Ratio'] = mean_return / (returns[returns < 0].std() or np.nan)
|
||||
s['Calmar Ratio'] = mean_return / ((-max_dd / 100) or np.nan)
|
||||
|
||||
s['_strategy'] = strategy
|
||||
s._trade_data = df # Private API
|
||||
return s
|
||||
|
||||
def plot(self, *, results: pd.Series = None, filename=None, plot_width=1200,
|
||||
plot_equity=True, plot_pl=True,
|
||||
plot_volume=True, plot_drawdown=False,
|
||||
smooth_equity=False, relative_equity=True,
|
||||
omit_missing=True, superimpose: Union[bool, str] = True,
|
||||
show_legend=True, open_browser=True):
|
||||
"""
|
||||
Plot the progression of the last backtest run.
|
||||
|
||||
If `results` is proided, it should be a particular result
|
||||
`pd.Series` such as returned by
|
||||
`backtesting.backtesting.Backtest.run` or
|
||||
`backtesting.backtesting.Backtest.optimize`.
|
||||
|
||||
`filename` is the path to save the interactive HTML plot to.
|
||||
By default, a strategy/parameter-dependent file is created in the
|
||||
current working directory.
|
||||
|
||||
`plot_width` is the width of the plot in pixels. The height is
|
||||
currently non-adjustable. FIXME: If someone can make the Bokeh
|
||||
plot span 100% browser width by default, a contribution would
|
||||
be appreciated.
|
||||
|
||||
If `plot_equity` is `True`, the resulting plot will contain
|
||||
an equity (cash plus assets) graph section.
|
||||
|
||||
If `plot_pl` is `True`, the resulting plot will contain
|
||||
a profit/loss (P/L) indicator section.
|
||||
|
||||
If `plot_volume` is `True`, the resulting plot will contain
|
||||
a trade volume section.
|
||||
|
||||
If `plot_drawdown` is `True`, the resulting plot will contain
|
||||
a separate drawdown graph section.
|
||||
|
||||
If `smooth_equity` is `True`, the equity graph will be
|
||||
interpolated between points of cash-only positions,
|
||||
unaffected by any interim asset volatility.
|
||||
|
||||
If `relative_equity` is `True`, scale and label equity graph axis
|
||||
with return percent, not absolute cash-equivalent values.
|
||||
|
||||
If `omit_missing` is `True`, skip missing candlestick bars on the
|
||||
datetime axis.
|
||||
|
||||
If `superimpose` is `True`, superimpose downsampled candlesticks
|
||||
over the original candlestick chart. Default downsampling is:
|
||||
weekly for daily data, daily for hourly data, hourly for minute data,
|
||||
and minute for second and sub-second data.
|
||||
`superimpose` can also be a string, in which case it is a valid
|
||||
[Pandas offset string], such as `'5T'` or `'5min'`.
|
||||
Note, this only works for data with a datetime index.
|
||||
|
||||
[Pandas offset string]: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
|
||||
|
||||
If `show_legend` is `True`, the resulting plot graphs will contain
|
||||
labeled legends.
|
||||
|
||||
If `open_browser` is `True`, the resulting `filename` will be
|
||||
opened in the default web browser.
|
||||
"""
|
||||
if results is None:
|
||||
if self._results is None:
|
||||
raise RuntimeError('First issue `backtest.run()` to obtain results.')
|
||||
results = self._results
|
||||
|
||||
def _windos_safe_filename(filename):
|
||||
if sys.platform.startswith('win'):
|
||||
return re.sub(r'[^a-zA-Z0-9,_-]', '_', filename.replace('=', '-'))
|
||||
return filename
|
||||
|
||||
plot(
|
||||
results=results,
|
||||
df=self._data,
|
||||
indicators=results._strategy._indicators,
|
||||
filename=filename or _windos_safe_filename(str(results._strategy)),
|
||||
plot_width=plot_width,
|
||||
plot_equity=plot_equity,
|
||||
plot_pl=plot_pl,
|
||||
plot_volume=plot_volume,
|
||||
omit_missing=omit_missing,
|
||||
plot_drawdown=plot_drawdown,
|
||||
smooth_equity=smooth_equity,
|
||||
relative_equity=relative_equity,
|
||||
superimpose=superimpose,
|
||||
show_legend=show_legend,
|
||||
open_browser=open_browser)
|
||||
309
backtesting/lib.py
Normal file
309
backtesting/lib.py
Normal file
@@ -0,0 +1,309 @@
|
||||
"""
|
||||
Collection of common building blocks, helper auxiliary functions and
|
||||
composable strategy classes for reuse.
|
||||
|
||||
Intended for simple missing-link procedures, not reinventing
|
||||
of better-suited, state-of-the-art, fast libraries,
|
||||
such as TA-Lib, Tulipy, PyAlgoTrade, NumPy, SciPy ...
|
||||
|
||||
Please raise ideas for additions to this collection on the [issue tracker].
|
||||
|
||||
[issue tracker]: https://github.com/kernc/backtesting.py
|
||||
"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from itertools import compress
|
||||
from numbers import Number
|
||||
from inspect import currentframe
|
||||
from typing import Sequence, Optional, Union, Callable
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from .backtesting import Strategy
|
||||
from ._plotting import plot_heatmaps as _plot_heatmaps
|
||||
from ._util import _Indicator, _as_str
|
||||
|
||||
|
||||
OHLCV_AGG = OrderedDict((
|
||||
('Open', 'first'),
|
||||
('High', 'max'),
|
||||
('Low', 'min'),
|
||||
('Close', 'last'),
|
||||
('Volume', 'sum'),
|
||||
))
|
||||
"""Dictionary of rules for aggregating resampled OHLCV data frames,
|
||||
e.g.
|
||||
|
||||
df.resample('4H', label='right').agg(OHLCV_AGG)
|
||||
"""
|
||||
|
||||
|
||||
def barssince(condition: Sequence[bool], default=np.inf) -> int:
|
||||
"""
|
||||
Return the number of bars since `condition` sequence was last `True`,
|
||||
or if never, return `default`.
|
||||
|
||||
>>> barssince(self.data.Close > self.data.Open)
|
||||
3
|
||||
"""
|
||||
return next(compress(range(len(condition)), reversed(condition)), default)
|
||||
|
||||
|
||||
def cross(series1, series2) -> bool:
|
||||
"""
|
||||
Return `True` if `series1` and `series2` just crossed (either
|
||||
direction).
|
||||
|
||||
>>> cross(self.data.Close, self.sma)
|
||||
True
|
||||
|
||||
"""
|
||||
return crossover(series1, series2) or crossover(series2, series1)
|
||||
|
||||
|
||||
def crossover(series1, series2) -> bool:
|
||||
"""
|
||||
Return `True` if `series1` just crossed over
|
||||
`series2`.
|
||||
|
||||
>>> crossover(self.data.Close, self.sma)
|
||||
True
|
||||
"""
|
||||
series1 = (
|
||||
series1.values if isinstance(series1, pd.Series) else
|
||||
(series1, series1) if isinstance(series1, Number) else
|
||||
series1)
|
||||
series2 = (
|
||||
series2.values if isinstance(series2, pd.Series) else
|
||||
(series2, series2) if isinstance(series2, Number) else
|
||||
series2)
|
||||
try:
|
||||
return series1[-2] < series2[-2] and series1[-1] > series2[-1]
|
||||
except IndexError:
|
||||
return False
|
||||
|
||||
|
||||
def plot_heatmaps(heatmap: pd.Series,
|
||||
agg: Union[str, Callable] = 'max',
|
||||
*,
|
||||
ncols: int = 3,
|
||||
plot_width: int = 1200,
|
||||
filename: str = '',
|
||||
open_browser: bool = True):
|
||||
"""
|
||||
Plots a grid of heatmaps, one for every pair of parameters in `heatmap`.
|
||||
|
||||
`heatmap` is a Series as returned by
|
||||
`backtesting.backtesting.Backtest.optimize` when its parameter
|
||||
`return_heatmap=True`.
|
||||
|
||||
When projecting the n-dimensional heatmap onto 2D, the values are
|
||||
aggregated by 'max' function by default. This can be tweaked
|
||||
with `agg` parameter, which accepts any argument pandas knows
|
||||
how to aggregate by.
|
||||
"""
|
||||
return _plot_heatmaps(heatmap, agg, ncols, filename, plot_width, open_browser)
|
||||
|
||||
|
||||
def quantile(series, quantile=None):
|
||||
"""
|
||||
If `quantile` is `None`, return the quantile _rank_ of the last
|
||||
value of `series` wrt former series values.
|
||||
|
||||
If `quantile` is a value between 0 and 1, return the _value_ of
|
||||
`series` at this quantile. If used to working with percentiles, just
|
||||
divide your percentile amount with 100 to obtain quantiles.
|
||||
|
||||
>>> quantile(self.data.Close[-20:], .1)
|
||||
162.130
|
||||
>>> quantile(self.data.Close)
|
||||
0.13
|
||||
"""
|
||||
if quantile is None:
|
||||
try:
|
||||
last, series = series[-1], series[:-1]
|
||||
return np.mean(series < last)
|
||||
except IndexError:
|
||||
return np.nan
|
||||
assert 0 <= quantile <= 1, "quantile must be within [0, 1]"
|
||||
return np.nanpercentile(series, quantile * 100)
|
||||
|
||||
|
||||
def resample_apply(rule: str,
|
||||
func: Callable,
|
||||
series,
|
||||
*args, **kwargs):
|
||||
"""
|
||||
Apply `func` (such as an indicator) to `series`, resampled to
|
||||
a time frame specified by `rule`. When called from inside
|
||||
`backtesting.backtesting.Strategy.init`,
|
||||
the result (returned) series will be automatically wrapped in
|
||||
`backtesting.backtesting.Strategy.I`
|
||||
wrapper method.
|
||||
|
||||
`rule` is a valid [Pandas offset string] indicating
|
||||
a time frame to resample `series` to.
|
||||
|
||||
[Pandas offset string]: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
|
||||
|
||||
`func` is the indicator function to apply on the resampled series.
|
||||
|
||||
`series` is a data series (or array), such as any of the
|
||||
`backtesting.backtesting.Strategy.data` series. Due to pandas
|
||||
resampling limitations, this only works when input series
|
||||
has a datetime index.
|
||||
|
||||
Finally, any `*args` and `**kwargs` that are not already eaten by
|
||||
implicit `backtesting.backtesting.Strategy.I` call
|
||||
are passed to `func`.
|
||||
|
||||
For example, if we have a typical moving average function
|
||||
`SMA(values, lookback_period)`, _hourly_ data source, and need to
|
||||
apply the moving average MA(10) on a _daily_ time frame,
|
||||
but don't want to plot the resulting indicator, we can do:
|
||||
|
||||
class System(Strategy):
|
||||
def init(self):
|
||||
self.sma = resample_apply(
|
||||
'D', SMA, self.data.Close, 10, plot=False)
|
||||
"""
|
||||
if not isinstance(series, pd.Series):
|
||||
series = pd.Series(series,
|
||||
index=series._opts['data'].index,
|
||||
name=series.name)
|
||||
|
||||
resampled = series.resample(rule, label='right').agg('last').dropna()
|
||||
resampled.name = _as_str(series) + '[' + rule + ']'
|
||||
|
||||
# Check first few stack frames if we are being called from
|
||||
# inside Strategy.init, and if so, extract Strategy.I wrapper.
|
||||
frame, level = currentframe(), 0
|
||||
while frame and level <= 3:
|
||||
frame = frame.f_back
|
||||
level += 1
|
||||
if isinstance(frame.f_locals.get('self'), Strategy):
|
||||
strategy_I = frame.f_locals['self'].I
|
||||
break
|
||||
else:
|
||||
def strategy_I(func, *args, **kwargs):
|
||||
return func(*args, **kwargs)
|
||||
|
||||
# Resample back to data index
|
||||
def wrap_func(resampled, *args, **kwargs):
|
||||
ind = func(resampled, *args, **kwargs)
|
||||
ind = ind.reindex(index=series.index | ind.index,
|
||||
method='ffill').reindex(series.index)
|
||||
return ind
|
||||
|
||||
wrap_func.__name__ = func.__name__
|
||||
|
||||
array = strategy_I(wrap_func, resampled, *args, **kwargs)
|
||||
return array
|
||||
|
||||
|
||||
class SignalStrategy(Strategy):
|
||||
"""
|
||||
A simple helper strategy that operates on position entry/exit signals.
|
||||
|
||||
To use this helper strategy, subclass it, override its
|
||||
`backtesting.backtesting.Strategy.init` method,
|
||||
and set the signal vector by calling
|
||||
`backtesting.lib.SignalStrategy.set_signal` method from within it.
|
||||
|
||||
class ExampleStrategy(SignalStrategy):
|
||||
def init(self):
|
||||
super().init()
|
||||
self.set_signal(sma1 > sma2, sma1 < sma2)
|
||||
|
||||
Remember to call `super().init()` and `super().next()` in your
|
||||
overridden methods.
|
||||
"""
|
||||
__entry_signal = (0,)
|
||||
__exit_signal = (False,)
|
||||
|
||||
def set_signal(self, entry: Sequence[int], exit: Optional[Sequence[bool]] = None,
|
||||
plot: bool = True):
|
||||
"""
|
||||
Set entry/exit signal vectors (arrays). An long entry signal is considered
|
||||
present wherever `entry` is greater than zero. A short entry signal
|
||||
is considered present wherever `entry` is less than zero. If `exit`
|
||||
is provided, a nonzero value closes the position, if any; otherwise
|
||||
the position is held until a reverse signal in `entry`.
|
||||
|
||||
If `plot` is `True`, the signal entry/exit indicators are plotted when
|
||||
`backtesting.backtesting.Backtest.plot` is called.
|
||||
"""
|
||||
self.__entry_signal = _Indicator(pd.Series(entry, dtype=float).fillna(0),
|
||||
name='entry', plot=plot, overlay=False)
|
||||
if exit is not None:
|
||||
self.__exit_signal = _Indicator(pd.Series(exit, dtype=float).fillna(0),
|
||||
name='exit', plot=plot, overlay=False)
|
||||
|
||||
def next(self):
|
||||
super().next()
|
||||
|
||||
if self.position and self.__exit_signal[-1]:
|
||||
self.position.close()
|
||||
|
||||
signal = self.__entry_signal[-1]
|
||||
|
||||
if signal > 0:
|
||||
self.buy()
|
||||
elif signal < 0:
|
||||
self.sell()
|
||||
|
||||
|
||||
class TrailingStrategy(Strategy):
|
||||
"""
|
||||
A strategy with automatic trailing stop-loss, trailing the current
|
||||
price at distance of some multiple of average true range (ATR). Call
|
||||
`TrailingStrategy.set_trailing_sl()` to set said multiple
|
||||
(`6` by default).
|
||||
|
||||
Remember to call `super().init()` and `super().next()` in your
|
||||
overridden methods.
|
||||
"""
|
||||
__n_atr = 6
|
||||
__atr = None
|
||||
|
||||
def init(self):
|
||||
super().init()
|
||||
self.set_atr_periods()
|
||||
|
||||
def set_atr_periods(self, periods: int = 100):
|
||||
"""
|
||||
Set the lookback period for computing ATR. The default value
|
||||
of 100 ensures a _stable_ ATR.
|
||||
"""
|
||||
h, l, c_prev = self.data.High, self.data.Low, pd.Series(self.data.Close).shift(1)
|
||||
tr = np.max([h - l, (c_prev - h).abs(), (c_prev - l).abs()], axis=0)
|
||||
atr = pd.Series(tr).rolling(periods).mean().bfill().values
|
||||
self.__atr = atr
|
||||
|
||||
def set_trailing_sl(self, n_atr: float = 6):
|
||||
"""
|
||||
Sets the future trailing stop-loss as some multiple (`n_atr`)
|
||||
average true bar ranges away from the current price.
|
||||
"""
|
||||
self.__n_atr = n_atr
|
||||
|
||||
def next(self):
|
||||
super().next()
|
||||
|
||||
if self.__n_atr and self.position:
|
||||
if self.position.is_long:
|
||||
self.orders.set_sl(self.data.Close[-1] - self.__atr[-1] * self.__n_atr)
|
||||
else:
|
||||
self.orders.set_sl(self.data.Close[-1] + self.__atr[-1] * self.__n_atr)
|
||||
|
||||
|
||||
# NOTE: Don't put anything below this __all__ list
|
||||
|
||||
__all__ = [getattr(v, '__name__', k)
|
||||
for k, v in globals().items() # export
|
||||
if ((callable(v) and v.__module__ == __name__ or # callables from this module
|
||||
k.isupper()) and # or CONSTANTS
|
||||
not getattr(v, '__name__', k).startswith('_'))] # neither marked internal
|
||||
|
||||
# NOTE: Don't put anything below here. See above.
|
||||
5001
backtesting/test/EURUSD.csv
Normal file
5001
backtesting/test/EURUSD.csv
Normal file
File diff suppressed because it is too large
Load Diff
2149
backtesting/test/GOOG.csv
Normal file
2149
backtesting/test/GOOG.csv
Normal file
File diff suppressed because it is too large
Load Diff
23
backtesting/test/__init__.py
Normal file
23
backtesting/test/__init__.py
Normal file
@@ -0,0 +1,23 @@
|
||||
"""Data and utilities for testing."""
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def _read_file(filename):
|
||||
from os.path import dirname, join
|
||||
|
||||
return pd.read_csv(join(dirname(__file__), filename),
|
||||
index_col=0, parse_dates=True, infer_datetime_format=True)
|
||||
|
||||
|
||||
GOOG = _read_file('GOOG.csv')
|
||||
"""DataFrame of daily NASDAQ:GOOG (Google/Alphabet) stock price data from 2004 to 2013."""
|
||||
|
||||
EURUSD = _read_file('EURUSD.csv')
|
||||
"""DataFrame of hourly EUR/USD forex data from April 2017 to February 2018."""
|
||||
|
||||
|
||||
def SMA(arr: pd.Series, n: int) -> pd.Series:
|
||||
"""
|
||||
Returns `n`-period simple moving average of array `arr`.
|
||||
"""
|
||||
return pd.Series(arr).rolling(n).mean()
|
||||
512
backtesting/test/_test.py
Normal file
512
backtesting/test/_test.py
Normal file
@@ -0,0 +1,512 @@
|
||||
import os
|
||||
import time
|
||||
import unittest
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from glob import glob
|
||||
from runpy import run_path
|
||||
from tempfile import NamedTemporaryFile, gettempdir
|
||||
from unittest import TestCase
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from backtesting import Backtest, Strategy
|
||||
from backtesting.lib import (
|
||||
OHLCV_AGG,
|
||||
barssince,
|
||||
cross,
|
||||
crossover,
|
||||
quantile,
|
||||
SignalStrategy,
|
||||
TrailingStrategy,
|
||||
resample_apply,
|
||||
plot_heatmaps
|
||||
)
|
||||
from backtesting.test import GOOG, EURUSD, SMA
|
||||
from backtesting._util import _Indicator, _as_str, _Array
|
||||
|
||||
|
||||
@contextmanager
|
||||
def _tempfile():
|
||||
with NamedTemporaryFile(suffix='.html') as f:
|
||||
yield f.name
|
||||
|
||||
|
||||
@contextmanager
|
||||
def chdir(path):
|
||||
cwd = os.getcwd()
|
||||
os.chdir(path)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
os.chdir(cwd)
|
||||
|
||||
|
||||
class SmaCross(Strategy):
|
||||
# NOTE: These values are also used on the website!
|
||||
fast = 10
|
||||
slow = 30
|
||||
|
||||
def init(self):
|
||||
self.sma1 = self.I(SMA, self.data.Close, self.fast)
|
||||
self.sma2 = self.I(SMA, self.data.Close, self.slow)
|
||||
|
||||
def next(self):
|
||||
if crossover(self.sma1, self.sma2):
|
||||
self.buy()
|
||||
elif crossover(self.sma2, self.sma1):
|
||||
self.sell()
|
||||
|
||||
|
||||
class TestBacktest(TestCase):
|
||||
def test_run(self):
|
||||
bt = Backtest(EURUSD, SmaCross)
|
||||
bt.run()
|
||||
|
||||
def test_run_invalid_param(self):
|
||||
bt = Backtest(GOOG, SmaCross)
|
||||
self.assertRaises(AttributeError, bt.run, foo=3)
|
||||
|
||||
def test_run_speed(self):
|
||||
bt = Backtest(GOOG, SmaCross)
|
||||
start = time.process_time()
|
||||
bt.run()
|
||||
end = time.process_time()
|
||||
self.assertLess(end - start, .2)
|
||||
|
||||
def test_data_missing_columns(self):
|
||||
df = GOOG.copy()
|
||||
del df['Open']
|
||||
with self.assertRaises(ValueError):
|
||||
Backtest(df, SmaCross).run()
|
||||
|
||||
def test_data_nan_columns(self):
|
||||
df = GOOG.copy()
|
||||
df['Open'] = np.nan
|
||||
with self.assertRaises(ValueError):
|
||||
Backtest(df, SmaCross).run()
|
||||
|
||||
def test_data_extra_columns(self):
|
||||
df = GOOG.copy()
|
||||
df['P/E'] = np.arange(len(df))
|
||||
df['MCap'] = np.arange(len(df))
|
||||
|
||||
class S(Strategy):
|
||||
def init(self):
|
||||
assert len(self.data.MCap) == len(self.data.Close)
|
||||
assert len(self.data['P/E']) == len(self.data.Close)
|
||||
|
||||
def next(self):
|
||||
assert len(self.data.MCap) == len(self.data.Close)
|
||||
assert len(self.data['P/E']) == len(self.data.Close)
|
||||
|
||||
Backtest(df, S).run()
|
||||
|
||||
def test_assertions(self):
|
||||
class Assertive(Strategy):
|
||||
def init(self):
|
||||
self.sma = self.I(SMA, self.data.Close, 10)
|
||||
self.remains_indicator = np.r_[2] * np.cumsum(self.sma * 5 + 1) * np.r_[2]
|
||||
|
||||
resampled = resample_apply('W', SMA, self.data.Close, 3)
|
||||
resampled_ind = resample_apply('W', SMA, self.sma, 3)
|
||||
assert np.unique(resampled[-5:]).size == 1
|
||||
assert np.unique(resampled[-6:]).size == 2
|
||||
assert resampled in self._indicators, "Strategy.I not called"
|
||||
assert resampled_ind in self._indicators, "Strategy.I not called"
|
||||
|
||||
try:
|
||||
self.data.X
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
assert False
|
||||
|
||||
assert self.data.pip == .01
|
||||
|
||||
assert float(self.data.Close) == self.data.Close[-1]
|
||||
|
||||
def next(self, FIVE_DAYS=pd.Timedelta('3 days')):
|
||||
assert self.equity >= 0
|
||||
|
||||
assert isinstance(self.sma, _Indicator)
|
||||
assert isinstance(self.remains_indicator, _Indicator)
|
||||
assert self.remains_indicator.name
|
||||
assert isinstance(self.remains_indicator._opts, dict)
|
||||
|
||||
assert not np.isnan(self.data.Open[-1])
|
||||
assert not np.isnan(self.data.High[-1])
|
||||
assert not np.isnan(self.data.Low[-1])
|
||||
assert not np.isnan(self.data.Close[-1])
|
||||
assert not np.isnan(self.data.Volume[-1])
|
||||
assert not np.isnan(self.sma[-1])
|
||||
assert self.data.index[-1]
|
||||
|
||||
self.orders.is_long
|
||||
self.orders.is_short
|
||||
self.orders.entry
|
||||
self.orders.sl
|
||||
self.orders.tp
|
||||
|
||||
self.position
|
||||
self.position.size
|
||||
self.position.pl
|
||||
self.position.pl_pct
|
||||
self.position.open_price
|
||||
self.position.open_time
|
||||
self.position.is_long
|
||||
|
||||
if crossover(self.sma, self.data.Close):
|
||||
self.orders.cancel()
|
||||
self.sell()
|
||||
assert not self.orders.is_long
|
||||
assert self.orders.is_short
|
||||
assert self.orders.entry
|
||||
assert not self.orders.sl
|
||||
assert not self.orders.tp
|
||||
price = self.data.Close[-1]
|
||||
sl, tp = 1.05 * price, .9 * price
|
||||
self.sell(price, sl=sl, tp=tp)
|
||||
self.orders.set_entry(price)
|
||||
self.orders.set_sl(sl)
|
||||
self.orders.set_tp(tp)
|
||||
assert self.orders.entry == price
|
||||
assert self.orders.sl == sl
|
||||
assert self.orders.tp == tp
|
||||
|
||||
elif self.position:
|
||||
assert not self.orders.entry
|
||||
assert not self.position.is_long
|
||||
assert not not self.position.is_short
|
||||
assert self.position.open_price
|
||||
assert self.position.pl
|
||||
assert self.position.pl_pct
|
||||
assert self.position.size < 0
|
||||
if self.data.index[-1] - self.position.open_time > FIVE_DAYS:
|
||||
self.position.close()
|
||||
|
||||
bt = Backtest(GOOG, Assertive)
|
||||
stats = bt.run()
|
||||
self.assertEqual(stats['# Trades'], 144)
|
||||
|
||||
def test_broker_params(self):
|
||||
bt = Backtest(GOOG.iloc[:100], SmaCross,
|
||||
cash=1000, commission=.01, margin=.1, trade_on_close=True)
|
||||
bt.run()
|
||||
|
||||
def test_dont_overwrite_data(self):
|
||||
df = EURUSD.copy()
|
||||
bt = Backtest(df, SmaCross)
|
||||
bt.run()
|
||||
bt.optimize(fast=4, slow=[6, 8])
|
||||
bt.plot(plot_drawdown=True, open_browser=False)
|
||||
self.assertTrue(df.equals(EURUSD))
|
||||
|
||||
def test_strategy_abstract(self):
|
||||
class MyStrategy(Strategy):
|
||||
pass
|
||||
|
||||
self.assertRaises(TypeError, MyStrategy, None, None)
|
||||
|
||||
def test_strategy_str(self):
|
||||
bt = Backtest(GOOG.iloc[:100], SmaCross)
|
||||
self.assertEqual(str(bt.run()._strategy), SmaCross.__name__)
|
||||
self.assertEqual(str(bt.run(fast=11)._strategy), SmaCross.__name__ + '(fast=11)')
|
||||
|
||||
def test_compute_stats(self):
|
||||
stats = Backtest(GOOG, SmaCross).run()
|
||||
self.assertEqual(
|
||||
stats.filter(regex='^[^_]').to_dict(),
|
||||
{
|
||||
# NOTE: These values are also used on the website!
|
||||
'# Trades': 65,
|
||||
'Avg. Drawdown Duration': pd.Timedelta('33 days 00:00:00'),
|
||||
'Avg. Drawdown [%]': -5.494714447812327,
|
||||
'Avg. Trade Duration': pd.Timedelta('46 days 00:00:00'),
|
||||
'Avg. Trade [%]': 3.0404430275631444,
|
||||
'Best Trade [%]': 54.05363186670138,
|
||||
'Buy & Hold Return [%]': 703.4582419772772,
|
||||
'Calmar Ratio': 0.0631443286380662,
|
||||
'Duration': pd.Timedelta('3116 days 00:00:00'),
|
||||
'End': pd.Timestamp('2013-03-01 00:00:00'),
|
||||
'Equity Final [$]': 52624.29346696951,
|
||||
'Equity Peak [$]': 76908.27001642012,
|
||||
'Expectancy [%]': 8.774692825628644,
|
||||
'Exposure [%]': 93.93453145057767,
|
||||
'Max. Drawdown Duration': pd.Timedelta('477 days 00:00:00'),
|
||||
'Max. Drawdown [%]': -48.15069053929621,
|
||||
'Max. Trade Duration': pd.Timedelta('183 days 00:00:00'),
|
||||
'Return [%]': 426.2429346696951,
|
||||
'SQN': 0.91553210127173,
|
||||
'Sharpe Ratio': 0.23169782960690408,
|
||||
'Sortino Ratio': 0.7096713270577958,
|
||||
'Start': pd.Timestamp('2004-08-19 00:00:00'),
|
||||
'Win Rate [%]': 46.15384615384615,
|
||||
'Worst Trade [%]': -18.85561318387153}
|
||||
)
|
||||
self.assertTrue(
|
||||
stats._trade_data.columns.equals(
|
||||
pd.Index(['Equity', 'Exit Entry', 'Exit Position',
|
||||
'Entry Price', 'Exit Price', 'P/L', 'Returns',
|
||||
'Drawdown', 'Drawdown Duration'])))
|
||||
|
||||
def test_compute_stats_bordercase(self):
|
||||
|
||||
class SingleTrade(Strategy):
|
||||
def init(self):
|
||||
self._done = False
|
||||
|
||||
def next(self):
|
||||
if not self._done:
|
||||
self.buy()
|
||||
self._done = True
|
||||
if self.position:
|
||||
self.position.close()
|
||||
|
||||
class SinglePosition(Strategy):
|
||||
def init(self):
|
||||
pass
|
||||
|
||||
def next(self):
|
||||
if not self.position:
|
||||
self.buy()
|
||||
|
||||
class NoTrade(Strategy):
|
||||
def init(self):
|
||||
pass
|
||||
|
||||
def next(self):
|
||||
pass
|
||||
|
||||
for strategy in (SmaCross,
|
||||
SingleTrade,
|
||||
SinglePosition,
|
||||
NoTrade):
|
||||
with self.subTest(strategy=strategy.__name__):
|
||||
stats = Backtest(GOOG.iloc[:100], strategy).run()
|
||||
|
||||
self.assertFalse(np.isnan(stats['Equity Final [$]']))
|
||||
self.assertFalse(stats._trade_data['Equity'].isnull().any())
|
||||
self.assertEqual(stats['_strategy'].__class__, strategy)
|
||||
|
||||
|
||||
class TestOptimize(TestCase):
|
||||
def test_optimize(self):
|
||||
bt = Backtest(GOOG.iloc[:100], SmaCross)
|
||||
OPT_PARAMS = dict(fast=range(2, 5, 2), slow=[2, 5, 7, 9])
|
||||
|
||||
self.assertRaises(ValueError, bt.optimize)
|
||||
self.assertRaises(ValueError, bt.optimize, maximize='missing key', **OPT_PARAMS)
|
||||
self.assertRaises(ValueError, bt.optimize, maximize='missing key', **OPT_PARAMS)
|
||||
self.assertRaises(TypeError, bt.optimize, maximize=15, **OPT_PARAMS)
|
||||
self.assertRaises(TypeError, bt.optimize, constraint=15, **OPT_PARAMS)
|
||||
self.assertRaises(ValueError, bt.optimize, constraint=lambda d: False, **OPT_PARAMS)
|
||||
|
||||
res = bt.optimize(**OPT_PARAMS)
|
||||
self.assertIsInstance(res, pd.Series)
|
||||
|
||||
res2 = bt.optimize(**OPT_PARAMS, maximize=lambda s: s['SQN'])
|
||||
self.assertSequenceEqual(res.filter(regex='^[^_]').to_dict(),
|
||||
res2.filter(regex='^[^_]').to_dict())
|
||||
|
||||
res3, heatmap = bt.optimize(**OPT_PARAMS, return_heatmap=True,
|
||||
constraint=lambda d: d.slow > 2 * d.fast)
|
||||
self.assertIsInstance(heatmap, pd.Series)
|
||||
self.assertEqual(len(heatmap), 4)
|
||||
|
||||
with _tempfile() as f:
|
||||
bt.plot(filename=f, open_browser=False)
|
||||
|
||||
def test_optimize_invalid_param(self):
|
||||
bt = Backtest(GOOG.iloc[:100], SmaCross)
|
||||
self.assertRaises(AttributeError, bt.optimize, foo=range(3))
|
||||
|
||||
def test_optimize_no_trades(self):
|
||||
bt = Backtest(GOOG, SmaCross)
|
||||
stats = bt.optimize(fast=[3], slow=[3])
|
||||
self.assertTrue(stats.isnull().any())
|
||||
|
||||
def test_optimize_speed(self):
|
||||
bt = Backtest(GOOG.iloc[:100], SmaCross)
|
||||
start = time.process_time()
|
||||
bt.optimize(fast=(2, 5, 7), slow=[10, 15, 20, 30])
|
||||
end = time.process_time()
|
||||
self.assertLess(end - start, .2)
|
||||
|
||||
|
||||
class TestPlot(TestCase):
|
||||
def test_plot_before_run(self):
|
||||
bt = Backtest(GOOG, SmaCross)
|
||||
self.assertRaises(RuntimeError, bt.plot)
|
||||
|
||||
def test_file_size(self):
|
||||
bt = Backtest(GOOG, SmaCross)
|
||||
bt.run()
|
||||
with _tempfile() as f:
|
||||
bt.plot(filename=f[:-len('.html')], open_browser=False)
|
||||
self.assertLess(os.path.getsize(f), 500000)
|
||||
|
||||
def test_params(self):
|
||||
bt = Backtest(GOOG.iloc[:100], SmaCross)
|
||||
bt.run()
|
||||
with _tempfile() as f:
|
||||
for p in dict(plot_volume=False,
|
||||
plot_equity=False,
|
||||
plot_pl=False,
|
||||
plot_drawdown=True,
|
||||
superimpose=False,
|
||||
omit_missing=False,
|
||||
smooth_equity=False,
|
||||
relative_equity=False,
|
||||
show_legend=False).items():
|
||||
with self.subTest(param=p[0]):
|
||||
bt.plot(**dict([p]), filename=f, open_browser=False)
|
||||
|
||||
def test_resolutions(self):
|
||||
with _tempfile() as f:
|
||||
for rule in 'LSTHDWM':
|
||||
with self.subTest(rule=rule):
|
||||
df = EURUSD.iloc[:2].resample(rule).agg(OHLCV_AGG).iloc[:1100]
|
||||
bt = Backtest(df, SmaCross)
|
||||
bt.run()
|
||||
bt.plot(filename=f, open_browser=False)
|
||||
|
||||
def test_range_axis(self):
|
||||
df = GOOG.iloc[:100].reset_index(drop=True)
|
||||
|
||||
# Warm-up. CPython bug bpo-29620.
|
||||
try:
|
||||
with self.assertWarns(UserWarning):
|
||||
Backtest(df, SmaCross)
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
with self.assertWarns(UserWarning):
|
||||
bt = Backtest(df, SmaCross)
|
||||
bt.run()
|
||||
with _tempfile() as f:
|
||||
bt.plot(filename=f, open_browser=False)
|
||||
|
||||
def test_preview(self):
|
||||
class Strategy(SmaCross):
|
||||
def init(self):
|
||||
super().init()
|
||||
|
||||
def ok(x):
|
||||
return x
|
||||
|
||||
self.a = self.I(SMA, self.data.Open, 5, overlay=False, name='ok')
|
||||
self.b = self.I(ok, np.random.random(len(self.data.Open)))
|
||||
|
||||
bt = Backtest(GOOG, Strategy)
|
||||
bt.run()
|
||||
with _tempfile() as f:
|
||||
bt.plot(filename=f, plot_drawdown=True, smooth_equity=True)
|
||||
# Give browser time to open before tempfile is removed
|
||||
time.sleep(5)
|
||||
|
||||
|
||||
class TestLib(TestCase):
|
||||
def test_barssince(self):
|
||||
self.assertEqual(barssince(np.r_[1, 0, 0]), 2)
|
||||
self.assertEqual(barssince(np.r_[0, 0, 0]), np.inf)
|
||||
self.assertEqual(barssince(np.r_[0, 0, 0], 0), 0)
|
||||
|
||||
def test_cross(self):
|
||||
self.assertTrue(cross([0, 1], [1, 0]))
|
||||
self.assertTrue(cross([1, 0], [0, 1]))
|
||||
self.assertFalse(cross([1, 0], [1, 0]))
|
||||
|
||||
def test_crossover(self):
|
||||
self.assertTrue(crossover([0, 1], [1, 0]))
|
||||
self.assertTrue(crossover([0, 1], .5))
|
||||
self.assertTrue(crossover([0, 1], pd.Series([.5, .5], index=[5, 6])))
|
||||
self.assertFalse(crossover([1, 0], [1, 0]))
|
||||
self.assertFalse(crossover([0], [1]))
|
||||
|
||||
def test_quantile(self):
|
||||
self.assertEqual(quantile(np.r_[1, 3, 2], .5), 2)
|
||||
self.assertEqual(quantile(np.r_[1, 3, 2]), .5)
|
||||
|
||||
def test_resample_apply(self):
|
||||
res = resample_apply('D', SMA, EURUSD.Close, 10)
|
||||
self.assertEqual(res.name, 'C[D]')
|
||||
self.assertEqual(res.count() / res.size, .9634)
|
||||
self.assertEqual(res.iloc[-48:].unique().tolist(),
|
||||
[1.2426429999999997, 1.2423809999999995, 1.2422749999999998])
|
||||
|
||||
def test_plot_heatmaps(self):
|
||||
bt = Backtest(GOOG, SmaCross)
|
||||
stats, heatmap = bt.optimize(fast=range(2, 7, 2),
|
||||
slow=range(7, 15, 2),
|
||||
return_heatmap=True)
|
||||
with _tempfile() as f:
|
||||
for agg in ('mean',
|
||||
lambda x: np.percentile(x, 75)):
|
||||
plot_heatmaps(heatmap, agg, filename=f, open_browser=False)
|
||||
|
||||
# Preview
|
||||
plot_heatmaps(heatmap, filename=f)
|
||||
time.sleep(5)
|
||||
|
||||
def test_SignalStrategy(self):
|
||||
class S(SignalStrategy):
|
||||
def init(self):
|
||||
sma = pd.Series(self.data.Close).rolling(10).mean()
|
||||
self.set_signal(self.data.Close > sma,
|
||||
self.data.Close < sma)
|
||||
|
||||
stats = Backtest(GOOG, S).run()
|
||||
self.assertGreater(stats['# Trades'], 1000)
|
||||
|
||||
def test_TrailingStrategy(self):
|
||||
class S(TrailingStrategy):
|
||||
def init(self):
|
||||
super().init()
|
||||
self.set_atr_periods(40)
|
||||
self.set_trailing_sl(3)
|
||||
self.sma = self.I(
|
||||
lambda: pd.Series(self.data.Close,
|
||||
index=self.data.index).rolling(10).mean())
|
||||
|
||||
def next(self):
|
||||
super().next()
|
||||
if not self.position and self.data.Close > self.sma:
|
||||
self.buy()
|
||||
|
||||
stats = Backtest(GOOG, S).run()
|
||||
self.assertGreater(stats['# Trades'], 6)
|
||||
|
||||
|
||||
class TestUtil(TestCase):
|
||||
def test_as_str(self):
|
||||
def func():
|
||||
pass
|
||||
|
||||
class Class:
|
||||
pass
|
||||
|
||||
self.assertEqual(_as_str('4'), '4')
|
||||
self.assertEqual(_as_str(4), '4')
|
||||
self.assertEqual(_as_str(_Indicator([1, 2], name='x')), 'x')
|
||||
self.assertEqual(_as_str(func), 'func')
|
||||
self.assertEqual(_as_str(Class), 'Class')
|
||||
self.assertEqual(_as_str(lambda x: x), '')
|
||||
for s in ('Open', 'High', 'Low', 'Close'):
|
||||
self.assertEqual(_as_str(_Array([1], name=s)), s[0])
|
||||
|
||||
|
||||
class TestDocs(TestCase):
|
||||
def test_examples(self):
|
||||
examples = glob(os.path.join(os.path.dirname(__file__),
|
||||
'..', '..', 'doc', 'examples', '*.py'))
|
||||
self.assertGreaterEqual(len(examples), 4)
|
||||
with chdir(gettempdir()):
|
||||
for file in examples:
|
||||
run_path(file)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
warnings.filterwarnings('error')
|
||||
unittest.main()
|
||||
13
doc/README.md
Normal file
13
doc/README.md
Normal file
@@ -0,0 +1,13 @@
|
||||
Backtesting.py Documentation
|
||||
============================
|
||||
After installing documentation dependencies:
|
||||
|
||||
pip install .[doc]
|
||||
|
||||
build HTML documentation by running:
|
||||
|
||||
./build.sh
|
||||
|
||||
When submitting pull requests that change example notebooks,
|
||||
commit example _.py_ files too
|
||||
(`build.sh` should tell you how to make them).
|
||||
86
doc/build.sh
Executable file
86
doc/build.sh
Executable file
@@ -0,0 +1,86 @@
|
||||
#!/bin/bash
|
||||
set -eu
|
||||
IS_RELEASE=${TRAVIS_TAG+1}
|
||||
|
||||
die () { echo "ERROR: $*" >&2; exit 2; }
|
||||
|
||||
for cmd in pdoc \
|
||||
jupytext ; do
|
||||
command -v "$cmd" >/dev/null ||
|
||||
die "Missing $cmd; \`pip install $cmd\`"
|
||||
done
|
||||
command -v "jupyter-nbconvert" >/dev/null ||
|
||||
die "Missing jupyter-nbconvert; \`pip install nbconvert\`"
|
||||
|
||||
DOCROOT="$(dirname "$(readlink -f "$0")")"
|
||||
BUILDROOT="$DOCROOT/build"
|
||||
|
||||
|
||||
echo
|
||||
echo 'Building API reference docs'
|
||||
echo
|
||||
mkdir -p "$BUILDROOT"
|
||||
rm -r "$BUILDROOT" 2>/dev/null || true
|
||||
pushd "$DOCROOT/.." >/dev/null
|
||||
pdoc --html --html-no-source \
|
||||
${IS_RELEASE+--template-dir "$DOCROOT/pdoc_template"} \
|
||||
--html-dir "$BUILDROOT" \
|
||||
backtesting
|
||||
popd >/dev/null
|
||||
|
||||
|
||||
echo
|
||||
echo 'Ensuring example notebooks match their py counterparts'
|
||||
echo
|
||||
for ipynb in "$DOCROOT"/examples/*.ipynb; do
|
||||
echo "Checking: '$ipynb'"
|
||||
diff -q "${ipynb%.ipynb}.py" <(jupytext --to py --output - "$ipynb") ||
|
||||
die "Notebook and its matching .py file differ. Maybe run: \`jupytext --to py '$ipynb'\` ?"
|
||||
done
|
||||
|
||||
|
||||
echo
|
||||
echo 'Converting example notebooks → py → HTML'
|
||||
echo
|
||||
jupytext --test --update --to ipynb "$DOCROOT/examples"/*.py
|
||||
{ mkdir -p ~/.ipython/profile_default/startup
|
||||
cp -f "$DOCROOT/ipython_config.py" ~/.ipython/profile_default/startup/99-backtesting-docs.py
|
||||
trap 'rm -f ~/.ipython/profile_default/startup/99-backtesting-docs.py' EXIT; }
|
||||
PYTHONWARNINGS='ignore::UserWarning' \
|
||||
jupyter-nbconvert --execute --to=html \
|
||||
--output-dir="$BUILDROOT/examples" "$DOCROOT/examples"/*.ipynb
|
||||
|
||||
|
||||
if [ "$IS_RELEASE" ]; then
|
||||
echo -e '\nAdding GAnalytics code\n'
|
||||
|
||||
ANALYTICS="<script>window.dataLayer=[['js',new Date()],['config','UA-43663477-4']]</script><script async src='https://www.googletagmanager.com/gtag/js?id=UA-43663477-4'></script>"
|
||||
find "$BUILDROOT" -name '*.html' -print0 |
|
||||
xargs -0 -- sed -i "s#<head>#<head>$ANALYTICS#i"
|
||||
fi
|
||||
|
||||
|
||||
echo
|
||||
echo 'Testing for broken links'
|
||||
echo
|
||||
pushd "$BUILDROOT" >/dev/null
|
||||
tmpdir="$(mktemp -d)"
|
||||
python3 -m http.server 51296 & sleep 1
|
||||
trap '{ rm -r "$tmpdir"; kill %1; wait; } >/dev/null 2>&1' EXIT
|
||||
[ ! "$(jobs -p)" ] && die 'Server not running. See above.'
|
||||
find -name '*.html' -print0 |
|
||||
sed --null-data 's/^/http:\/\/127.0.0.1:51296\//' |
|
||||
xargs -0 -- \
|
||||
wget --user-agent "Mozilla/5.0 Firefox 61" -e 'robots=off' --random-wait \
|
||||
--no-verbose --recursive --span-hosts --level=1 --tries=2 \
|
||||
--directory-prefix "$tmpdir" --no-clobber \
|
||||
--reject-regex='\bfonts\b|\.css\b|\bjs\b|\.png\b' |&
|
||||
grep -B1 'ERROR 404'
|
||||
popd >/dev/null
|
||||
|
||||
|
||||
echo
|
||||
echo "All good. Docs in: $BUILDROOT"
|
||||
echo
|
||||
echo " file://$BUILDROOT/backtesting/index.html"
|
||||
echo
|
||||
20
doc/deploy.sh
Normal file
20
doc/deploy.sh
Normal file
@@ -0,0 +1,20 @@
|
||||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
if [ ! -d doc/build ]; then
|
||||
echo 'Error: invalid directory. Deploy from repo root.'
|
||||
exit 1
|
||||
fi
|
||||
|
||||
[ "$GH_PASSWORD" ] || exit 12
|
||||
|
||||
head=$(git rev-parse HEAD)
|
||||
|
||||
git clone -b gh-pages "https://kernc:$GH_PASSWORD@github.com/$TRAVIS_REPO_SLUG.git" gh-pages
|
||||
mkdir -p gh-pages/doc
|
||||
cp -R doc/build/* gh-pages/doc/
|
||||
cd gh-pages
|
||||
git add *
|
||||
git diff --quiet && echo "$0: No changes to commit." && exit 0
|
||||
git commit -a -m "CI: Update docs for $TRAVIS_TAG ($head)"
|
||||
git push
|
||||
676
doc/examples/Multiple Time Frames.ipynb
Normal file
676
doc/examples/Multiple Time Frames.ipynb
Normal file
File diff suppressed because one or more lines are too long
172
doc/examples/Multiple Time Frames.py
Normal file
172
doc/examples/Multiple Time Frames.py
Normal file
@@ -0,0 +1,172 @@
|
||||
# ---
|
||||
# jupyter:
|
||||
# jupytext:
|
||||
# text_representation:
|
||||
# extension: .py
|
||||
# format_name: light
|
||||
# format_version: '1.3'
|
||||
# jupytext_version: 0.8.6
|
||||
# kernelspec:
|
||||
# display_name: Python 3
|
||||
# language: python
|
||||
# name: python3
|
||||
# ---
|
||||
|
||||
# Multiple Time Frames
|
||||
# ============
|
||||
#
|
||||
# The best trading strategies relying on technical analysis take into account the price action on multiple time frames.
|
||||
# This tutorial will show how to do that with _backtesting.py_, offloading most of the work to
|
||||
# [pandas resampling](http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling).
|
||||
# It is assumed you're already familiar with
|
||||
# [basic _backtesting.py_ usage](https://kernc.github.io/backtesting.py/doc/examples/Quick Start User Guide.html).
|
||||
#
|
||||
# We will test this supposed long-only
|
||||
# [400%-a-year trading strategy](http://jbmarwood.com/stock-trading-strategy-300/),
|
||||
# which daily and weekly
|
||||
# [relative strength index](https://en.wikipedia.org/wiki/Relative_strength_index)
|
||||
# (RSI) values and moving averages (MA).
|
||||
#
|
||||
# Let's introduce the two indicators we'll be using.
|
||||
# In practice, one can use functions from any indicator library, such as
|
||||
# [TA-Lib](https://github.com/mrjbq7/ta-lib),
|
||||
# [Tulipy](https://tulipindicators.org),
|
||||
# PyAlgoTrade, ...
|
||||
|
||||
# +
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def SMA(array, n):
|
||||
"""Simple moving average"""
|
||||
return pd.Series(array).rolling(n).mean()
|
||||
|
||||
|
||||
def RSI(array, n):
|
||||
"""Relative strength index"""
|
||||
# Approximate; good enough
|
||||
gain = pd.Series(array).diff()
|
||||
loss = gain.copy()
|
||||
gain[gain < 0] = 0
|
||||
loss[loss > 0] = 0
|
||||
rs = gain.ewm(n).mean() / loss.abs().ewm(n).mean()
|
||||
return 100 - 100 / (1 + rs)
|
||||
# -
|
||||
|
||||
# The strategy roughly goes like this:
|
||||
#
|
||||
# Buy a position when:
|
||||
# * weekly RSI(30) $\geq$ daily RSI(30) $>$ 70
|
||||
# * Close $>$ MA(10) $>$ MA(20) $>$ MA(50) $>$ MA(100)
|
||||
#
|
||||
# Close the position when:
|
||||
# * Close more than 2% _below_ MA(10)
|
||||
# * 8% fixed stop loss is hit
|
||||
#
|
||||
# We need to provide bars data in the _lowest time frame_ (i.e. daily) and resample it to any higher time frames (i.e. weekly) that our strategy requires.
|
||||
|
||||
# +
|
||||
from backtesting import Strategy, Backtest
|
||||
from backtesting.lib import resample_apply
|
||||
|
||||
|
||||
class System(Strategy):
|
||||
d_rsi = 30 # Daily RSI lookback periods
|
||||
w_rsi = 30 # Weekly
|
||||
level = 70
|
||||
|
||||
def init(self):
|
||||
# Compute moving averages the strategy demands
|
||||
self.ma10 = self.I(SMA, self.data.Close, 10)
|
||||
self.ma20 = self.I(SMA, self.data.Close, 20)
|
||||
self.ma50 = self.I(SMA, self.data.Close, 50)
|
||||
self.ma100 = self.I(SMA, self.data.Close, 100)
|
||||
|
||||
# Compute daily RSI(30)
|
||||
self.daily_rsi = self.I(RSI, self.data.Close, self.d_rsi)
|
||||
|
||||
# To construct weekly RSI, we have to resample
|
||||
# the daily values.
|
||||
|
||||
# Strategy exposes `self.data` as raw NumPy arrays.
|
||||
# Let's make closing prices back a pandas Series.
|
||||
|
||||
close = pd.Series(self.data.Close,
|
||||
index=self.data.index,
|
||||
name='Close')
|
||||
|
||||
# Resample to weekly resolution, ending weeks on
|
||||
# fridays. Aggregate groups using their last value
|
||||
# (i.e. week's closing price).
|
||||
# Notice `label='right'`. If it were set to 'left' (default),
|
||||
# the strategy would exhibit look-ahead bias.
|
||||
|
||||
weekly_close = close.resample('W-FRI', label='right').agg('last')
|
||||
|
||||
# We apply RSI(30) to weekly close
|
||||
# prices, then reindex it back to original daily
|
||||
# index, forward-filling the missing values in each
|
||||
# week.
|
||||
# We make a separate function that returns the final
|
||||
# indicator array.
|
||||
|
||||
def W_RSI(series, n):
|
||||
return RSI(series, n).reindex(close.index).ffill()
|
||||
|
||||
self.weekly_rsi = self.I(W_RSI, weekly_close, self.w_rsi)
|
||||
|
||||
|
||||
# ... And, now that you know what goes on behind the scenes,
|
||||
# we could achieve the whole *exact* same thing with simpler:
|
||||
|
||||
self.weekly_rsi = resample_apply(
|
||||
'W-FRI', RSI, self.data.Close, self.w_rsi)
|
||||
|
||||
|
||||
def next(self):
|
||||
price = self.data.Close[-1]
|
||||
|
||||
# If we don't already have a position, and
|
||||
# if all conditions are satisfied, enter long.
|
||||
if (not self.position and
|
||||
self.daily_rsi[-1] > self.level and
|
||||
self.weekly_rsi[-1] > self.level and
|
||||
self.weekly_rsi[-1] > self.daily_rsi[-1] and
|
||||
self.ma10[-1] > self.ma20[-1] > self.ma50[-1] > self.ma100[-1] and
|
||||
price > self.ma10[-1]):
|
||||
|
||||
# Buy at market price on next open, but do
|
||||
# set 8% fixed stop loss.
|
||||
self.buy(sl=.92 * price)
|
||||
|
||||
# If the price closes 2% or more below 10-day MA
|
||||
# close the position, if any.
|
||||
elif price < .98 * self.ma10[-1]:
|
||||
self.position.close()
|
||||
# -
|
||||
|
||||
# Let's see how our strategy fares replayed on nine years of Google stock data.
|
||||
|
||||
# +
|
||||
from backtesting.test import GOOG
|
||||
|
||||
backtest = Backtest(GOOG, System, commission=.002)
|
||||
backtest.run()
|
||||
# -
|
||||
|
||||
# Meager four trades in a span of nine years with effectively zero return? How about if we optimize the parameters a bit?
|
||||
|
||||
# +
|
||||
# %%time
|
||||
|
||||
backtest.optimize(d_rsi=range(10, 35, 5),
|
||||
w_rsi=range(10, 35, 5),
|
||||
level=range(30, 80, 10))
|
||||
# -
|
||||
|
||||
backtest.plot()
|
||||
|
||||
# Better. While the strategy doesn't perform as well as simple buy & hold, it does so with significantly lower exposure (time in market).
|
||||
#
|
||||
# In conclusion, to test strategies on multiple time frames, you need to pass in data in the lowest time frame, then resample it to higher time frames, apply the indicators, then resample back to lower time frame, filling in the in-betweens.
|
||||
# Or simply use [`backtesting.lib.resample_apply()`](https://kernc.github.io/backtesting.py/doc/backtesting/lib.html#backtesting.lib.resample_apply) function.
|
||||
906
doc/examples/Parameter Heatmap.ipynb
Normal file
906
doc/examples/Parameter Heatmap.ipynb
Normal file
File diff suppressed because one or more lines are too long
152
doc/examples/Parameter Heatmap.py
Normal file
152
doc/examples/Parameter Heatmap.py
Normal file
@@ -0,0 +1,152 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# ---
|
||||
# jupyter:
|
||||
# jupytext:
|
||||
# text_representation:
|
||||
# extension: .py
|
||||
# format_name: light
|
||||
# format_version: '1.3'
|
||||
# jupytext_version: 0.8.6
|
||||
# kernelspec:
|
||||
# display_name: Python 3
|
||||
# language: python
|
||||
# name: python3
|
||||
# ---
|
||||
|
||||
# Parameter Heatmap
|
||||
# ==========
|
||||
#
|
||||
# This tutorial will show how to optimize strategies with multiple parameters and how to examine and reason about optimization results.
|
||||
# It is assumed you're already familiar with
|
||||
# [basic _backtesting.py_ usage](https://kernc.github.io/backtesting.py/doc/examples/Quick Start User Guide.html).
|
||||
#
|
||||
# First, let's again import a helper moving average function.
|
||||
# In practice, one can use functions from any indicator library, such as
|
||||
# [TA-Lib](https://github.com/mrjbq7/ta-lib),
|
||||
# [Tulipy](https://tulipindicators.org),
|
||||
# PyAlgoTrade, ...
|
||||
|
||||
from backtesting.test import SMA
|
||||
|
||||
# Our strategy will be a similar moving average cross-over strategy to the one in
|
||||
# [Quick Start User Guide](https://kernc.github.io/backtesting.py/doc/examples/Quick Start User Guide.html),
|
||||
# but there will be four moving averages in total:
|
||||
# two moving averages whose relationship determines a general trend
|
||||
# (we only trade long when the shorter MA is above the longer one, and vice versa),
|
||||
# and two moving averages whose cross-over with Close prices determine the signal to enter or exit the position.
|
||||
|
||||
# +
|
||||
from backtesting import Strategy
|
||||
from backtesting.lib import crossover
|
||||
|
||||
|
||||
class Sma4Cross(Strategy):
|
||||
n1 = 50
|
||||
n2 = 100
|
||||
n_enter = 20
|
||||
n_exit = 10
|
||||
|
||||
def init(self):
|
||||
self.sma1 = self.I(SMA, self.data.Close, self.n1)
|
||||
self.sma2 = self.I(SMA, self.data.Close, self.n2)
|
||||
self.sma_enter = self.I(SMA, self.data.Close, self.n_enter)
|
||||
self.sma_exit = self.I(SMA, self.data.Close, self.n_exit)
|
||||
|
||||
def next(self):
|
||||
|
||||
if not self.position:
|
||||
|
||||
# On upwards trend, if price closes above
|
||||
# "entry" MA, go long
|
||||
|
||||
# Here, even though the operands are arrays, this
|
||||
# works by implicitly comparing the two last values
|
||||
if self.sma1 > self.sma2:
|
||||
if crossover(self.data.Close, self.sma_enter):
|
||||
self.buy()
|
||||
|
||||
# On downwards trend, if price closes below
|
||||
# "entry" MA, go short
|
||||
|
||||
else:
|
||||
if crossover(self.sma_enter, self.data.Close):
|
||||
self.sell()
|
||||
|
||||
# But if we already hold a position and the price
|
||||
# closes back below (above) "exit" MA, close the position
|
||||
|
||||
else:
|
||||
if (self.position.is_long and
|
||||
crossover(self.sma_exit, self.data.Close)
|
||||
or
|
||||
self.position.is_short and
|
||||
crossover(self.data.Close, self.sma_exit)):
|
||||
|
||||
self.position.close()
|
||||
# -
|
||||
|
||||
# It's not a robust strategy, but we can optimize it. Let's optimize our strategy on Google stock data.
|
||||
|
||||
# +
|
||||
# %%time
|
||||
|
||||
from backtesting import Backtest
|
||||
from backtesting.test import GOOG
|
||||
|
||||
|
||||
backtest = Backtest(GOOG, Sma4Cross, commission=.002)
|
||||
|
||||
stats, heatmap = backtest.optimize(
|
||||
n1=range(10, 110, 10),
|
||||
n2=range(20, 210, 20),
|
||||
n_enter=range(15, 35, 5),
|
||||
n_exit=range(10, 25, 5),
|
||||
constraint=lambda p: p.n_exit < p.n_enter < p.n1 < p.n2,
|
||||
maximize='Equity Final [$]',
|
||||
return_heatmap=True)
|
||||
# -
|
||||
|
||||
# Notice `return_heatmap=True` parameter passed to
|
||||
# [`Backtest.optimize()`](https://kernc.github.io/backtesting.py/doc/backtesting/backtesting.html#backtesting.backtesting.Backtest.optimize).
|
||||
# It makes the function return a heatmap series along with the usual stats of the best run.
|
||||
# `heatmap` is a pandas Series indexed with a MultiIndex, a cartesian product of all permissible parameter values.
|
||||
# The series vales are from the `maximize=` field we provided.
|
||||
|
||||
heatmap
|
||||
|
||||
# This heatmap contains the results of all the runs,
|
||||
# and it's very easy to obtain parameter combinations for e.g. three best runs:
|
||||
|
||||
heatmap.sort_values().iloc[-3:]
|
||||
|
||||
# But people have this enormous faculty of vision we use to make judgements on much larger data sets much faster.
|
||||
# Let's plot the whole heatmap by projecting it on two chosen dimensions.
|
||||
# Say we're mostly interested how parameters `n1` and `n2`, on average, affect the outcome.
|
||||
|
||||
hm = heatmap.groupby(['n1', 'n2']).mean().unstack()
|
||||
hm
|
||||
|
||||
# Let's plot that using the excellent [_Seaborn_](https://seaborn.pydata.org) package:
|
||||
|
||||
# +
|
||||
# %matplotlib inline
|
||||
|
||||
import seaborn as sns
|
||||
|
||||
|
||||
sns.heatmap(hm[::-1], cmap='viridis')
|
||||
# -
|
||||
|
||||
# We see that, on average, we obtain the highest result using trend-determining parameters `n1=40` and `n2=60`,
|
||||
# and it's not like other nearby combinations work similarly well — in our particular strategy, this combination really stands out.
|
||||
#
|
||||
# Since our strategy contains several parameters, we might be interested in other relationships between their values.
|
||||
# We can use
|
||||
# [`backtesting.lib.plot_heatmaps()`](https://kernc.github.io/backtesting.py/doc/backtesting/lib.html#backtesting.lib.plot_heatmaps)
|
||||
# function to plot interactive heatmaps of all parameter combinations simultaneously.
|
||||
|
||||
# +
|
||||
from backtesting.lib import plot_heatmaps
|
||||
|
||||
|
||||
plot_heatmaps(heatmap, agg='mean')
|
||||
891
doc/examples/Quick Start User Guide.ipynb
Normal file
891
doc/examples/Quick Start User Guide.ipynb
Normal file
File diff suppressed because one or more lines are too long
186
doc/examples/Quick Start User Guide.py
Normal file
186
doc/examples/Quick Start User Guide.py
Normal file
@@ -0,0 +1,186 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# ---
|
||||
# jupyter:
|
||||
# jupytext:
|
||||
# text_representation:
|
||||
# extension: .py
|
||||
# format_name: light
|
||||
# format_version: '1.3'
|
||||
# jupytext_version: 0.8.6
|
||||
# kernelspec:
|
||||
# display_name: Python 3
|
||||
# language: python
|
||||
# name: python3
|
||||
# ---
|
||||
|
||||
# _Backtesting.py_ Quick Start User Guide
|
||||
# =======================
|
||||
#
|
||||
# This tutorial will show off some of the features of _backtesting.py_, yet another Python package for [backtesting](https://www.investopedia.com/terms/b/backtesting.asp) trading strategies.
|
||||
#
|
||||
# Firstly, what _backtesting.py_ is not: It is not a data source — you bring your own data. It does _not_ support strategies that rely on multiple orders, hedging, position sizing, or portfolio rebalancing. Instead, _backtesting.py_ works with a single asset at a time, a single position at a time (long or short), and the position size is (as yet) non-adjustable, corresponding to 100% of available funds. _Backtesting.py_ is not aware of order types and does not properly simulate, nor can be connected to, a broker.
|
||||
#
|
||||
# As a trade-off, _backtesting.py_ is a _blazing fast_, small and lightweight backtesting library that uses state-of-the-art Python data structures and procedures, and whose whole API easily fits into memory of a single human. It's best suited for optimizing position entrence and exit strategies, decisions upon values of technical indicators, and it's also a versatile interactive trading strategy visualization tool.
|
||||
#
|
||||
# ### Data
|
||||
#
|
||||
# _You bring your own data._ Backtesting ingests data as a [pandas.DataFrame](https://pandas.pydata.org/pandas-docs/stable/10min.html) with columns 'Open', 'High', 'Low', 'Close', and (optionally) 'Volume'. Such data is easily obtainable (see e.g.
|
||||
# [pandas-datareader](https://pandas-datareader.readthedocs.io/en/latest/),
|
||||
# [Quandl](https://www.quandl.com/tools/python),
|
||||
# [findatapy](https://github.com/cuemacro/findatapy), ...).
|
||||
# Your data frame can have other columns, but these are necessary.
|
||||
# DataFrame should ideally be indexed with a datetime index (convert it with [`pd.to_datetime()`](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_datetime.html)), otherwise a simple range index will do.
|
||||
# Let's see it.
|
||||
|
||||
# +
|
||||
# Example OHLC data for Google Inc.
|
||||
from backtesting.test import GOOG
|
||||
|
||||
GOOG.tail()
|
||||
# -
|
||||
|
||||
# ### Strategy
|
||||
#
|
||||
# Let's create our first strategy to backtest on these Google data, and let it be a simple [moving average (MA) cross-over strategy](https://en.wikipedia.org/wiki/Moving_average_crossover).
|
||||
#
|
||||
# _Backtesting.py_ doesn't contain its own set of technical indicators. In practice, one should probably use functions from their favorite indicator library, such as
|
||||
# [TA-Lib](https://github.com/mrjbq7/ta-lib),
|
||||
# [Tulipy](https://tulipindicators.org),
|
||||
# PyAlgoTrade, ...
|
||||
# But for this example, let's define a simple helper moving average function.
|
||||
|
||||
# +
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def SMA(values, n):
|
||||
"""
|
||||
Return simple moving average of `values`, at
|
||||
each step taking into account `n` previous values.
|
||||
"""
|
||||
return pd.Series(values).rolling(n).mean()
|
||||
# -
|
||||
|
||||
# Note, this is the exact same helper function as the one used in the project unit tests.
|
||||
|
||||
from backtesting.test import SMA
|
||||
|
||||
# A custom strategy needs to extend `backtesting.Strategy` class and override two methods:
|
||||
# [`init()`](https://kernc.github.io/backtesting.py/doc/backtesting/backtesting.html#backtesting.backtesting.Strategy.init) and
|
||||
# [`next()`](https://kernc.github.io/backtesting.py/doc/backtesting/backtesting.html#backtesting.backtesting.Strategy.next).
|
||||
#
|
||||
# Method `init()` is invoked at the beginning, before the strategy is run. Within it, one ideally precomputes in efficient, vectorized fashion whatever indicators and signals the strategy depends on.
|
||||
#
|
||||
# Method `next()` is iteratively called by the backtest instance, once for each data point (data frame row), simulating the incremental availability of each new full candlestick bar. Note, _backtesting.py_ cannot make decisions/trade within candlesticks. If you need to trade within candlesticks, instead start with more fine-grained data.
|
||||
|
||||
# +
|
||||
from backtesting import Strategy
|
||||
from backtesting.lib import crossover
|
||||
|
||||
|
||||
class SmaCross(Strategy):
|
||||
|
||||
# Define the two MA lags as *class variables*
|
||||
# for later optimization
|
||||
n1 = 10
|
||||
n2 = 20
|
||||
|
||||
def init(self):
|
||||
# Precompute two moving averages
|
||||
self.sma1 = self.I(SMA, self.data.Close, self.n1)
|
||||
self.sma2 = self.I(SMA, self.data.Close, self.n2)
|
||||
|
||||
def next(self):
|
||||
# If sma1 crosses above sma2, buy the asset
|
||||
if crossover(self.sma1, self.sma2):
|
||||
self.buy()
|
||||
|
||||
# Else, if sma1 crosses below sma2, sell it
|
||||
elif crossover(self.sma2, self.sma1):
|
||||
self.sell()
|
||||
# -
|
||||
|
||||
# In `init()` as well as in `next()`, the data we are simulating the strategy on is available as an instance variable
|
||||
# [`self.data`](https://kernc.github.io/backtesting.py/doc/backtesting/backtesting.html#backtesting.backtesting.Strategy.data).
|
||||
#
|
||||
# In `init()`, we compute indicators indirectly by wrapping them in
|
||||
# [`self.I()`](https://kernc.github.io/backtesting.py/doc/backtesting/backtesting.html#backtesting.backtesting.Strategy.I).
|
||||
# We pass the wrapper a function (here, our `SMA` function) and any additional arguments to call it with (here, our _Close_ values and the MA lag). Indicators wrapped in this way will be plotted, and their names, intelligently inferred, will appear in the plot legend.
|
||||
#
|
||||
# In `next()`, we simply check if the faster moving average just crossed over the slower one. If it did and upwards, we go long; if it did and downwards, we sell any open long position and go short. Note, there is no position size to adjust; _Backtesting.py_ always assumes maximal possible position. We use
|
||||
# [`backtesting.lib.crossover()`](https://kernc.github.io/backtesting.py/doc/backtesting/lib.html#backtesting.lib.crossover)
|
||||
# function instead of writing more obscure and confusing conditions, such as:
|
||||
|
||||
# + {"active": ""}
|
||||
# def next(self):
|
||||
# if (self.sma1[-2] < self.sma2[-2] and
|
||||
# self.sma1[-1] > self.sma2[-1]):
|
||||
# self.buy()
|
||||
#
|
||||
# elif (self.sma1[-2] > self.sma2[-2] and
|
||||
# self.sma1[-1] < self.sma2[-1]):
|
||||
# self.sell()
|
||||
# -
|
||||
|
||||
# Ugh!
|
||||
#
|
||||
# In `init()`, the whole series of points was available, whereas in `next()`, the _length of `self.data` and any indicator arrays is adjusted_ on each `next()` call so that `array[-1]` (e.g. `self.data.Close[-1]` or `self.sma1[-1]`) always contains the most recent value, `array[-2]` the previous value, etc. (ordinary Python indexing of ascending-sorted 1D arrays).
|
||||
#
|
||||
# **Note**: `self.data` and any indicators wrapped with `self.I` (e.g. `self.sma1`) are **NumPy arrays** for performance reasons. If you need them to be `pandas.Series`, use, e.g., `pd.Series(self.data.Close, index=self.data.index)`.
|
||||
#
|
||||
# Let's see now how our strategy performs on historical Google data. We'll begin with ¤10,000 in cash and set broker's commission to realistic 0.2%.
|
||||
|
||||
# +
|
||||
from backtesting import Backtest
|
||||
|
||||
bt = Backtest(GOOG, SmaCross, cash=10000, commission=.002)
|
||||
bt.run()
|
||||
# -
|
||||
|
||||
# We initialize the
|
||||
# [`Backtest`](https://kernc.github.io/backtesting.py/doc/backtesting/backtesting.html#backtesting.backtesting.Backtest)
|
||||
# instance with data and strategy _class_ (see API reference for additional options).
|
||||
#
|
||||
# As we call
|
||||
# [`Backtest.run()`](https://kernc.github.io/backtesting.py/doc/backtesting/backtesting.html#backtesting.backtesting.Backtest.run)
|
||||
# method, we instantaneously get returned a pandas Series of results and statistics associated with our strategy. We see that this simple strategy makes 600% return in the period of 9 years, with maximal drawdown 33%, and with longest drawdown period spanning almost two years ...
|
||||
#
|
||||
# If we call
|
||||
# [`Backtest.plot()`](https://kernc.github.io/backtesting.py/doc/backtesting/backtesting.html#backtesting.backtesting.Backtest.plot)
|
||||
# method, we can review these results in a more visual form.
|
||||
|
||||
bt.plot()
|
||||
|
||||
# ### Optimization
|
||||
#
|
||||
# We hard-coded the two lag parameters into our strategy above, but perhaps the strategy works better with 15–30 cross-over, or some other combination. We defined the two parameters as optimizable by making them [class variables](https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables).
|
||||
|
||||
# We optimize the two parameters by calling
|
||||
# [`Backtest.optimize()`](https://kernc.github.io/backtesting.py/doc/backtesting/backtesting.html#backtesting.backtesting.Backtest.optimize)
|
||||
# method with each parameter a keyword argument pointing to its pool of values to test. Parameter `n1` is tested from 5 to 30, and parameter `n2` from 10 to 70. Some combinations of the two parameters are invalid, i.e. we don't ever want `n1` to be _larger than_ or equal to `n2`. We limit admissible parameter combinations with an _ad hoc_ constraint function, which returns `True` (admissible) whenever `n1` is less than `n2`. Additionally, we search for such parameter combination that maximizes final equity (we can choose any key from the returned `stats` series).
|
||||
|
||||
# +
|
||||
# %%time
|
||||
|
||||
stats = bt.optimize(n1=range(5, 30, 5),
|
||||
n2=range(10, 70, 5),
|
||||
maximize='Equity Final [$]',
|
||||
constraint=lambda p: p.n1 < p.n2)
|
||||
# -
|
||||
|
||||
stats
|
||||
|
||||
# We can look into `stats._strategy` field for the Strategy instance and its optimal parameter values (10 and 15).
|
||||
|
||||
bt.plot()
|
||||
|
||||
# Optimizing the strategy, we managed to up its initial performance _on in-sample data_ by almost 70% and beat
|
||||
# [buy & hold](https://en.wikipedia.org/wiki/Buy_and_hold).
|
||||
# In real life, however, do take steps to avoid
|
||||
# [overfitting](https://en.wikipedia.org/wiki/Overfitting)
|
||||
# before putting real money at risk.
|
||||
#
|
||||
# Learn more by reviewing further
|
||||
# [examples](https://kernc.github.io/backtesting.py/doc/backtesting/index.html#tutorials),
|
||||
# or find more program options in the
|
||||
# [full API documentation](https://kernc.github.io/backtesting.py/doc/backtesting/index.html#header-submodules).
|
||||
540
doc/examples/Strategies Library.ipynb
Normal file
540
doc/examples/Strategies Library.ipynb
Normal file
File diff suppressed because one or more lines are too long
101
doc/examples/Strategies Library.py
Normal file
101
doc/examples/Strategies Library.py
Normal file
@@ -0,0 +1,101 @@
|
||||
# ---
|
||||
# jupyter:
|
||||
# jupytext:
|
||||
# text_representation:
|
||||
# extension: .py
|
||||
# format_name: light
|
||||
# format_version: '1.3'
|
||||
# jupytext_version: 0.8.6
|
||||
# kernelspec:
|
||||
# display_name: Python 3
|
||||
# language: python
|
||||
# name: python3
|
||||
# ---
|
||||
|
||||
# Library of Composable Base Strategies
|
||||
# ======================
|
||||
#
|
||||
# This tutorial will show how to reuse composable base strategies that are part of this software distribution.
|
||||
# It is assumed you're already familiar with
|
||||
# [basic _backtesting.py_ usage](https://kernc.github.io/backtesting.py/doc/examples/Quick Start User Guide.html).
|
||||
#
|
||||
# We'll extend the same moving average cross-over strategy as in
|
||||
# [Quick Start User Guide](https://kernc.github.io/backtesting.py/doc/examples/Quick Start User Guide.html),
|
||||
# but we'll rewrite it as a vectorized signal strategy and add trailing stop-loss.
|
||||
#
|
||||
# We'll again use a helper moving average function.
|
||||
# In practice, one can use functions from any indicator library, such as
|
||||
# [TA-Lib](https://github.com/mrjbq7/ta-lib),
|
||||
# [Tulipy](https://tulipindicators.org),
|
||||
# PyAlgoTrade, ...
|
||||
|
||||
from backtesting.test import SMA
|
||||
|
||||
# _Backtesting.py_ package includes
|
||||
# [_lib_](https://kernc.github.io/backtesting.py/doc/backtesting/lib.html)
|
||||
# module that contains various reusable utilities for developing strategies.
|
||||
# Some of those utilities are composable base strategies one can extend and build upon.
|
||||
#
|
||||
# We import and extend two of those strategies here:
|
||||
# * [`SignalStrategy`](https://kernc.github.io/backtesting.py/doc/backtesting/lib.html#backtesting.lib.SignalStrategy)
|
||||
# which decides upon a single signal vector whether to buy into a position, akin to
|
||||
# [vectorized backtesting](https://www.google.com/search?q=vectorized+backtesting)
|
||||
# engines, and
|
||||
# * [`TrailingStrategy`](https://kernc.github.io/backtesting.py/doc/backtesting/lib.html#backtesting.lib.TrailingStrategy)
|
||||
# which automatically trails the current price with a stop-loss order some multiple of
|
||||
# [average true range](https://en.wikipedia.org/wiki/Average_true_range)
|
||||
# (ATR) away.
|
||||
|
||||
# +
|
||||
import pandas as pd
|
||||
from backtesting.lib import SignalStrategy, TrailingStrategy
|
||||
|
||||
|
||||
class SmaCross(SignalStrategy,
|
||||
TrailingStrategy):
|
||||
n1 = 10
|
||||
n2 = 20
|
||||
|
||||
def init(self):
|
||||
# In init() and in next() it is important to call the
|
||||
# super method to properly initialize all the classes
|
||||
super().init()
|
||||
|
||||
# Precompute the two moving averages
|
||||
sma1 = self.I(SMA, self.data.Close, self.n1)
|
||||
sma2 = self.I(SMA, self.data.Close, self.n2)
|
||||
|
||||
# Taking a first difference (`.diff()`) of a boolean
|
||||
# series results in +1, 0, and -1 values. In our signal,
|
||||
# as expected by SignalStrategy, +1 means buy,
|
||||
# -1 means sell, and 0 means to hold whatever current
|
||||
# position and wait. See the docs.
|
||||
signal = (pd.Series(sma1) > sma2).astype(int).diff().fillna(0)
|
||||
|
||||
# Set the signal vector using the method provided
|
||||
# by SignalStrategy
|
||||
self.set_signal(signal)
|
||||
|
||||
# Set trailing stop-loss to 4x ATR
|
||||
# using the method provided by TrailingStrategy
|
||||
self.set_trailing_sl(4)
|
||||
# -
|
||||
|
||||
# Note, since the strategies in _lib_ may require their own intialization and next-tick logic, be sure to **always call `super().init()` and `super().next()` in your overridden methods**.
|
||||
#
|
||||
# Let's see how the example strategy fares on historical Google data.
|
||||
|
||||
# +
|
||||
from backtesting import Backtest
|
||||
from backtesting.test import GOOG
|
||||
|
||||
bt = Backtest(GOOG, SmaCross, commission=.002)
|
||||
|
||||
bt.run()
|
||||
bt.plot()
|
||||
# -
|
||||
|
||||
# Notice how managing risk with a trailing stop-loss severely limits our losses.
|
||||
#
|
||||
# For other strategies of the sort, and other reusable utilities in general, see the
|
||||
# [_lib_ module reference](https://kernc.github.io/backtesting.py/doc/backtesting/lib.html).
|
||||
9
doc/ipython_config.py
Normal file
9
doc/ipython_config.py
Normal file
@@ -0,0 +1,9 @@
|
||||
# In build.sh, this file is copied into (and removed from)
|
||||
# ~/.ipython/profile_default/startup/
|
||||
|
||||
import pandas as pd
|
||||
pd.set_option("display.max_rows", 30)
|
||||
# This an alternative to setting display.preceision=2,
|
||||
# which doesn't work well for our dtype=object Series.
|
||||
pd.set_option('display.float_format', '{:.2f}'.format)
|
||||
del pd
|
||||
14
doc/pdoc_template/config.mako
Normal file
14
doc/pdoc_template/config.mako
Normal file
@@ -0,0 +1,14 @@
|
||||
<%!
|
||||
html_lang = 'en'
|
||||
show_inherited_members = False
|
||||
extract_module_toc_into_sidebar = True
|
||||
list_class_variables_in_index = True
|
||||
|
||||
|
||||
from pdoc.html_helpers import glimpse as _glimpse
|
||||
|
||||
# Make visible the code block from the first paragraph of the
|
||||
# `backtesting.backtesting` module
|
||||
def glimpse(text, *args, **kwargs):
|
||||
return _glimpse(text, max_length=180, paragraph=False)
|
||||
%>
|
||||
10
doc/pdoc_template/credits.mako
Normal file
10
doc/pdoc_template/credits.mako
Normal file
@@ -0,0 +1,10 @@
|
||||
<%!
|
||||
from backtesting import __version__
|
||||
%>
|
||||
<p>
|
||||
<a href="https://kernc.github.io/backtesting.py/"><cite>backtesting</cite> ${__version__}</a>
|
||||
<span style="color:#ddd">卐</span>
|
||||
</p>
|
||||
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
|
||||
<script>hljs.configure({languages: ['python']}); hljs.initHighlightingOnLoad()</script>
|
||||
28
doc/pdoc_template/head.mako
Normal file
28
doc/pdoc_template/head.mako
Normal file
@@ -0,0 +1,28 @@
|
||||
<%!
|
||||
from pdoc.html_helpers import minify_css
|
||||
%>
|
||||
<%def name="homelink()" filter="minify_css">
|
||||
.homelink {
|
||||
display: block;
|
||||
font-size: 2em;
|
||||
font-weight: bold;
|
||||
color: #555;
|
||||
background: #f6f6f6;
|
||||
text-align: center;
|
||||
padding: .5em 0;
|
||||
}
|
||||
.homelink:hover {
|
||||
color: inherit;
|
||||
}
|
||||
.homelink img {
|
||||
display: block;
|
||||
max-width:40%;
|
||||
max-height: 5em;
|
||||
margin: auto;
|
||||
margin-bottom: .3em;
|
||||
}
|
||||
</%def>
|
||||
|
||||
<style>${homelink()}</style>
|
||||
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
|
||||
<link rel="canonical" href="https://kernc.github.io/backtesting.py/doc/${module.url(link_prefix=link_prefix)}">
|
||||
5
doc/pdoc_template/logo.mako
Normal file
5
doc/pdoc_template/logo.mako
Normal file
@@ -0,0 +1,5 @@
|
||||
<header>
|
||||
<a class="homelink" rel="home" title="Backtesting.py Home" href="https://kernc.github.io/backtesting.py/">
|
||||
<img src="https://kernc.github.io/backtesting.py/logo.png" alt=""> Backtesting.py
|
||||
</a>
|
||||
</header>
|
||||
29
logo.py
Normal file
29
logo.py
Normal file
@@ -0,0 +1,29 @@
|
||||
from bokeh.io import show, output_file
|
||||
from bokeh.models import ColumnDataSource
|
||||
from bokeh.plotting import figure
|
||||
|
||||
output_file("backtesting_logo.html")
|
||||
|
||||
source = ColumnDataSource(data=dict(
|
||||
colors=[['#00a618', '#d0d000', 'tomato'][i]
|
||||
for i in [0, 0, 1, 0, 1, 0, 0, 1, 0, 2]],
|
||||
x=list(range(10)),
|
||||
bottom=[1, 3, 4, 3, 2, 3, 5, 5, 7, 6.5],
|
||||
top= [4, 7, 6, 5, 4, 6, 8, 7, 9, 8])) # noqa: E222,E251
|
||||
|
||||
|
||||
p = figure(plot_height=800, plot_width=1200, tools='wheel_zoom,save')
|
||||
p.vbar('x', .6, 'bottom', 'top', source=source,
|
||||
line_color='black', line_width=2,
|
||||
fill_color='colors')
|
||||
|
||||
p.xgrid.grid_line_color = None
|
||||
p.ygrid.grid_line_color = None
|
||||
p.y_range.start = -2
|
||||
p.y_range.end = 12
|
||||
p.x_range.start = -2
|
||||
p.x_range.end = 11
|
||||
p.background_fill_color = None
|
||||
p.border_fill_color = None
|
||||
|
||||
show(p)
|
||||
112
setup.py
Normal file
112
setup.py
Normal file
@@ -0,0 +1,112 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
if sys.version_info < (3, 4):
|
||||
sys.exit('ERROR: Backtesting.py requires Python 3.4+')
|
||||
|
||||
|
||||
def _discover_tests():
|
||||
import unittest
|
||||
return unittest.defaultTestLoader.discover('backtesting.test',
|
||||
pattern='*test*.py',
|
||||
top_level_dir='.')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from setuptools import setup
|
||||
setup(
|
||||
name='Backtesting',
|
||||
description="Backtest trading strategies in Python",
|
||||
license='AGPL-3.0',
|
||||
url="https://github.com/kernc/backtesting.py",
|
||||
long_description=open(os.path.join(os.path.dirname(__file__), 'README.md')).read(),
|
||||
long_description_content_type='text/markdown',
|
||||
setup_requires=[
|
||||
'setuptools_git',
|
||||
'setuptools_scm',
|
||||
],
|
||||
use_scm_version={
|
||||
'write_to': os.path.join('backtesting', '_version.py'),
|
||||
},
|
||||
install_requires=[
|
||||
'typing ; python_version < "3.5"',
|
||||
'numpy',
|
||||
'pandas',
|
||||
'bokeh >= 0.12.15',
|
||||
],
|
||||
extras_require={
|
||||
'doc': [
|
||||
'pdoc3',
|
||||
'jupytext >= 0.7.0',
|
||||
'nbconvert',
|
||||
],
|
||||
},
|
||||
test_suite="setup._discover_tests",
|
||||
python_requires='>=3.4',
|
||||
author='Zach Lûster',
|
||||
classifiers=[
|
||||
'Intended Audience :: Financial and Insurance Industry',
|
||||
'Intended Audience :: Science/Research',
|
||||
'License :: OSI Approved :: GNU Affero General Public License v3 or later (AGPLv3+)',
|
||||
'Operating System :: OS Independent',
|
||||
'Programming Language :: Python :: 3 :: Only',
|
||||
'Topic :: Office/Business :: Financial :: Investment',
|
||||
'Topic :: Scientific/Engineering :: Visualization',
|
||||
],
|
||||
keywords=(
|
||||
'algo',
|
||||
'algorithmic',
|
||||
'ashi',
|
||||
'backtest',
|
||||
'backtesting',
|
||||
'bitcoin',
|
||||
'bokeh',
|
||||
'bonds',
|
||||
'candles',
|
||||
'candlestick',
|
||||
'cboe',
|
||||
'chart',
|
||||
'cme',
|
||||
'commodities',
|
||||
'crash',
|
||||
'crypto',
|
||||
'currency',
|
||||
'drawdown',
|
||||
'equity',
|
||||
'ethereum',
|
||||
'exchange',
|
||||
'finance',
|
||||
'financial',
|
||||
'forex',
|
||||
'fund',
|
||||
'futures',
|
||||
'fx',
|
||||
'fxpro',
|
||||
'gold',
|
||||
'heiken',
|
||||
'historical',
|
||||
'indicator',
|
||||
'invest',
|
||||
'investing',
|
||||
'investment',
|
||||
'macd',
|
||||
'market',
|
||||
'mechanical',
|
||||
'money',
|
||||
'oanda',
|
||||
'ohlc',
|
||||
'ohlcv',
|
||||
'order',
|
||||
'profit',
|
||||
'quant',
|
||||
'quantitative',
|
||||
'silver',
|
||||
'stocks',
|
||||
'strategy',
|
||||
'ticker',
|
||||
'trader',
|
||||
'trading',
|
||||
'tradingview',
|
||||
'usd',
|
||||
),
|
||||
)
|
||||
Reference in New Issue
Block a user