Merge remote-tracking branch 'upstream/main'
This commit is contained in:
14
.env.example
14
.env.example
@@ -11,6 +11,8 @@ AZURE_OPENAI_API_KEY=
|
||||
DEEPSEEK_ENDPOINT=https://api.deepseek.com
|
||||
DEEPSEEK_API_KEY=
|
||||
|
||||
OLLAMA_ENDPOINT=http://localhost:11434
|
||||
|
||||
# Set to false to disable anonymized telemetry
|
||||
ANONYMIZED_TELEMETRY=true
|
||||
|
||||
@@ -22,12 +24,16 @@ CHROME_PATH=
|
||||
CHROME_USER_DATA=
|
||||
CHROME_DEBUGGING_PORT=9222
|
||||
CHROME_DEBUGGING_HOST=localhost
|
||||
CHROME_PERSISTENT_SESSION=false # Set to true to keep browser open between AI tasks
|
||||
# Set to true to keep browser open between AI tasks
|
||||
CHROME_PERSISTENT_SESSION=false
|
||||
|
||||
# Display settings
|
||||
RESOLUTION=1920x1080x24 # Format: WIDTHxHEIGHTxDEPTH
|
||||
RESOLUTION_WIDTH=1920 # Width in pixels
|
||||
RESOLUTION_HEIGHT=1080 # Height in pixels
|
||||
# Format: WIDTHxHEIGHTxDEPTH
|
||||
RESOLUTION=1920x1080x24
|
||||
# Width in pixels
|
||||
RESOLUTION_WIDTH=1920
|
||||
# Height in pixels
|
||||
RESOLUTION_HEIGHT=1080
|
||||
|
||||
# VNC settings
|
||||
VNC_PASSWORD=youvncpassword
|
||||
@@ -3,6 +3,7 @@ FROM python:3.11-slim
|
||||
# Install system dependencies
|
||||
RUN apt-get update && apt-get install -y \
|
||||
wget \
|
||||
netcat-traditional \
|
||||
gnupg \
|
||||
curl \
|
||||
unzip \
|
||||
|
||||
@@ -179,6 +179,6 @@ playwright install
|
||||
```
|
||||
|
||||
## Changelog
|
||||
|
||||
- [x] **2025/01/26:** Thanks to @vvincent1234. Now browser-use-webui can combine with DeepSeek-r1 to engage in deep thinking!
|
||||
- [x] **2025/01/10:** Thanks to @casistack. Now we have Docker Setup option and also Support keep browser open between tasks.[Video tutorial demo](https://github.com/browser-use/web-ui/issues/1#issuecomment-2582511750).
|
||||
- [x] **2025/01/06:** Thanks to @richard-devbot. A New and Well-Designed WebUI is released. [Video tutorial demo](https://github.com/warmshao/browser-use-webui/issues/1#issuecomment-2573393113).
|
||||
19
SECURITY.md
Normal file
19
SECURITY.md
Normal file
@@ -0,0 +1,19 @@
|
||||
## Reporting Security Issues
|
||||
|
||||
If you believe you have found a security vulnerability in browser-use, please report it through coordinated disclosure.
|
||||
|
||||
**Please do not report security vulnerabilities through the repository issues, discussions, or pull requests.**
|
||||
|
||||
Instead, please open a new [Github security advisory](https://github.com/browser-use/web-ui/security/advisories/new).
|
||||
|
||||
Please include as much of the information listed below as you can to help me better understand and resolve the issue:
|
||||
|
||||
* The type of issue (e.g., buffer overflow, SQL injection, or cross-site scripting)
|
||||
* Full paths of source file(s) related to the manifestation of the issue
|
||||
* The location of the affected source code (tag/branch/commit or direct URL)
|
||||
* Any special configuration required to reproduce the issue
|
||||
* Step-by-step instructions to reproduce the issue
|
||||
* Proof-of-concept or exploit code (if possible)
|
||||
* Impact of the issue, including how an attacker might exploit the issue
|
||||
|
||||
This information will help me triage your report more quickly.
|
||||
@@ -1,5 +1,6 @@
|
||||
services:
|
||||
browser-use-webui:
|
||||
platform: linux/amd64
|
||||
build:
|
||||
context: .
|
||||
dockerfile: Dockerfile
|
||||
|
||||
@@ -1,7 +1,3 @@
|
||||
browser-use==0.1.19
|
||||
langchain-google-genai==2.0.8
|
||||
browser-use==0.1.29
|
||||
pyperclip==1.9.0
|
||||
gradio==5.9.1
|
||||
langchain-ollama==0.2.2
|
||||
langchain-openai==0.2.14
|
||||
langchain-mistralai==0.2.4
|
||||
gradio==5.10.0
|
||||
|
||||
@@ -1,6 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/1
|
||||
# @Author : wenshao
|
||||
# @Email : wenshaoguo1026@gmail.com
|
||||
# @Project : browser-use-webui
|
||||
# @FileName: __init__.py.py
|
||||
|
||||
@@ -1,6 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/1
|
||||
# @Author : wenshao
|
||||
# @Email : wenshaoguo1026@gmail.com
|
||||
# @Project : browser-use-webui
|
||||
# @FileName: __init__.py.py
|
||||
|
||||
@@ -1,19 +1,13 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/2
|
||||
# @Author : wenshao
|
||||
# @ProjectName: browser-use-webui
|
||||
# @FileName: custom_agent.py
|
||||
|
||||
import json
|
||||
import logging
|
||||
import pdb
|
||||
import traceback
|
||||
from typing import Optional, Type
|
||||
from typing import Optional, Type, List, Dict, Any, Callable
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
import os
|
||||
import base64
|
||||
import io
|
||||
|
||||
import platform
|
||||
from browser_use.agent.prompts import SystemPrompt
|
||||
from browser_use.agent.service import Agent
|
||||
from browser_use.agent.views import (
|
||||
@@ -27,9 +21,9 @@ from browser_use.browser.context import BrowserContext
|
||||
from browser_use.browser.views import BrowserStateHistory
|
||||
from browser_use.controller.service import Controller
|
||||
from browser_use.telemetry.views import (
|
||||
AgentEndTelemetryEvent,
|
||||
AgentRunTelemetryEvent,
|
||||
AgentStepErrorTelemetryEvent,
|
||||
AgentEndTelemetryEvent,
|
||||
AgentRunTelemetryEvent,
|
||||
AgentStepTelemetryEvent,
|
||||
)
|
||||
from browser_use.utils import time_execution_async
|
||||
from langchain_core.language_models.chat_models import BaseChatModel
|
||||
@@ -76,6 +70,11 @@ class CustomAgent(Agent):
|
||||
max_actions_per_step: int = 10,
|
||||
tool_call_in_content: bool = True,
|
||||
agent_state: AgentState = None,
|
||||
initial_actions: Optional[List[Dict[str, Dict[str, Any]]]] = None,
|
||||
# Cloud Callbacks
|
||||
register_new_step_callback: Callable[['BrowserState', 'AgentOutput', int], None] | None = None,
|
||||
register_done_callback: Callable[['AgentHistoryList'], None] | None = None,
|
||||
tool_calling_method: Optional[str] = 'auto',
|
||||
):
|
||||
super().__init__(
|
||||
task=task,
|
||||
@@ -94,8 +93,22 @@ class CustomAgent(Agent):
|
||||
max_error_length=max_error_length,
|
||||
max_actions_per_step=max_actions_per_step,
|
||||
tool_call_in_content=tool_call_in_content,
|
||||
initial_actions=initial_actions,
|
||||
register_new_step_callback=register_new_step_callback,
|
||||
register_done_callback=register_done_callback,
|
||||
tool_calling_method=tool_calling_method
|
||||
)
|
||||
if self.model_name in ["deepseek-reasoner"] or self.model_name.startswith("deepseek-r1"):
|
||||
# deepseek-reasoner does not support function calling
|
||||
self.use_deepseek_r1 = True
|
||||
# deepseek-reasoner only support 64000 context
|
||||
self.max_input_tokens = 64000
|
||||
else:
|
||||
self.use_deepseek_r1 = False
|
||||
|
||||
# custom new info
|
||||
self.add_infos = add_infos
|
||||
# agent_state for Stop
|
||||
self.agent_state = agent_state
|
||||
self.message_manager = CustomMassageManager(
|
||||
llm=self.llm,
|
||||
@@ -106,7 +119,7 @@ class CustomAgent(Agent):
|
||||
include_attributes=self.include_attributes,
|
||||
max_error_length=self.max_error_length,
|
||||
max_actions_per_step=self.max_actions_per_step,
|
||||
tool_call_in_content=tool_call_in_content,
|
||||
use_deepseek_r1=self.use_deepseek_r1
|
||||
)
|
||||
|
||||
def _setup_action_models(self) -> None:
|
||||
@@ -127,7 +140,8 @@ class CustomAgent(Agent):
|
||||
|
||||
logger.info(f"{emoji} Eval: {response.current_state.prev_action_evaluation}")
|
||||
logger.info(f"🧠 New Memory: {response.current_state.important_contents}")
|
||||
logger.info(f"⏳ Task Progress: {response.current_state.completed_contents}")
|
||||
logger.info(f"⏳ Task Progress: \n{response.current_state.task_progress}")
|
||||
logger.info(f"📋 Future Plans: \n{response.current_state.future_plans}")
|
||||
logger.info(f"🤔 Thought: {response.current_state.thought}")
|
||||
logger.info(f"🎯 Summary: {response.current_state.summary}")
|
||||
for i, action in enumerate(response.action):
|
||||
@@ -153,42 +167,50 @@ class CustomAgent(Agent):
|
||||
):
|
||||
step_info.memory += important_contents + "\n"
|
||||
|
||||
completed_contents = model_output.current_state.completed_contents
|
||||
if completed_contents and "None" not in completed_contents:
|
||||
step_info.task_progress = completed_contents
|
||||
task_progress = model_output.current_state.task_progress
|
||||
if task_progress and "None" not in task_progress:
|
||||
step_info.task_progress = task_progress
|
||||
|
||||
future_plans = model_output.current_state.future_plans
|
||||
if future_plans and "None" not in future_plans:
|
||||
step_info.future_plans = future_plans
|
||||
|
||||
@time_execution_async("--get_next_action")
|
||||
async def get_next_action(self, input_messages: list[BaseMessage]) -> AgentOutput:
|
||||
"""Get next action from LLM based on current state"""
|
||||
try:
|
||||
structured_llm = self.llm.with_structured_output(self.AgentOutput, include_raw=True)
|
||||
response: dict[str, Any] = await structured_llm.ainvoke(input_messages) # type: ignore
|
||||
|
||||
parsed: AgentOutput = response['parsed']
|
||||
# cut the number of actions to max_actions_per_step
|
||||
parsed.action = parsed.action[: self.max_actions_per_step]
|
||||
self._log_response(parsed)
|
||||
self.n_steps += 1
|
||||
|
||||
return parsed
|
||||
except Exception as e:
|
||||
# If something goes wrong, try to invoke the LLM again without structured output,
|
||||
# and Manually parse the response. Temporarily solution for DeepSeek
|
||||
ret = self.llm.invoke(input_messages)
|
||||
if isinstance(ret.content, list):
|
||||
parsed_json = json.loads(ret.content[0].replace("```json", "").replace("```", ""))
|
||||
if self.use_deepseek_r1:
|
||||
merged_input_messages = self.message_manager.merge_successive_human_messages(input_messages)
|
||||
ai_message = self.llm.invoke(merged_input_messages)
|
||||
self.message_manager._add_message_with_tokens(ai_message)
|
||||
logger.info(f"🤯 Start Deep Thinking: ")
|
||||
logger.info(ai_message.reasoning_content)
|
||||
logger.info(f"🤯 End Deep Thinking")
|
||||
if isinstance(ai_message.content, list):
|
||||
parsed_json = json.loads(ai_message.content[0].replace("```json", "").replace("```", ""))
|
||||
else:
|
||||
parsed_json = json.loads(ret.content.replace("```json", "").replace("```", ""))
|
||||
parsed_json = json.loads(ai_message.content.replace("```json", "").replace("```", ""))
|
||||
parsed: AgentOutput = self.AgentOutput(**parsed_json)
|
||||
if parsed is None:
|
||||
logger.debug(ai_message.content)
|
||||
raise ValueError(f'Could not parse response.')
|
||||
else:
|
||||
ai_message = self.llm.invoke(input_messages)
|
||||
self.message_manager._add_message_with_tokens(ai_message)
|
||||
if isinstance(ai_message.content, list):
|
||||
parsed_json = json.loads(ai_message.content[0].replace("```json", "").replace("```", ""))
|
||||
else:
|
||||
parsed_json = json.loads(ai_message.content.replace("```json", "").replace("```", ""))
|
||||
parsed: AgentOutput = self.AgentOutput(**parsed_json)
|
||||
if parsed is None:
|
||||
logger.debug(ai_message.content)
|
||||
raise ValueError(f'Could not parse response.')
|
||||
|
||||
# cut the number of actions to max_actions_per_step
|
||||
parsed.action = parsed.action[: self.max_actions_per_step]
|
||||
self._log_response(parsed)
|
||||
self.n_steps += 1
|
||||
# cut the number of actions to max_actions_per_step
|
||||
parsed.action = parsed.action[: self.max_actions_per_step]
|
||||
self._log_response(parsed)
|
||||
self.n_steps += 1
|
||||
|
||||
return parsed
|
||||
return parsed
|
||||
|
||||
@time_execution_async("--step")
|
||||
async def step(self, step_info: Optional[CustomAgentStepInfo] = None) -> None:
|
||||
@@ -202,16 +224,32 @@ class CustomAgent(Agent):
|
||||
state = await self.browser_context.get_state(use_vision=self.use_vision)
|
||||
self.message_manager.add_state_message(state, self._last_result, step_info)
|
||||
input_messages = self.message_manager.get_messages()
|
||||
model_output = await self.get_next_action(input_messages)
|
||||
self.update_step_info(model_output, step_info)
|
||||
logger.info(f"🧠 All Memory: {step_info.memory}")
|
||||
self._save_conversation(input_messages, model_output)
|
||||
self.message_manager._remove_last_state_message() # we dont want the whole state in the chat history
|
||||
self.message_manager.add_model_output(model_output)
|
||||
try:
|
||||
model_output = await self.get_next_action(input_messages)
|
||||
if self.register_new_step_callback:
|
||||
self.register_new_step_callback(state, model_output, self.n_steps)
|
||||
self.update_step_info(model_output, step_info)
|
||||
logger.info(f"🧠 All Memory: \n{step_info.memory}")
|
||||
self._save_conversation(input_messages, model_output)
|
||||
# should we remove last state message? at least, deepseek-reasoner cannot remove
|
||||
if self.model_name != "deepseek-reasoner":
|
||||
self.message_manager._remove_last_state_message()
|
||||
except Exception as e:
|
||||
# model call failed, remove last state message from history
|
||||
self.message_manager._remove_last_state_message()
|
||||
raise e
|
||||
|
||||
result: list[ActionResult] = await self.controller.multi_act(
|
||||
model_output.action, self.browser_context
|
||||
)
|
||||
if len(result) != len(model_output.action):
|
||||
# I think something changes, such information should let LLM know
|
||||
for ri in range(len(result), len(model_output.action)):
|
||||
result.append(ActionResult(extracted_content=None,
|
||||
include_in_memory=True,
|
||||
error=f"{model_output.action[ri].model_dump_json(exclude_unset=True)} is Failed to execute. \
|
||||
Something new appeared after action {model_output.action[len(result) - 1].model_dump_json(exclude_unset=True)}",
|
||||
is_done=False))
|
||||
self._last_result = result
|
||||
|
||||
if len(result) > 0 and result[-1].is_done:
|
||||
@@ -220,34 +258,172 @@ class CustomAgent(Agent):
|
||||
self.consecutive_failures = 0
|
||||
|
||||
except Exception as e:
|
||||
result = self._handle_step_error(e)
|
||||
result = await self._handle_step_error(e)
|
||||
self._last_result = result
|
||||
|
||||
finally:
|
||||
actions = [a.model_dump(exclude_unset=True) for a in model_output.action] if model_output else []
|
||||
self.telemetry.capture(
|
||||
AgentStepTelemetryEvent(
|
||||
agent_id=self.agent_id,
|
||||
step=self.n_steps,
|
||||
actions=actions,
|
||||
consecutive_failures=self.consecutive_failures,
|
||||
step_error=[r.error for r in result if r.error] if result else ['No result'],
|
||||
)
|
||||
)
|
||||
if not result:
|
||||
return
|
||||
for r in result:
|
||||
if r.error:
|
||||
self.telemetry.capture(
|
||||
AgentStepErrorTelemetryEvent(
|
||||
agent_id=self.agent_id,
|
||||
error=r.error,
|
||||
)
|
||||
)
|
||||
|
||||
if state:
|
||||
self._make_history_item(model_output, state, result)
|
||||
|
||||
async def run(self, max_steps: int = 100) -> AgentHistoryList:
|
||||
"""Execute the task with maximum number of steps"""
|
||||
try:
|
||||
self._log_agent_run()
|
||||
|
||||
# Execute initial actions if provided
|
||||
if self.initial_actions:
|
||||
result = await self.controller.multi_act(self.initial_actions, self.browser_context, check_for_new_elements=False)
|
||||
self._last_result = result
|
||||
|
||||
step_info = CustomAgentStepInfo(
|
||||
task=self.task,
|
||||
add_infos=self.add_infos,
|
||||
step_number=1,
|
||||
max_steps=max_steps,
|
||||
memory="",
|
||||
task_progress="",
|
||||
future_plans=""
|
||||
)
|
||||
|
||||
for step in range(max_steps):
|
||||
# 1) Check if stop requested
|
||||
if self.agent_state and self.agent_state.is_stop_requested():
|
||||
logger.info("🛑 Stop requested by user")
|
||||
self._create_stop_history_item()
|
||||
break
|
||||
|
||||
# 2) Store last valid state before step
|
||||
if self.browser_context and self.agent_state:
|
||||
state = await self.browser_context.get_state(use_vision=self.use_vision)
|
||||
self.agent_state.set_last_valid_state(state)
|
||||
|
||||
if self._too_many_failures():
|
||||
break
|
||||
|
||||
# 3) Do the step
|
||||
await self.step(step_info)
|
||||
|
||||
if self.history.is_done():
|
||||
if (
|
||||
self.validate_output and step < max_steps - 1
|
||||
): # if last step, we dont need to validate
|
||||
if not await self._validate_output():
|
||||
continue
|
||||
|
||||
logger.info("✅ Task completed successfully")
|
||||
break
|
||||
else:
|
||||
logger.info("❌ Failed to complete task in maximum steps")
|
||||
|
||||
return self.history
|
||||
|
||||
finally:
|
||||
self.telemetry.capture(
|
||||
AgentEndTelemetryEvent(
|
||||
agent_id=self.agent_id,
|
||||
success=self.history.is_done(),
|
||||
steps=self.n_steps,
|
||||
max_steps_reached=self.n_steps >= max_steps,
|
||||
errors=self.history.errors(),
|
||||
)
|
||||
)
|
||||
|
||||
if not self.injected_browser_context:
|
||||
await self.browser_context.close()
|
||||
|
||||
if not self.injected_browser and self.browser:
|
||||
await self.browser.close()
|
||||
|
||||
if self.generate_gif:
|
||||
output_path: str = 'agent_history.gif'
|
||||
if isinstance(self.generate_gif, str):
|
||||
output_path = self.generate_gif
|
||||
|
||||
self.create_history_gif(output_path=output_path)
|
||||
|
||||
def _create_stop_history_item(self):
|
||||
"""Create a history item for when the agent is stopped."""
|
||||
try:
|
||||
# Attempt to retrieve the last valid state from agent_state
|
||||
state = None
|
||||
if self.agent_state:
|
||||
last_state = self.agent_state.get_last_valid_state()
|
||||
if last_state:
|
||||
# Convert to BrowserStateHistory
|
||||
state = BrowserStateHistory(
|
||||
url=getattr(last_state, 'url', ""),
|
||||
title=getattr(last_state, 'title', ""),
|
||||
tabs=getattr(last_state, 'tabs', []),
|
||||
interacted_element=[None],
|
||||
screenshot=getattr(last_state, 'screenshot', None)
|
||||
)
|
||||
else:
|
||||
state = self._create_empty_state()
|
||||
else:
|
||||
state = self._create_empty_state()
|
||||
|
||||
# Create a final item in the agent history indicating done
|
||||
stop_history = AgentHistory(
|
||||
model_output=None,
|
||||
state=state,
|
||||
result=[ActionResult(extracted_content=None, error=None, is_done=True)]
|
||||
)
|
||||
self.history.history.append(stop_history)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error creating stop history item: {e}")
|
||||
# Create empty state as fallback
|
||||
state = self._create_empty_state()
|
||||
stop_history = AgentHistory(
|
||||
model_output=None,
|
||||
state=state,
|
||||
result=[ActionResult(extracted_content=None, error=None, is_done=True)]
|
||||
)
|
||||
self.history.history.append(stop_history)
|
||||
|
||||
def _convert_to_browser_state_history(self, browser_state):
|
||||
return BrowserStateHistory(
|
||||
url=getattr(browser_state, 'url', ""),
|
||||
title=getattr(browser_state, 'title', ""),
|
||||
tabs=getattr(browser_state, 'tabs', []),
|
||||
interacted_element=[None],
|
||||
screenshot=getattr(browser_state, 'screenshot', None)
|
||||
)
|
||||
|
||||
def _create_empty_state(self):
|
||||
return BrowserStateHistory(
|
||||
url="",
|
||||
title="",
|
||||
tabs=[],
|
||||
interacted_element=[None],
|
||||
screenshot=None
|
||||
)
|
||||
|
||||
def create_history_gif(
|
||||
self,
|
||||
output_path: str = 'agent_history.gif',
|
||||
duration: int = 3000,
|
||||
show_goals: bool = True,
|
||||
show_task: bool = True,
|
||||
show_logo: bool = False,
|
||||
font_size: int = 40,
|
||||
title_font_size: int = 56,
|
||||
goal_font_size: int = 44,
|
||||
margin: int = 40,
|
||||
line_spacing: float = 1.5,
|
||||
self,
|
||||
output_path: str = 'agent_history.gif',
|
||||
duration: int = 3000,
|
||||
show_goals: bool = True,
|
||||
show_task: bool = True,
|
||||
show_logo: bool = False,
|
||||
font_size: int = 40,
|
||||
title_font_size: int = 56,
|
||||
goal_font_size: int = 44,
|
||||
margin: int = 40,
|
||||
line_spacing: float = 1.5,
|
||||
) -> None:
|
||||
"""Create a GIF from the agent's history with overlaid task and goal text."""
|
||||
if not self.history.history:
|
||||
@@ -268,10 +444,9 @@ class CustomAgent(Agent):
|
||||
|
||||
for font_name in font_options:
|
||||
try:
|
||||
import platform
|
||||
if platform.system() == "Windows":
|
||||
if platform.system() == 'Windows':
|
||||
# Need to specify the abs font path on Windows
|
||||
font_name = os.path.join(os.getenv("WIN_FONT_DIR", "C:\\Windows\\Fonts"), font_name + ".ttf")
|
||||
font_name = os.path.join(os.getenv('WIN_FONT_DIR', 'C:\\Windows\\Fonts'), font_name + '.ttf')
|
||||
regular_font = ImageFont.truetype(font_name, font_size)
|
||||
title_font = ImageFont.truetype(font_name, title_font_size)
|
||||
goal_font = ImageFont.truetype(font_name, goal_font_size)
|
||||
@@ -348,133 +523,4 @@ class CustomAgent(Agent):
|
||||
)
|
||||
logger.info(f'Created GIF at {output_path}')
|
||||
else:
|
||||
logger.warning('No images found in history to create GIF')
|
||||
|
||||
async def run(self, max_steps: int = 100) -> AgentHistoryList:
|
||||
"""Execute the task with maximum number of steps"""
|
||||
try:
|
||||
logger.info(f"🚀 Starting task: {self.task}")
|
||||
|
||||
self.telemetry.capture(
|
||||
AgentRunTelemetryEvent(
|
||||
agent_id=self.agent_id,
|
||||
task=self.task,
|
||||
)
|
||||
)
|
||||
|
||||
step_info = CustomAgentStepInfo(
|
||||
task=self.task,
|
||||
add_infos=self.add_infos,
|
||||
step_number=1,
|
||||
max_steps=max_steps,
|
||||
memory="",
|
||||
task_progress="",
|
||||
)
|
||||
|
||||
for step in range(max_steps):
|
||||
# 1) Check if stop requested
|
||||
if self.agent_state and self.agent_state.is_stop_requested():
|
||||
logger.info("🛑 Stop requested by user")
|
||||
self._create_stop_history_item()
|
||||
break
|
||||
|
||||
# 2) Store last valid state before step
|
||||
if self.browser_context and self.agent_state:
|
||||
state = await self.browser_context.get_state(use_vision=self.use_vision)
|
||||
self.agent_state.set_last_valid_state(state)
|
||||
|
||||
if self._too_many_failures():
|
||||
break
|
||||
|
||||
# 3) Do the step
|
||||
await self.step(step_info)
|
||||
|
||||
if self.history.is_done():
|
||||
if (
|
||||
self.validate_output and step < max_steps - 1
|
||||
): # if last step, we dont need to validate
|
||||
if not await self._validate_output():
|
||||
continue
|
||||
|
||||
logger.info("✅ Task completed successfully")
|
||||
break
|
||||
else:
|
||||
logger.info("❌ Failed to complete task in maximum steps")
|
||||
|
||||
return self.history
|
||||
|
||||
finally:
|
||||
self.telemetry.capture(
|
||||
AgentEndTelemetryEvent(
|
||||
agent_id=self.agent_id,
|
||||
task=self.task,
|
||||
success=self.history.is_done(),
|
||||
steps=len(self.history.history),
|
||||
)
|
||||
)
|
||||
if not self.injected_browser_context:
|
||||
await self.browser_context.close()
|
||||
|
||||
if not self.injected_browser and self.browser:
|
||||
await self.browser.close()
|
||||
|
||||
if self.generate_gif:
|
||||
self.create_history_gif()
|
||||
|
||||
def _create_stop_history_item(self):
|
||||
"""Create a history item for when the agent is stopped."""
|
||||
try:
|
||||
# Attempt to retrieve the last valid state from agent_state
|
||||
state = None
|
||||
if self.agent_state:
|
||||
last_state = self.agent_state.get_last_valid_state()
|
||||
if last_state:
|
||||
# Convert to BrowserStateHistory
|
||||
state = BrowserStateHistory(
|
||||
url=getattr(last_state, 'url', ""),
|
||||
title=getattr(last_state, 'title', ""),
|
||||
tabs=getattr(last_state, 'tabs', []),
|
||||
interacted_element=[None],
|
||||
screenshot=getattr(last_state, 'screenshot', None)
|
||||
)
|
||||
else:
|
||||
state = self._create_empty_state()
|
||||
else:
|
||||
state = self._create_empty_state()
|
||||
|
||||
# Create a final item in the agent history indicating done
|
||||
stop_history = AgentHistory(
|
||||
model_output=None,
|
||||
state=state,
|
||||
result=[ActionResult(extracted_content=None, error=None, is_done=True)]
|
||||
)
|
||||
self.history.history.append(stop_history)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error creating stop history item: {e}")
|
||||
# Create empty state as fallback
|
||||
state = self._create_empty_state()
|
||||
stop_history = AgentHistory(
|
||||
model_output=None,
|
||||
state=state,
|
||||
result=[ActionResult(extracted_content=None, error=None, is_done=True)]
|
||||
)
|
||||
self.history.history.append(stop_history)
|
||||
|
||||
def _convert_to_browser_state_history(self, browser_state):
|
||||
return BrowserStateHistory(
|
||||
url=getattr(browser_state, 'url', ""),
|
||||
title=getattr(browser_state, 'title', ""),
|
||||
tabs=getattr(browser_state, 'tabs', []),
|
||||
interacted_element=[None],
|
||||
screenshot=getattr(browser_state, 'screenshot', None)
|
||||
)
|
||||
|
||||
def _create_empty_state(self):
|
||||
return BrowserStateHistory(
|
||||
url="",
|
||||
title="",
|
||||
tabs=[],
|
||||
interacted_element=[None],
|
||||
screenshot=None
|
||||
)
|
||||
logger.warning('No images found in history to create GIF')
|
||||
@@ -1,9 +1,3 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/2
|
||||
# @Author : wenshao
|
||||
# @ProjectName: browser-use-webui
|
||||
# @FileName: custom_massage_manager.py
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
@@ -15,11 +9,16 @@ from browser_use.agent.prompts import SystemPrompt
|
||||
from browser_use.agent.views import ActionResult, AgentStepInfo
|
||||
from browser_use.browser.views import BrowserState
|
||||
from langchain_core.language_models import BaseChatModel
|
||||
from langchain_anthropic import ChatAnthropic
|
||||
from langchain_core.language_models import BaseChatModel
|
||||
from langchain_core.messages import (
|
||||
HumanMessage,
|
||||
AIMessage
|
||||
AIMessage,
|
||||
BaseMessage,
|
||||
HumanMessage,
|
||||
ToolMessage
|
||||
)
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
from ..utils.llm import DeepSeekR1ChatOpenAI
|
||||
from .custom_prompts import CustomAgentMessagePrompt
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -33,12 +32,13 @@ class CustomMassageManager(MessageManager):
|
||||
action_descriptions: str,
|
||||
system_prompt_class: Type[SystemPrompt],
|
||||
max_input_tokens: int = 128000,
|
||||
estimated_tokens_per_character: int = 3,
|
||||
estimated_characters_per_token: int = 3,
|
||||
image_tokens: int = 800,
|
||||
include_attributes: list[str] = [],
|
||||
max_error_length: int = 400,
|
||||
max_actions_per_step: int = 10,
|
||||
tool_call_in_content: bool = False,
|
||||
message_context: Optional[str] = None,
|
||||
use_deepseek_r1: bool = False
|
||||
):
|
||||
super().__init__(
|
||||
llm=llm,
|
||||
@@ -46,48 +46,32 @@ class CustomMassageManager(MessageManager):
|
||||
action_descriptions=action_descriptions,
|
||||
system_prompt_class=system_prompt_class,
|
||||
max_input_tokens=max_input_tokens,
|
||||
estimated_tokens_per_character=estimated_tokens_per_character,
|
||||
estimated_characters_per_token=estimated_characters_per_token,
|
||||
image_tokens=image_tokens,
|
||||
include_attributes=include_attributes,
|
||||
max_error_length=max_error_length,
|
||||
max_actions_per_step=max_actions_per_step,
|
||||
tool_call_in_content=tool_call_in_content,
|
||||
message_context=message_context
|
||||
)
|
||||
|
||||
self.tool_id = 1
|
||||
self.use_deepseek_r1 = use_deepseek_r1
|
||||
# Custom: Move Task info to state_message
|
||||
self.history = MessageHistory()
|
||||
self._add_message_with_tokens(self.system_prompt)
|
||||
tool_calls = [
|
||||
{
|
||||
'name': 'CustomAgentOutput',
|
||||
'args': {
|
||||
'current_state': {
|
||||
'prev_action_evaluation': 'Unknown - No previous actions to evaluate.',
|
||||
'important_contents': '',
|
||||
'completed_contents': '',
|
||||
'thought': 'Now Google is open. Need to type OpenAI to search.',
|
||||
'summary': 'Type OpenAI to search.',
|
||||
},
|
||||
'action': [],
|
||||
},
|
||||
'id': '',
|
||||
'type': 'tool_call',
|
||||
}
|
||||
]
|
||||
if self.tool_call_in_content:
|
||||
# openai throws error if tool_calls are not responded -> move to content
|
||||
example_tool_call = AIMessage(
|
||||
content=f'{tool_calls}',
|
||||
tool_calls=[],
|
||||
)
|
||||
else:
|
||||
example_tool_call = AIMessage(
|
||||
content=f'',
|
||||
tool_calls=tool_calls,
|
||||
)
|
||||
|
||||
self._add_message_with_tokens(example_tool_call)
|
||||
|
||||
if self.message_context:
|
||||
context_message = HumanMessage(content=self.message_context)
|
||||
self._add_message_with_tokens(context_message)
|
||||
|
||||
def cut_messages(self):
|
||||
"""Get current message list, potentially trimmed to max tokens"""
|
||||
diff = self.history.total_tokens - self.max_input_tokens
|
||||
min_message_len = 2 if self.message_context is not None else 1
|
||||
|
||||
while diff > 0 and len(self.history.messages) > min_message_len:
|
||||
self.history.remove_message(min_message_len) # alway remove the oldest message
|
||||
diff = self.history.total_tokens - self.max_input_tokens
|
||||
|
||||
def add_state_message(
|
||||
self,
|
||||
state: BrowserState,
|
||||
@@ -95,21 +79,6 @@ class CustomMassageManager(MessageManager):
|
||||
step_info: Optional[AgentStepInfo] = None,
|
||||
) -> None:
|
||||
"""Add browser state as human message"""
|
||||
|
||||
# if keep in memory, add to directly to history and add state without result
|
||||
if result:
|
||||
for r in result:
|
||||
if r.include_in_memory:
|
||||
if r.extracted_content:
|
||||
msg = HumanMessage(content=str(r.extracted_content))
|
||||
self._add_message_with_tokens(msg)
|
||||
if r.error:
|
||||
msg = HumanMessage(
|
||||
content=str(r.error)[-self.max_error_length:]
|
||||
)
|
||||
self._add_message_with_tokens(msg)
|
||||
result = None # if result in history, we dont want to add it again
|
||||
|
||||
# otherwise add state message and result to next message (which will not stay in memory)
|
||||
state_message = CustomAgentMessagePrompt(
|
||||
state,
|
||||
@@ -119,3 +88,17 @@ class CustomMassageManager(MessageManager):
|
||||
step_info=step_info,
|
||||
).get_user_message()
|
||||
self._add_message_with_tokens(state_message)
|
||||
|
||||
def _count_text_tokens(self, text: str) -> int:
|
||||
if isinstance(self.llm, (ChatOpenAI, ChatAnthropic, DeepSeekR1ChatOpenAI)):
|
||||
try:
|
||||
tokens = self.llm.get_num_tokens(text)
|
||||
except Exception:
|
||||
tokens = (
|
||||
len(text) // self.estimated_characters_per_token
|
||||
) # Rough estimate if no tokenizer available
|
||||
else:
|
||||
tokens = (
|
||||
len(text) // self.estimated_characters_per_token
|
||||
) # Rough estimate if no tokenizer available
|
||||
return tokens
|
||||
|
||||
@@ -1,12 +1,7 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/2
|
||||
# @Author : wenshao
|
||||
# @ProjectName: browser-use-webui
|
||||
# @FileName: custom_prompts.py
|
||||
|
||||
import pdb
|
||||
from typing import List, Optional
|
||||
|
||||
from browser_use.agent.prompts import SystemPrompt
|
||||
from browser_use.agent.prompts import SystemPrompt, AgentMessagePrompt
|
||||
from browser_use.agent.views import ActionResult
|
||||
from browser_use.browser.views import BrowserState
|
||||
from langchain_core.messages import HumanMessage, SystemMessage
|
||||
@@ -24,18 +19,14 @@ class CustomSystemPrompt(SystemPrompt):
|
||||
{
|
||||
"current_state": {
|
||||
"prev_action_evaluation": "Success|Failed|Unknown - Analyze the current elements and the image to check if the previous goals/actions are successful like intended by the task. Ignore the action result. The website is the ground truth. Also mention if something unexpected happened like new suggestions in an input field. Shortly state why/why not. Note that the result you output must be consistent with the reasoning you output afterwards. If you consider it to be 'Failed,' you should reflect on this during your thought.",
|
||||
"important_contents": "Output important contents closely related to user\'s instruction or task on the current page. If there is, please output the contents. If not, please output empty string ''.",
|
||||
"completed_contents": "Update the input Task Progress. Completed contents is a general summary of the current contents that have been completed. Just summarize the contents that have been actually completed based on the current page and the history operations. Please list each completed item individually, such as: 1. Input username. 2. Input Password. 3. Click confirm button",
|
||||
"thought": "Think about the requirements that have been completed in previous operations and the requirements that need to be completed in the next one operation. If the output of prev_action_evaluation is 'Failed', please reflect and output your reflection here. If you think you have entered the wrong page, consider to go back to the previous page in next action.",
|
||||
"important_contents": "Output important contents closely related to user\'s instruction on the current page. If there is, please output the contents. If not, please output empty string ''.",
|
||||
"task_progress": "Task Progress is a general summary of the current contents that have been completed. Just summarize the contents that have been actually completed based on the content at current step and the history operations. Please list each completed item individually, such as: 1. Input username. 2. Input Password. 3. Click confirm button. Please return string type not a list.",
|
||||
"future_plans": "Based on the user's request and the current state, outline the remaining steps needed to complete the task. This should be a concise list of actions yet to be performed, such as: 1. Select a date. 2. Choose a specific time slot. 3. Confirm booking. Please return string type not a list.",
|
||||
"thought": "Think about the requirements that have been completed in previous operations and the requirements that need to be completed in the next one operation. If your output of prev_action_evaluation is 'Failed', please reflect and output your reflection here.",
|
||||
"summary": "Please generate a brief natural language description for the operation in next actions based on your Thought."
|
||||
},
|
||||
"action": [
|
||||
{
|
||||
"action_name": {
|
||||
// action-specific parameters
|
||||
}
|
||||
},
|
||||
// ... more actions in sequence
|
||||
* actions in sequences, please refer to **Common action sequences**. Each output action MUST be formated as: \{action_name\: action_params\}*
|
||||
]
|
||||
}
|
||||
|
||||
@@ -48,7 +39,6 @@ class CustomSystemPrompt(SystemPrompt):
|
||||
{"click_element": {"index": 3}}
|
||||
]
|
||||
- Navigation and extraction: [
|
||||
{"open_new_tab": {}},
|
||||
{"go_to_url": {"url": "https://example.com"}},
|
||||
{"extract_page_content": {}}
|
||||
]
|
||||
@@ -70,6 +60,7 @@ class CustomSystemPrompt(SystemPrompt):
|
||||
- Don't hallucinate actions.
|
||||
- If the task requires specific information - make sure to include everything in the done function. This is what the user will see.
|
||||
- If you are running out of steps (current step), think about speeding it up, and ALWAYS use the done action as the last action.
|
||||
- Note that you must verify if you've truly fulfilled the user's request by examining the actual page content, not just by looking at the actions you output but also whether the action is executed successfully. Pay particular attention when errors occur during action execution.
|
||||
|
||||
6. VISUAL CONTEXT:
|
||||
- When an image is provided, use it to understand the page layout
|
||||
@@ -100,10 +91,9 @@ class CustomSystemPrompt(SystemPrompt):
|
||||
1. Task: The user\'s instructions you need to complete.
|
||||
2. Hints(Optional): Some hints to help you complete the user\'s instructions.
|
||||
3. Memory: Important contents are recorded during historical operations for use in subsequent operations.
|
||||
4. Task Progress: Up to the current page, the content you have completed can be understood as the progress of the task.
|
||||
5. Current URL: The webpage you're currently on
|
||||
6. Available Tabs: List of open browser tabs
|
||||
7. Interactive Elements: List in the format:
|
||||
4. Current URL: The webpage you're currently on
|
||||
5. Available Tabs: List of open browser tabs
|
||||
6. Interactive Elements: List in the format:
|
||||
index[:]<element_type>element_text</element_type>
|
||||
- index: Numeric identifier for interaction
|
||||
- element_type: HTML element type (button, input, etc.)
|
||||
@@ -131,7 +121,7 @@ class CustomSystemPrompt(SystemPrompt):
|
||||
AGENT_PROMPT = f"""You are a precise browser automation agent that interacts with websites through structured commands. Your role is to:
|
||||
1. Analyze the provided webpage elements and structure
|
||||
2. Plan a sequence of actions to accomplish the given task
|
||||
3. Respond with valid JSON containing your action sequence and state assessment
|
||||
3. Your final result MUST be a valid JSON as the **RESPONSE FORMAT** described, containing your action sequence and state assessment, No need extra content to expalin.
|
||||
|
||||
Current date and time: {time_str}
|
||||
|
||||
@@ -146,7 +136,7 @@ class CustomSystemPrompt(SystemPrompt):
|
||||
return SystemMessage(content=AGENT_PROMPT)
|
||||
|
||||
|
||||
class CustomAgentMessagePrompt:
|
||||
class CustomAgentMessagePrompt(AgentMessagePrompt):
|
||||
def __init__(
|
||||
self,
|
||||
state: BrowserState,
|
||||
@@ -155,38 +145,66 @@ class CustomAgentMessagePrompt:
|
||||
max_error_length: int = 400,
|
||||
step_info: Optional[CustomAgentStepInfo] = None,
|
||||
):
|
||||
self.state = state
|
||||
self.result = result
|
||||
self.max_error_length = max_error_length
|
||||
self.include_attributes = include_attributes
|
||||
self.step_info = step_info
|
||||
super(CustomAgentMessagePrompt, self).__init__(state=state,
|
||||
result=result,
|
||||
include_attributes=include_attributes,
|
||||
max_error_length=max_error_length,
|
||||
step_info=step_info
|
||||
)
|
||||
|
||||
def get_user_message(self) -> HumanMessage:
|
||||
if self.step_info:
|
||||
step_info_description = f'Current step: {self.step_info.step_number + 1}/{self.step_info.max_steps}'
|
||||
else:
|
||||
step_info_description = ''
|
||||
|
||||
elements_text = self.state.element_tree.clickable_elements_to_string(include_attributes=self.include_attributes)
|
||||
|
||||
has_content_above = (self.state.pixels_above or 0) > 0
|
||||
has_content_below = (self.state.pixels_below or 0) > 0
|
||||
|
||||
if elements_text != '':
|
||||
if has_content_above:
|
||||
elements_text = (
|
||||
f'... {self.state.pixels_above} pixels above - scroll or extract content to see more ...\n{elements_text}'
|
||||
)
|
||||
else:
|
||||
elements_text = f'[Start of page]\n{elements_text}'
|
||||
if has_content_below:
|
||||
elements_text = (
|
||||
f'{elements_text}\n... {self.state.pixels_below} pixels below - scroll or extract content to see more ...'
|
||||
)
|
||||
else:
|
||||
elements_text = f'{elements_text}\n[End of page]'
|
||||
else:
|
||||
elements_text = 'empty page'
|
||||
|
||||
state_description = f"""
|
||||
1. Task: {self.step_info.task}
|
||||
2. Hints(Optional):
|
||||
{self.step_info.add_infos}
|
||||
3. Memory:
|
||||
{self.step_info.memory}
|
||||
4. Task Progress:
|
||||
{self.step_info.task_progress}
|
||||
5. Current url: {self.state.url}
|
||||
6. Available tabs:
|
||||
{self.state.tabs}
|
||||
7. Interactive elements:
|
||||
{self.state.element_tree.clickable_elements_to_string(include_attributes=self.include_attributes)}
|
||||
"""
|
||||
{step_info_description}
|
||||
1. Task: {self.step_info.task}
|
||||
2. Hints(Optional):
|
||||
{self.step_info.add_infos}
|
||||
3. Memory:
|
||||
{self.step_info.memory}
|
||||
4. Current url: {self.state.url}
|
||||
5. Available tabs:
|
||||
{self.state.tabs}
|
||||
6. Interactive elements:
|
||||
{elements_text}
|
||||
"""
|
||||
|
||||
if self.result:
|
||||
|
||||
for i, result in enumerate(self.result):
|
||||
if result.extracted_content:
|
||||
state_description += f"\nResult of action {i + 1}/{len(self.result)}: {result.extracted_content}"
|
||||
if result.error:
|
||||
# only use last 300 characters of error
|
||||
error = result.error[-self.max_error_length:]
|
||||
state_description += (
|
||||
f"\nError of action {i + 1}/{len(self.result)}: ...{error}"
|
||||
)
|
||||
if result.include_in_memory:
|
||||
if result.extracted_content:
|
||||
state_description += f"\nResult of previous action {i + 1}/{len(self.result)}: {result.extracted_content}"
|
||||
if result.error:
|
||||
# only use last 300 characters of error
|
||||
error = result.error[-self.max_error_length:]
|
||||
state_description += (
|
||||
f"\nError of previous action {i + 1}/{len(self.result)}: ...{error}"
|
||||
)
|
||||
|
||||
if self.state.screenshot:
|
||||
# Format message for vision model
|
||||
@@ -202,4 +220,4 @@ class CustomAgentMessagePrompt:
|
||||
]
|
||||
)
|
||||
|
||||
return HumanMessage(content=state_description)
|
||||
return HumanMessage(content=state_description)
|
||||
@@ -1,9 +1,3 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/2
|
||||
# @Author : wenshao
|
||||
# @ProjectName: browser-use-webui
|
||||
# @FileName: custom_views.py
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Type
|
||||
|
||||
@@ -20,6 +14,7 @@ class CustomAgentStepInfo:
|
||||
add_infos: str
|
||||
memory: str
|
||||
task_progress: str
|
||||
future_plans: str
|
||||
|
||||
|
||||
class CustomAgentBrain(BaseModel):
|
||||
@@ -27,7 +22,8 @@ class CustomAgentBrain(BaseModel):
|
||||
|
||||
prev_action_evaluation: str
|
||||
important_contents: str
|
||||
completed_contents: str
|
||||
task_progress: str
|
||||
future_plans: str
|
||||
thought: str
|
||||
summary: str
|
||||
|
||||
@@ -49,7 +45,7 @@ class CustomAgentOutput(AgentOutput):
|
||||
) -> Type["CustomAgentOutput"]:
|
||||
"""Extend actions with custom actions"""
|
||||
return create_model(
|
||||
"AgentOutput",
|
||||
"CustomAgentOutput",
|
||||
__base__=CustomAgentOutput,
|
||||
action=(
|
||||
list[custom_actions],
|
||||
|
||||
@@ -1,6 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/1
|
||||
# @Author : wenshao
|
||||
# @Email : wenshaoguo1026@gmail.com
|
||||
# @Project : browser-use-webui
|
||||
# @FileName: __init__.py.py
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/6
|
||||
# @Author : wenshao
|
||||
# @ProjectName: browser-use-webui
|
||||
# @FileName: config.py
|
||||
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
class BrowserPersistenceConfig:
|
||||
"""Configuration for browser persistence"""
|
||||
|
||||
persistent_session: bool = False
|
||||
user_data_dir: Optional[str] = None
|
||||
debugging_port: Optional[int] = None
|
||||
debugging_host: Optional[str] = None
|
||||
|
||||
@classmethod
|
||||
def from_env(cls) -> "BrowserPersistenceConfig":
|
||||
"""Create config from environment variables"""
|
||||
return cls(
|
||||
persistent_session=os.getenv("CHROME_PERSISTENT_SESSION", "").lower()
|
||||
== "true",
|
||||
user_data_dir=os.getenv("CHROME_USER_DATA"),
|
||||
debugging_port=int(os.getenv("CHROME_DEBUGGING_PORT", "9222")),
|
||||
debugging_host=os.getenv("CHROME_DEBUGGING_HOST", "localhost"),
|
||||
)
|
||||
@@ -1,26 +1,19 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/2
|
||||
# @Author : wenshao
|
||||
# @ProjectName: browser-use-webui
|
||||
# @FileName: browser.py
|
||||
|
||||
import asyncio
|
||||
import pdb
|
||||
|
||||
from playwright.async_api import Browser as PlaywrightBrowser
|
||||
from playwright.async_api import (
|
||||
BrowserContext as PlaywrightBrowserContext,
|
||||
BrowserContext as PlaywrightBrowserContext,
|
||||
)
|
||||
from playwright.async_api import (
|
||||
Playwright,
|
||||
async_playwright,
|
||||
Playwright,
|
||||
async_playwright,
|
||||
)
|
||||
from browser_use.browser.browser import Browser
|
||||
from browser_use.browser.context import BrowserContext, BrowserContextConfig
|
||||
from playwright.async_api import BrowserContext as PlaywrightBrowserContext
|
||||
import logging
|
||||
|
||||
from .config import BrowserPersistenceConfig
|
||||
from .custom_context import CustomBrowserContext
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -32,96 +25,57 @@ class CustomBrowser(Browser):
|
||||
config: BrowserContextConfig = BrowserContextConfig()
|
||||
) -> CustomBrowserContext:
|
||||
return CustomBrowserContext(config=config, browser=self)
|
||||
|
||||
async def _setup_browser(self, playwright: Playwright) -> PlaywrightBrowser:
|
||||
|
||||
async def _setup_browser_with_instance(self, playwright: Playwright) -> PlaywrightBrowser:
|
||||
"""Sets up and returns a Playwright Browser instance with anti-detection measures."""
|
||||
if self.config.wss_url:
|
||||
browser = await playwright.chromium.connect(self.config.wss_url)
|
||||
return browser
|
||||
elif self.config.chrome_instance_path:
|
||||
import subprocess
|
||||
if not self.config.chrome_instance_path:
|
||||
raise ValueError('Chrome instance path is required')
|
||||
import subprocess
|
||||
|
||||
import requests
|
||||
import requests
|
||||
|
||||
try:
|
||||
# Check if browser is already running
|
||||
response = requests.get('http://localhost:9222/json/version', timeout=2)
|
||||
if response.status_code == 200:
|
||||
logger.info('Reusing existing Chrome instance')
|
||||
browser = await playwright.chromium.connect_over_cdp(
|
||||
endpoint_url='http://localhost:9222',
|
||||
timeout=20000, # 20 second timeout for connection
|
||||
)
|
||||
return browser
|
||||
except requests.ConnectionError:
|
||||
logger.debug('No existing Chrome instance found, starting a new one')
|
||||
|
||||
# Start a new Chrome instance
|
||||
subprocess.Popen(
|
||||
[
|
||||
self.config.chrome_instance_path,
|
||||
'--remote-debugging-port=9222',
|
||||
],
|
||||
stdout=subprocess.DEVNULL,
|
||||
stderr=subprocess.DEVNULL,
|
||||
)
|
||||
|
||||
# Attempt to connect again after starting a new instance
|
||||
for _ in range(10):
|
||||
try:
|
||||
response = requests.get('http://localhost:9222/json/version', timeout=2)
|
||||
if response.status_code == 200:
|
||||
break
|
||||
except requests.ConnectionError:
|
||||
pass
|
||||
await asyncio.sleep(1)
|
||||
|
||||
try:
|
||||
try:
|
||||
# Check if browser is already running
|
||||
response = requests.get('http://localhost:9222/json/version', timeout=2)
|
||||
if response.status_code == 200:
|
||||
logger.info('Reusing existing Chrome instance')
|
||||
browser = await playwright.chromium.connect_over_cdp(
|
||||
endpoint_url='http://localhost:9222',
|
||||
timeout=20000, # 20 second timeout for connection
|
||||
)
|
||||
return browser
|
||||
except Exception as e:
|
||||
logger.error(f'Failed to start a new Chrome instance.: {str(e)}')
|
||||
raise RuntimeError(
|
||||
' To start chrome in Debug mode, you need to close all existing Chrome instances and try again otherwise we can not connect to the instance.'
|
||||
)
|
||||
except requests.ConnectionError:
|
||||
logger.debug('No existing Chrome instance found, starting a new one')
|
||||
|
||||
else:
|
||||
# Start a new Chrome instance
|
||||
subprocess.Popen(
|
||||
[
|
||||
self.config.chrome_instance_path,
|
||||
'--remote-debugging-port=9222',
|
||||
] + self.config.extra_chromium_args,
|
||||
stdout=subprocess.DEVNULL,
|
||||
stderr=subprocess.DEVNULL,
|
||||
)
|
||||
|
||||
# try to connect first in case the browser have not started
|
||||
for _ in range(10):
|
||||
try:
|
||||
disable_security_args = []
|
||||
if self.config.disable_security:
|
||||
disable_security_args = [
|
||||
'--disable-web-security',
|
||||
'--disable-site-isolation-trials',
|
||||
'--disable-features=IsolateOrigins,site-per-process',
|
||||
]
|
||||
response = requests.get('http://localhost:9222/json/version', timeout=2)
|
||||
if response.status_code == 200:
|
||||
break
|
||||
except requests.ConnectionError:
|
||||
pass
|
||||
await asyncio.sleep(1)
|
||||
|
||||
browser = await playwright.chromium.launch(
|
||||
headless=self.config.headless,
|
||||
args=[
|
||||
'--no-sandbox',
|
||||
'--disable-blink-features=AutomationControlled',
|
||||
'--disable-infobars',
|
||||
'--disable-background-timer-throttling',
|
||||
'--disable-popup-blocking',
|
||||
'--disable-backgrounding-occluded-windows',
|
||||
'--disable-renderer-backgrounding',
|
||||
'--disable-window-activation',
|
||||
'--disable-focus-on-load',
|
||||
'--no-first-run',
|
||||
'--no-default-browser-check',
|
||||
'--no-startup-window',
|
||||
'--window-position=0,0',
|
||||
# '--window-size=1280,1000',
|
||||
]
|
||||
+ disable_security_args
|
||||
+ self.config.extra_chromium_args,
|
||||
proxy=self.config.proxy,
|
||||
)
|
||||
|
||||
return browser
|
||||
except Exception as e:
|
||||
logger.error(f'Failed to initialize Playwright browser: {str(e)}')
|
||||
raise
|
||||
# Attempt to connect again after starting a new instance
|
||||
try:
|
||||
browser = await playwright.chromium.connect_over_cdp(
|
||||
endpoint_url='http://localhost:9222',
|
||||
timeout=20000, # 20 second timeout for connection
|
||||
)
|
||||
return browser
|
||||
except Exception as e:
|
||||
logger.error(f'Failed to start a new Chrome instance.: {str(e)}')
|
||||
raise RuntimeError(
|
||||
' To start chrome in Debug mode, you need to close all existing Chrome instances and try again otherwise we can not connect to the instance.'
|
||||
)
|
||||
@@ -1,10 +1,3 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/1
|
||||
# @Author : wenshao
|
||||
# @Email : wenshaoguo1026@gmail.com
|
||||
# @Project : browser-use-webui
|
||||
# @FileName: context.py
|
||||
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
@@ -14,7 +7,6 @@ from browser_use.browser.context import BrowserContext, BrowserContextConfig
|
||||
from playwright.async_api import Browser as PlaywrightBrowser
|
||||
from playwright.async_api import BrowserContext as PlaywrightBrowserContext
|
||||
|
||||
from .config import BrowserPersistenceConfig
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -24,73 +16,4 @@ class CustomBrowserContext(BrowserContext):
|
||||
browser: "Browser",
|
||||
config: BrowserContextConfig = BrowserContextConfig()
|
||||
):
|
||||
super(CustomBrowserContext, self).__init__(browser=browser, config=config)
|
||||
|
||||
async def _create_context(self, browser: PlaywrightBrowser) -> PlaywrightBrowserContext:
|
||||
"""Creates a new browser context with anti-detection measures and loads cookies if available."""
|
||||
# If we have a context, return it directly
|
||||
|
||||
# Check if we should use existing context for persistence
|
||||
if self.browser.config.chrome_instance_path and len(browser.contexts) > 0:
|
||||
# Connect to existing Chrome instance instead of creating new one
|
||||
context = browser.contexts[0]
|
||||
else:
|
||||
# Original code for creating new context
|
||||
context = await browser.new_context(
|
||||
viewport=self.config.browser_window_size,
|
||||
no_viewport=False,
|
||||
user_agent=(
|
||||
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
|
||||
"(KHTML, like Gecko) Chrome/85.0.4183.102 Safari/537.36"
|
||||
),
|
||||
java_script_enabled=True,
|
||||
bypass_csp=self.config.disable_security,
|
||||
ignore_https_errors=self.config.disable_security,
|
||||
record_video_dir=self.config.save_recording_path,
|
||||
record_video_size=self.config.browser_window_size,
|
||||
)
|
||||
|
||||
if self.config.trace_path:
|
||||
await context.tracing.start(screenshots=True, snapshots=True, sources=True)
|
||||
|
||||
# Load cookies if they exist
|
||||
if self.config.cookies_file and os.path.exists(self.config.cookies_file):
|
||||
with open(self.config.cookies_file, "r") as f:
|
||||
cookies = json.load(f)
|
||||
logger.info(
|
||||
f"Loaded {len(cookies)} cookies from {self.config.cookies_file}"
|
||||
)
|
||||
await context.add_cookies(cookies)
|
||||
|
||||
# Expose anti-detection scripts
|
||||
await context.add_init_script(
|
||||
"""
|
||||
// Webdriver property
|
||||
Object.defineProperty(navigator, 'webdriver', {
|
||||
get: () => undefined
|
||||
});
|
||||
|
||||
// Languages
|
||||
Object.defineProperty(navigator, 'languages', {
|
||||
get: () => ['en-US', 'en']
|
||||
});
|
||||
|
||||
// Plugins
|
||||
Object.defineProperty(navigator, 'plugins', {
|
||||
get: () => [1, 2, 3, 4, 5]
|
||||
});
|
||||
|
||||
// Chrome runtime
|
||||
window.chrome = { runtime: {} };
|
||||
|
||||
// Permissions
|
||||
const originalQuery = window.navigator.permissions.query;
|
||||
window.navigator.permissions.query = (parameters) => (
|
||||
parameters.name === 'notifications' ?
|
||||
Promise.resolve({ state: Notification.permission }) :
|
||||
originalQuery(parameters)
|
||||
);
|
||||
"""
|
||||
)
|
||||
|
||||
return context
|
||||
super(CustomBrowserContext, self).__init__(browser=browser, config=config)
|
||||
@@ -1,5 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/2
|
||||
# @Author : wenshao
|
||||
# @ProjectName: browser-use-webui
|
||||
# @FileName: __init__.py.py
|
||||
|
||||
@@ -1,18 +1,16 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/2
|
||||
# @Author : wenshao
|
||||
# @ProjectName: browser-use-webui
|
||||
# @FileName: custom_action.py
|
||||
|
||||
import pyperclip
|
||||
from typing import Optional, Type
|
||||
from pydantic import BaseModel
|
||||
from browser_use.agent.views import ActionResult
|
||||
from browser_use.browser.context import BrowserContext
|
||||
from browser_use.controller.service import Controller
|
||||
|
||||
|
||||
class CustomController(Controller):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
def __init__(self, exclude_actions: list[str] = [],
|
||||
output_model: Optional[Type[BaseModel]] = None
|
||||
):
|
||||
super().__init__(exclude_actions=exclude_actions, output_model=output_model)
|
||||
self._register_custom_actions()
|
||||
|
||||
def _register_custom_actions(self):
|
||||
|
||||
@@ -1,6 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/1
|
||||
# @Author : wenshao
|
||||
# @Email : wenshaoguo1026@gmail.com
|
||||
# @Project : browser-use-webui
|
||||
# @FileName: __init__.py.py
|
||||
|
||||
@@ -11,13 +11,13 @@ def default_config():
|
||||
"max_steps": 100,
|
||||
"max_actions_per_step": 10,
|
||||
"use_vision": True,
|
||||
"tool_call_in_content": True,
|
||||
"tool_calling_method": "auto",
|
||||
"llm_provider": "openai",
|
||||
"llm_model_name": "gpt-4o",
|
||||
"llm_temperature": 1.0,
|
||||
"llm_base_url": "",
|
||||
"llm_api_key": "",
|
||||
"use_own_browser": os.getenv("CHROME_PERSISTENT_SESSION", False),
|
||||
"use_own_browser": os.getenv("CHROME_PERSISTENT_SESSION", "false").lower() == "true",
|
||||
"keep_browser_open": False,
|
||||
"headless": False,
|
||||
"disable_security": True,
|
||||
@@ -56,7 +56,7 @@ def save_current_config(*args):
|
||||
"max_steps": args[1],
|
||||
"max_actions_per_step": args[2],
|
||||
"use_vision": args[3],
|
||||
"tool_call_in_content": args[4],
|
||||
"tool_calling_method": args[4],
|
||||
"llm_provider": args[5],
|
||||
"llm_model_name": args[6],
|
||||
"llm_temperature": args[7],
|
||||
@@ -86,7 +86,7 @@ def update_ui_from_config(config_file):
|
||||
gr.update(value=loaded_config.get("max_steps", 100)),
|
||||
gr.update(value=loaded_config.get("max_actions_per_step", 10)),
|
||||
gr.update(value=loaded_config.get("use_vision", True)),
|
||||
gr.update(value=loaded_config.get("tool_call_in_content", True)),
|
||||
gr.update(value=loaded_config.get("tool_calling_method", True)),
|
||||
gr.update(value=loaded_config.get("llm_provider", "openai")),
|
||||
gr.update(value=loaded_config.get("llm_model_name", "gpt-4o")),
|
||||
gr.update(value=loaded_config.get("llm_temperature", 1.0)),
|
||||
|
||||
136
src/utils/llm.py
Normal file
136
src/utils/llm.py
Normal file
@@ -0,0 +1,136 @@
|
||||
from openai import OpenAI
|
||||
import pdb
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain_core.globals import get_llm_cache
|
||||
from langchain_core.language_models.base import (
|
||||
BaseLanguageModel,
|
||||
LangSmithParams,
|
||||
LanguageModelInput,
|
||||
)
|
||||
from langchain_core.load import dumpd, dumps
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
SystemMessage,
|
||||
AnyMessage,
|
||||
BaseMessage,
|
||||
BaseMessageChunk,
|
||||
HumanMessage,
|
||||
convert_to_messages,
|
||||
message_chunk_to_message,
|
||||
)
|
||||
from langchain_core.outputs import (
|
||||
ChatGeneration,
|
||||
ChatGenerationChunk,
|
||||
ChatResult,
|
||||
LLMResult,
|
||||
RunInfo,
|
||||
)
|
||||
from langchain_ollama import ChatOllama
|
||||
from langchain_core.output_parsers.base import OutputParserLike
|
||||
from langchain_core.runnables import Runnable, RunnableConfig
|
||||
from langchain_core.tools import BaseTool
|
||||
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Callable,
|
||||
Literal,
|
||||
Optional,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
class DeepSeekR1ChatOpenAI(ChatOpenAI):
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.client = OpenAI(
|
||||
base_url=kwargs.get("base_url"),
|
||||
api_key=kwargs.get("api_key")
|
||||
)
|
||||
|
||||
async def ainvoke(
|
||||
self,
|
||||
input: LanguageModelInput,
|
||||
config: Optional[RunnableConfig] = None,
|
||||
*,
|
||||
stop: Optional[list[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> AIMessage:
|
||||
message_history = []
|
||||
for input_ in input:
|
||||
if isinstance(input_, SystemMessage):
|
||||
message_history.append({"role": "system", "content": input_.content})
|
||||
elif isinstance(input_, AIMessage):
|
||||
message_history.append({"role": "assistant", "content": input_.content})
|
||||
else:
|
||||
message_history.append({"role": "user", "content": input_.content})
|
||||
|
||||
response = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=messages
|
||||
)
|
||||
|
||||
reasoning_content = response.choices[0].message.reasoning_content
|
||||
content = response.choices[0].message.content
|
||||
return AIMessage(content=content, reasoning_content=reasoning_content)
|
||||
|
||||
def invoke(
|
||||
self,
|
||||
input: LanguageModelInput,
|
||||
config: Optional[RunnableConfig] = None,
|
||||
*,
|
||||
stop: Optional[list[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> AIMessage:
|
||||
message_history = []
|
||||
for input_ in input:
|
||||
if isinstance(input_, SystemMessage):
|
||||
message_history.append({"role": "system", "content": input_.content})
|
||||
elif isinstance(input_, AIMessage):
|
||||
message_history.append({"role": "assistant", "content": input_.content})
|
||||
else:
|
||||
message_history.append({"role": "user", "content": input_.content})
|
||||
|
||||
response = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=message_history
|
||||
)
|
||||
|
||||
reasoning_content = response.choices[0].message.reasoning_content
|
||||
content = response.choices[0].message.content
|
||||
return AIMessage(content=content, reasoning_content=reasoning_content)
|
||||
|
||||
class DeepSeekR1ChatOllama(ChatOllama):
|
||||
|
||||
async def ainvoke(
|
||||
self,
|
||||
input: LanguageModelInput,
|
||||
config: Optional[RunnableConfig] = None,
|
||||
*,
|
||||
stop: Optional[list[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> AIMessage:
|
||||
org_ai_message = await super().ainvoke(input=input)
|
||||
org_content = org_ai_message.content
|
||||
reasoning_content = org_content.split("</think>")[0].replace("<think>", "")
|
||||
content = org_content.split("</think>")[1]
|
||||
if "**JSON Response:**" in content:
|
||||
content = content.split("**JSON Response:**")[-1]
|
||||
return AIMessage(content=content, reasoning_content=reasoning_content)
|
||||
|
||||
def invoke(
|
||||
self,
|
||||
input: LanguageModelInput,
|
||||
config: Optional[RunnableConfig] = None,
|
||||
*,
|
||||
stop: Optional[list[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> AIMessage:
|
||||
org_ai_message = super().invoke(input=input)
|
||||
org_content = org_ai_message.content
|
||||
reasoning_content = org_content.split("</think>")[0].replace("<think>", "")
|
||||
content = org_content.split("</think>")[1]
|
||||
if "**JSON Response:**" in content:
|
||||
content = content.split("**JSON Response:**")[-1]
|
||||
return AIMessage(content=content, reasoning_content=reasoning_content)
|
||||
@@ -1,9 +1,3 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/1
|
||||
# @Author : wenshao
|
||||
# @Email : wenshaoguo1026@gmail.com
|
||||
# @Project : browser-use-webui
|
||||
# @FileName: utils.py
|
||||
import base64
|
||||
import os
|
||||
import time
|
||||
@@ -17,6 +11,8 @@ from langchain_ollama import ChatOllama
|
||||
from langchain_openai import AzureChatOpenAI, ChatOpenAI
|
||||
import gradio as gr
|
||||
|
||||
from .llm import DeepSeekR1ChatOpenAI, DeepSeekR1ChatOllama
|
||||
|
||||
def get_llm_model(provider: str, **kwargs):
|
||||
"""
|
||||
获取LLM 模型
|
||||
@@ -85,12 +81,20 @@ def get_llm_model(provider: str, **kwargs):
|
||||
else:
|
||||
api_key = kwargs.get("api_key")
|
||||
|
||||
return ChatOpenAI(
|
||||
model=kwargs.get("model_name", "deepseek-chat"),
|
||||
temperature=kwargs.get("temperature", 0.0),
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
)
|
||||
if kwargs.get("model_name", "deepseek-chat") == "deepseek-reasoner":
|
||||
return DeepSeekR1ChatOpenAI(
|
||||
model=kwargs.get("model_name", "deepseek-reasoner"),
|
||||
temperature=kwargs.get("temperature", 0.0),
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
)
|
||||
else:
|
||||
return ChatOpenAI(
|
||||
model=kwargs.get("model_name", "deepseek-chat"),
|
||||
temperature=kwargs.get("temperature", 0.0),
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
)
|
||||
elif provider == "gemini":
|
||||
if not kwargs.get("api_key", ""):
|
||||
api_key = os.getenv("GOOGLE_API_KEY", "")
|
||||
@@ -102,12 +106,25 @@ def get_llm_model(provider: str, **kwargs):
|
||||
google_api_key=api_key,
|
||||
)
|
||||
elif provider == "ollama":
|
||||
return ChatOllama(
|
||||
model=kwargs.get("model_name", "qwen2.5:7b"),
|
||||
temperature=kwargs.get("temperature", 0.0),
|
||||
num_ctx=kwargs.get("num_ctx", 32000),
|
||||
base_url=kwargs.get("base_url", "http://localhost:11434"),
|
||||
)
|
||||
if not kwargs.get("base_url", ""):
|
||||
base_url = os.getenv("OLLAMA_ENDPOINT", "http://localhost:11434")
|
||||
else:
|
||||
base_url = kwargs.get("base_url")
|
||||
|
||||
if kwargs.get("model_name", "qwen2.5:7b").startswith("deepseek-r1"):
|
||||
return DeepSeekR1ChatOllama(
|
||||
model=kwargs.get("model_name", "deepseek-r1:7b"),
|
||||
temperature=kwargs.get("temperature", 0.0),
|
||||
num_ctx=kwargs.get("num_ctx", 32000),
|
||||
base_url=kwargs.get("base_url", base_url),
|
||||
)
|
||||
else:
|
||||
return ChatOllama(
|
||||
model=kwargs.get("model_name", "qwen2.5:7b"),
|
||||
temperature=kwargs.get("temperature", 0.0),
|
||||
num_ctx=kwargs.get("num_ctx", 32000),
|
||||
base_url=kwargs.get("base_url", base_url),
|
||||
)
|
||||
elif provider == "azure_openai":
|
||||
if not kwargs.get("base_url", ""):
|
||||
base_url = os.getenv("AZURE_OPENAI_ENDPOINT", "")
|
||||
@@ -131,9 +148,9 @@ def get_llm_model(provider: str, **kwargs):
|
||||
model_names = {
|
||||
"anthropic": ["claude-3-5-sonnet-20240620", "claude-3-opus-20240229"],
|
||||
"openai": ["gpt-4o", "gpt-4", "gpt-3.5-turbo"],
|
||||
"deepseek": ["deepseek-chat"],
|
||||
"deepseek": ["deepseek-chat", "deepseek-reasoner"],
|
||||
"gemini": ["gemini-2.0-flash-exp", "gemini-2.0-flash-thinking-exp", "gemini-1.5-flash-latest", "gemini-1.5-flash-8b-latest", "gemini-2.0-flash-thinking-exp-1219" ],
|
||||
"ollama": ["qwen2.5:7b", "llama2:7b"],
|
||||
"ollama": ["qwen2.5:7b", "llama2:7b", "deepseek-r1:14b", "deepseek-r1:32b"],
|
||||
"azure_openai": ["gpt-4o", "gpt-4", "gpt-3.5-turbo"],
|
||||
"mistral": ["pixtral-large-latest", "mistral-large-latest", "mistral-small-latest", "ministral-8b-latest"]
|
||||
}
|
||||
|
||||
@@ -1,8 +1,3 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/2
|
||||
# @Author : wenshao
|
||||
# @ProjectName: browser-use-webui
|
||||
# @FileName: test_browser_use.py
|
||||
import pdb
|
||||
|
||||
from dotenv import load_dotenv
|
||||
@@ -45,7 +40,15 @@ async def test_browser_use_org():
|
||||
|
||||
window_w, window_h = 1920, 1080
|
||||
use_vision = False
|
||||
chrome_path = os.getenv("CHROME_PATH", None)
|
||||
use_own_browser = False
|
||||
if use_own_browser:
|
||||
chrome_path = os.getenv("CHROME_PATH", None)
|
||||
if chrome_path == "":
|
||||
chrome_path = None
|
||||
else:
|
||||
chrome_path = None
|
||||
|
||||
tool_calling_method = "json_schema" # setting to json_schema when using ollma
|
||||
|
||||
browser = Browser(
|
||||
config=BrowserConfig(
|
||||
@@ -69,7 +72,8 @@ async def test_browser_use_org():
|
||||
task="go to google.com and type 'OpenAI' click search and give me the first url",
|
||||
llm=llm,
|
||||
browser_context=browser_context,
|
||||
use_vision=use_vision
|
||||
use_vision=use_vision,
|
||||
tool_calling_method=tool_calling_method
|
||||
)
|
||||
history: AgentHistoryList = await agent.run(max_steps=10)
|
||||
|
||||
@@ -247,22 +251,32 @@ async def test_browser_use_custom_v2():
|
||||
# api_key=os.getenv("GOOGLE_API_KEY", "")
|
||||
# )
|
||||
|
||||
# llm = utils.get_llm_model(
|
||||
# provider="deepseek",
|
||||
# model_name="deepseek-reasoner",
|
||||
# temperature=0.8
|
||||
# )
|
||||
|
||||
# llm = utils.get_llm_model(
|
||||
# provider="deepseek",
|
||||
# model_name="deepseek-chat",
|
||||
# temperature=0.8
|
||||
# )
|
||||
|
||||
llm = utils.get_llm_model(
|
||||
provider="ollama", model_name="qwen2.5:7b", temperature=0.5
|
||||
)
|
||||
# llm = utils.get_llm_model(
|
||||
# provider="ollama", model_name="qwen2.5:7b", temperature=0.5
|
||||
# )
|
||||
|
||||
# llm = utils.get_llm_model(
|
||||
# provider="ollama", model_name="deepseek-r1:14b", temperature=0.5
|
||||
# )
|
||||
|
||||
controller = CustomController()
|
||||
use_own_browser = False
|
||||
disable_security = True
|
||||
use_vision = False # Set to False when using DeepSeek
|
||||
tool_call_in_content = True # Set to True when using Ollama
|
||||
max_actions_per_step = 1
|
||||
|
||||
max_actions_per_step = 10
|
||||
playwright = None
|
||||
browser = None
|
||||
browser_context = None
|
||||
@@ -293,7 +307,7 @@ async def test_browser_use_custom_v2():
|
||||
)
|
||||
)
|
||||
agent = CustomAgent(
|
||||
task="go to google.com and type 'OpenAI' click search and give me the first url",
|
||||
task="go to google.com and type 'Nvidia' click search and give me the first url",
|
||||
add_infos="", # some hints for llm to complete the task
|
||||
llm=llm,
|
||||
browser=browser,
|
||||
@@ -301,7 +315,6 @@ async def test_browser_use_custom_v2():
|
||||
controller=controller,
|
||||
system_prompt_class=CustomSystemPrompt,
|
||||
use_vision=use_vision,
|
||||
tool_call_in_content=tool_call_in_content,
|
||||
max_actions_per_step=max_actions_per_step
|
||||
)
|
||||
history: AgentHistoryList = await agent.run(max_steps=10)
|
||||
|
||||
@@ -1,9 +1,3 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/1
|
||||
# @Author : wenshao
|
||||
# @Email : wenshaoguo1026@gmail.com
|
||||
# @Project : browser-use-webui
|
||||
# @FileName: test_llm_api.py
|
||||
import os
|
||||
import pdb
|
||||
|
||||
@@ -133,6 +127,33 @@ def test_deepseek_model():
|
||||
ai_msg = llm.invoke([message])
|
||||
print(ai_msg.content)
|
||||
|
||||
def test_deepseek_r1_model():
|
||||
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
|
||||
from src.utils import utils
|
||||
|
||||
llm = utils.get_llm_model(
|
||||
provider="deepseek",
|
||||
model_name="deepseek-reasoner",
|
||||
temperature=0.8,
|
||||
base_url=os.getenv("DEEPSEEK_ENDPOINT", ""),
|
||||
api_key=os.getenv("DEEPSEEK_API_KEY", "")
|
||||
)
|
||||
messages = []
|
||||
sys_message = SystemMessage(
|
||||
content=[{"type": "text", "text": "you are a helpful AI assistant"}]
|
||||
)
|
||||
messages.append(sys_message)
|
||||
user_message = HumanMessage(
|
||||
content=[
|
||||
{"type": "text", "text": "9.11 and 9.8, which is greater?"}
|
||||
]
|
||||
)
|
||||
messages.append(user_message)
|
||||
ai_msg = llm.invoke(messages)
|
||||
print(ai_msg.reasoning_content)
|
||||
print(ai_msg.content)
|
||||
print(llm.model_name)
|
||||
pdb.set_trace()
|
||||
|
||||
def test_ollama_model():
|
||||
from langchain_ollama import ChatOllama
|
||||
@@ -140,6 +161,14 @@ def test_ollama_model():
|
||||
llm = ChatOllama(model="qwen2.5:7b")
|
||||
ai_msg = llm.invoke("Sing a ballad of LangChain.")
|
||||
print(ai_msg.content)
|
||||
|
||||
def test_deepseek_r1_ollama_model():
|
||||
from src.utils.llm import DeepSeekR1ChatOllama
|
||||
|
||||
llm = DeepSeekR1ChatOllama(model="deepseek-r1:14b")
|
||||
ai_msg = llm.invoke("how many r in strawberry?")
|
||||
print(ai_msg.content)
|
||||
pdb.set_trace()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@@ -148,4 +177,6 @@ if __name__ == '__main__':
|
||||
# test_azure_openai_model()
|
||||
# test_deepseek_model()
|
||||
# test_ollama_model()
|
||||
test_mistral_model()
|
||||
# test_deepseek_r1_model()
|
||||
# test_deepseek_r1_ollama_model()
|
||||
test_mistral_model()
|
||||
@@ -1,9 +1,3 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/2
|
||||
# @Author : wenshao
|
||||
# @Email : wenshaoguo1026@gmail.com
|
||||
# @Project : browser-use-webui
|
||||
# @FileName: test_playwright.py
|
||||
import pdb
|
||||
from dotenv import load_dotenv
|
||||
|
||||
|
||||
101
webui.py
101
webui.py
@@ -1,10 +1,3 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2025/1/1
|
||||
# @Author : wenshao
|
||||
# @Email : wenshaoguo1026@gmail.com
|
||||
# @Project : browser-use-webui
|
||||
# @FileName: webui.py
|
||||
|
||||
import pdb
|
||||
import logging
|
||||
|
||||
@@ -28,6 +21,7 @@ from browser_use.browser.context import (
|
||||
BrowserContextConfig,
|
||||
BrowserContextWindowSize,
|
||||
)
|
||||
from langchain_ollama import ChatOllama
|
||||
from playwright.async_api import async_playwright
|
||||
from src.utils.agent_state import AgentState
|
||||
|
||||
@@ -35,15 +29,12 @@ from src.utils import utils
|
||||
from src.agent.custom_agent import CustomAgent
|
||||
from src.browser.custom_browser import CustomBrowser
|
||||
from src.agent.custom_prompts import CustomSystemPrompt
|
||||
from src.browser.config import BrowserPersistenceConfig
|
||||
from src.browser.custom_context import BrowserContextConfig, CustomBrowserContext
|
||||
from src.controller.custom_controller import CustomController
|
||||
from gradio.themes import Citrus, Default, Glass, Monochrome, Ocean, Origin, Soft, Base
|
||||
from src.utils.default_config_settings import default_config, load_config_from_file, save_config_to_file, save_current_config, update_ui_from_config
|
||||
from src.utils.utils import update_model_dropdown, get_latest_files, capture_screenshot
|
||||
|
||||
from dotenv import load_dotenv
|
||||
load_dotenv()
|
||||
|
||||
# Global variables for persistence
|
||||
_global_browser = None
|
||||
@@ -101,7 +92,7 @@ async def run_browser_agent(
|
||||
max_steps,
|
||||
use_vision,
|
||||
max_actions_per_step,
|
||||
tool_call_in_content
|
||||
tool_calling_method
|
||||
):
|
||||
global _global_agent_state
|
||||
_global_agent_state.clear_stop() # Clear any previous stop requests
|
||||
@@ -147,7 +138,7 @@ async def run_browser_agent(
|
||||
max_steps=max_steps,
|
||||
use_vision=use_vision,
|
||||
max_actions_per_step=max_actions_per_step,
|
||||
tool_call_in_content=tool_call_in_content
|
||||
tool_calling_method=tool_calling_method
|
||||
)
|
||||
elif agent_type == "custom":
|
||||
final_result, errors, model_actions, model_thoughts, trace_file, history_file = await run_custom_agent(
|
||||
@@ -166,7 +157,7 @@ async def run_browser_agent(
|
||||
max_steps=max_steps,
|
||||
use_vision=use_vision,
|
||||
max_actions_per_step=max_actions_per_step,
|
||||
tool_call_in_content=tool_call_in_content
|
||||
tool_calling_method=tool_calling_method
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Invalid agent type: {agent_type}")
|
||||
@@ -225,7 +216,7 @@ async def run_org_agent(
|
||||
max_steps,
|
||||
use_vision,
|
||||
max_actions_per_step,
|
||||
tool_call_in_content
|
||||
tool_calling_method
|
||||
):
|
||||
try:
|
||||
global _global_browser, _global_browser_context, _global_agent_state
|
||||
@@ -261,7 +252,7 @@ async def run_org_agent(
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
agent = Agent(
|
||||
task=task,
|
||||
llm=llm,
|
||||
@@ -269,7 +260,7 @@ async def run_org_agent(
|
||||
browser=_global_browser,
|
||||
browser_context=_global_browser_context,
|
||||
max_actions_per_step=max_actions_per_step,
|
||||
tool_call_in_content=tool_call_in_content
|
||||
tool_calling_method=tool_calling_method
|
||||
)
|
||||
history = await agent.run(max_steps=max_steps)
|
||||
|
||||
@@ -316,7 +307,7 @@ async def run_custom_agent(
|
||||
max_steps,
|
||||
use_vision,
|
||||
max_actions_per_step,
|
||||
tool_call_in_content
|
||||
tool_calling_method
|
||||
):
|
||||
try:
|
||||
global _global_browser, _global_browser_context, _global_agent_state
|
||||
@@ -355,7 +346,7 @@ async def run_custom_agent(
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# Create and run agent
|
||||
agent = CustomAgent(
|
||||
task=task,
|
||||
@@ -367,8 +358,8 @@ async def run_custom_agent(
|
||||
controller=controller,
|
||||
system_prompt_class=CustomSystemPrompt,
|
||||
max_actions_per_step=max_actions_per_step,
|
||||
tool_call_in_content=tool_call_in_content,
|
||||
agent_state=_global_agent_state
|
||||
agent_state=_global_agent_state,
|
||||
tool_calling_method=tool_calling_method
|
||||
)
|
||||
history = await agent.run(max_steps=max_steps)
|
||||
|
||||
@@ -421,7 +412,7 @@ async def run_with_stream(
|
||||
max_steps,
|
||||
use_vision,
|
||||
max_actions_per_step,
|
||||
tool_call_in_content
|
||||
tool_calling_method
|
||||
):
|
||||
global _global_agent_state
|
||||
stream_vw = 80
|
||||
@@ -449,7 +440,7 @@ async def run_with_stream(
|
||||
max_steps=max_steps,
|
||||
use_vision=use_vision,
|
||||
max_actions_per_step=max_actions_per_step,
|
||||
tool_call_in_content=tool_call_in_content
|
||||
tool_calling_method=tool_calling_method
|
||||
)
|
||||
# Add HTML content at the start of the result array
|
||||
html_content = f"<h1 style='width:{stream_vw}vw; height:{stream_vh}vh'>Using browser...</h1>"
|
||||
@@ -481,7 +472,7 @@ async def run_with_stream(
|
||||
max_steps=max_steps,
|
||||
use_vision=use_vision,
|
||||
max_actions_per_step=max_actions_per_step,
|
||||
tool_call_in_content=tool_call_in_content
|
||||
tool_calling_method=tool_calling_method
|
||||
)
|
||||
)
|
||||
|
||||
@@ -638,32 +629,38 @@ def create_ui(config, theme_name="Ocean"):
|
||||
value=config['agent_type'],
|
||||
info="Select the type of agent to use",
|
||||
)
|
||||
max_steps = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=200,
|
||||
value=config['max_steps'],
|
||||
step=1,
|
||||
label="Max Run Steps",
|
||||
info="Maximum number of steps the agent will take",
|
||||
)
|
||||
max_actions_per_step = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=20,
|
||||
value=config['max_actions_per_step'],
|
||||
step=1,
|
||||
label="Max Actions per Step",
|
||||
info="Maximum number of actions the agent will take per step",
|
||||
)
|
||||
use_vision = gr.Checkbox(
|
||||
label="Use Vision",
|
||||
value=config['use_vision'],
|
||||
info="Enable visual processing capabilities",
|
||||
)
|
||||
tool_call_in_content = gr.Checkbox(
|
||||
label="Use Tool Calls in Content",
|
||||
value=config['tool_call_in_content'],
|
||||
info="Enable Tool Calls in content",
|
||||
)
|
||||
with gr.Column():
|
||||
max_steps = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=200,
|
||||
value=config['max_steps'],
|
||||
step=1,
|
||||
label="Max Run Steps",
|
||||
info="Maximum number of steps the agent will take",
|
||||
)
|
||||
max_actions_per_step = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=20,
|
||||
value=config['max_actions_per_step'],
|
||||
step=1,
|
||||
label="Max Actions per Step",
|
||||
info="Maximum number of actions the agent will take per step",
|
||||
)
|
||||
with gr.Column():
|
||||
use_vision = gr.Checkbox(
|
||||
label="Use Vision",
|
||||
value=config['use_vision'],
|
||||
info="Enable visual processing capabilities",
|
||||
)
|
||||
tool_calling_method = gr.Dropdown(
|
||||
label="Tool Calling Method",
|
||||
value=config['tool_calling_method'],
|
||||
interactive=True,
|
||||
allow_custom_value=True, # Allow users to input custom model names
|
||||
choices=["auto", "json_schema", "function_calling"],
|
||||
info="Tool Calls Funtion Name",
|
||||
visible=False
|
||||
)
|
||||
|
||||
with gr.TabItem("🔧 LLM Configuration", id=2):
|
||||
with gr.Group():
|
||||
@@ -813,7 +810,7 @@ def create_ui(config, theme_name="Ocean"):
|
||||
fn=update_ui_from_config,
|
||||
inputs=[config_file_input],
|
||||
outputs=[
|
||||
agent_type, max_steps, max_actions_per_step, use_vision, tool_call_in_content,
|
||||
agent_type, max_steps, max_actions_per_step, use_vision, tool_calling_method,
|
||||
llm_provider, llm_model_name, llm_temperature, llm_base_url, llm_api_key,
|
||||
use_own_browser, keep_browser_open, headless, disable_security, enable_recording,
|
||||
window_w, window_h, save_recording_path, save_trace_path, save_agent_history_path,
|
||||
@@ -824,7 +821,7 @@ def create_ui(config, theme_name="Ocean"):
|
||||
save_config_button.click(
|
||||
fn=save_current_config,
|
||||
inputs=[
|
||||
agent_type, max_steps, max_actions_per_step, use_vision, tool_call_in_content,
|
||||
agent_type, max_steps, max_actions_per_step, use_vision, tool_calling_method,
|
||||
llm_provider, llm_model_name, llm_temperature, llm_base_url, llm_api_key,
|
||||
use_own_browser, keep_browser_open, headless, disable_security,
|
||||
enable_recording, window_w, window_h, save_recording_path, save_trace_path,
|
||||
@@ -876,7 +873,7 @@ def create_ui(config, theme_name="Ocean"):
|
||||
agent_type, llm_provider, llm_model_name, llm_temperature, llm_base_url, llm_api_key,
|
||||
use_own_browser, keep_browser_open, headless, disable_security, window_w, window_h,
|
||||
save_recording_path, save_agent_history_path, save_trace_path, # Include the new path
|
||||
enable_recording, task, add_infos, max_steps, use_vision, max_actions_per_step, tool_call_in_content
|
||||
enable_recording, task, add_infos, max_steps, use_vision, max_actions_per_step, tool_calling_method
|
||||
],
|
||||
outputs=[
|
||||
browser_view, # Browser view
|
||||
|
||||
Reference in New Issue
Block a user