refactor: simplify LLM tests and remove duplication

This commit is contained in:
marginal23326
2025-01-30 18:24:32 +06:00
parent dc41476f37
commit d0b4f4c441

View File

@@ -1,7 +1,10 @@
import os
import pdb
from dataclasses import dataclass
from dotenv import load_dotenv
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_ollama import ChatOllama
load_dotenv()
@@ -9,154 +12,115 @@ import sys
sys.path.append(".")
@dataclass
class LLMConfig:
provider: str
model_name: str
temperature: float = 0.8
base_url: str = None
api_key: str = None
def create_message_content(text, image_path=None):
content = [{"type": "text", "text": text}]
if image_path:
from src.utils import utils
image_data = utils.encode_image(image_path)
content.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"}
})
return content
def get_env_value(key, provider):
env_mappings = {
"openai": {"api_key": "OPENAI_API_KEY", "base_url": "OPENAI_ENDPOINT"},
"azure_openai": {"api_key": "AZURE_OPENAI_API_KEY", "base_url": "AZURE_OPENAI_ENDPOINT"},
"gemini": {"api_key": "GOOGLE_API_KEY"},
"deepseek": {"api_key": "DEEPSEEK_API_KEY", "base_url": "DEEPSEEK_ENDPOINT"}
}
if provider in env_mappings and key in env_mappings[provider]:
return os.getenv(env_mappings[provider][key], "")
return ""
def test_llm(config, query, image_path=None, system_message=None):
from src.utils import utils
# Special handling for Ollama-based models
if config.provider == "ollama":
if "deepseek-r1" in config.model_name:
from src.utils.llm import DeepSeekR1ChatOllama
llm = DeepSeekR1ChatOllama(model=config.model_name)
else:
llm = ChatOllama(model=config.model_name)
ai_msg = llm.invoke(query)
print(ai_msg.content)
if "deepseek-r1" in config.model_name:
pdb.set_trace()
return
# For other providers, use the standard configuration
llm = utils.get_llm_model(
provider=config.provider,
model_name=config.model_name,
temperature=config.temperature,
base_url=config.base_url or get_env_value("base_url", config.provider),
api_key=config.api_key or get_env_value("api_key", config.provider)
)
# Prepare messages for non-Ollama models
messages = []
if system_message:
messages.append(SystemMessage(content=create_message_content(system_message)))
messages.append(HumanMessage(content=create_message_content(query, image_path)))
ai_msg = llm.invoke(messages)
# Handle different response types
if hasattr(ai_msg, "reasoning_content"):
print(ai_msg.reasoning_content)
print(ai_msg.content)
if config.provider == "deepseek" and "deepseek-reasoner" in config.model_name:
print(llm.model_name)
pdb.set_trace()
def test_openai_model():
from langchain_core.messages import HumanMessage
from src.utils import utils
llm = utils.get_llm_model(
provider="openai",
model_name="gpt-4o",
temperature=0.8,
base_url=os.getenv("OPENAI_ENDPOINT", ""),
api_key=os.getenv("OPENAI_API_KEY", "")
)
image_path = "assets/examples/test.png"
image_data = utils.encode_image(image_path)
message = HumanMessage(
content=[
{"type": "text", "text": "describe this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
]
)
ai_msg = llm.invoke([message])
print(ai_msg.content)
config = LLMConfig(provider="openai", model_name="gpt-4o")
test_llm(config, "Describe this image", "assets/examples/test.png")
def test_gemini_model():
# you need to enable your api key first: https://ai.google.dev/palm_docs/oauth_quickstart
from langchain_core.messages import HumanMessage
from src.utils import utils
llm = utils.get_llm_model(
provider="gemini",
model_name="gemini-2.0-flash-exp",
temperature=0.8,
api_key=os.getenv("GOOGLE_API_KEY", "")
)
image_path = "assets/examples/test.png"
image_data = utils.encode_image(image_path)
message = HumanMessage(
content=[
{"type": "text", "text": "describe this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
]
)
ai_msg = llm.invoke([message])
print(ai_msg.content)
# Enable your API key first if you haven't: https://ai.google.dev/palm_docs/oauth_quickstart
config = LLMConfig(provider="gemini", model_name="gemini-2.0-flash-exp")
test_llm(config, "Describe this image", "assets/examples/test.png")
def test_azure_openai_model():
from langchain_core.messages import HumanMessage
from src.utils import utils
llm = utils.get_llm_model(
provider="azure_openai",
model_name="gpt-4o",
temperature=0.8,
base_url=os.getenv("AZURE_OPENAI_ENDPOINT", ""),
api_key=os.getenv("AZURE_OPENAI_API_KEY", "")
)
image_path = "assets/examples/test.png"
image_data = utils.encode_image(image_path)
message = HumanMessage(
content=[
{"type": "text", "text": "describe this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
]
)
ai_msg = llm.invoke([message])
print(ai_msg.content)
config = LLMConfig(provider="azure_openai", model_name="gpt-4o")
test_llm(config, "Describe this image", "assets/examples/test.png")
def test_deepseek_model():
from langchain_core.messages import HumanMessage
from src.utils import utils
llm = utils.get_llm_model(
provider="deepseek",
model_name="deepseek-chat",
temperature=0.8,
base_url=os.getenv("DEEPSEEK_ENDPOINT", ""),
api_key=os.getenv("DEEPSEEK_API_KEY", "")
)
message = HumanMessage(
content=[
{"type": "text", "text": "who are you?"}
]
)
ai_msg = llm.invoke([message])
print(ai_msg.content)
config = LLMConfig(provider="deepseek", model_name="deepseek-chat")
test_llm(config, "Who are you?")
def test_deepseek_r1_model():
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
from src.utils import utils
llm = utils.get_llm_model(
provider="deepseek",
model_name="deepseek-reasoner",
temperature=0.8,
base_url=os.getenv("DEEPSEEK_ENDPOINT", ""),
api_key=os.getenv("DEEPSEEK_API_KEY", "")
)
messages = []
sys_message = SystemMessage(
content=[{"type": "text", "text": "you are a helpful AI assistant"}]
)
messages.append(sys_message)
user_message = HumanMessage(
content=[
{"type": "text", "text": "9.11 and 9.8, which is greater?"}
]
)
messages.append(user_message)
ai_msg = llm.invoke(messages)
print(ai_msg.reasoning_content)
print(ai_msg.content)
print(llm.model_name)
pdb.set_trace()
config = LLMConfig(provider="deepseek", model_name="deepseek-reasoner")
test_llm(config, "Which is greater, 9.11 or 9.8?", system_message="You are a helpful AI assistant.")
def test_ollama_model():
from langchain_ollama import ChatOllama
config = LLMConfig(provider="ollama", model_name="qwen2.5:7b")
test_llm(config, "Sing a ballad of LangChain.")
llm = ChatOllama(model="qwen2.5:7b")
ai_msg = llm.invoke("Sing a ballad of LangChain.")
print(ai_msg.content)
def test_deepseek_r1_ollama_model():
from src.utils.llm import DeepSeekR1ChatOllama
config = LLMConfig(provider="ollama", model_name="deepseek-r1:14b")
test_llm(config, "How many 'r's are in the word 'strawberry'?")
llm = DeepSeekR1ChatOllama(model="deepseek-r1:14b")
ai_msg = llm.invoke("how many r in strawberry?")
print(ai_msg.content)
pdb.set_trace()
if __name__ == '__main__':
if __name__ == "__main__":
# test_openai_model()
# test_gemini_model()
# test_azure_openai_model()
test_deepseek_model()
# test_ollama_model()
# test_deepseek_r1_model()
# test_deepseek_r1_ollama_model()
# test_deepseek_r1_ollama_model()