refactor: simplify LLM tests and remove duplication
This commit is contained in:
@@ -1,7 +1,10 @@
|
|||||||
import os
|
import os
|
||||||
import pdb
|
import pdb
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
|
from langchain_core.messages import HumanMessage, SystemMessage
|
||||||
|
from langchain_ollama import ChatOllama
|
||||||
|
|
||||||
load_dotenv()
|
load_dotenv()
|
||||||
|
|
||||||
@@ -9,154 +12,115 @@ import sys
|
|||||||
|
|
||||||
sys.path.append(".")
|
sys.path.append(".")
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class LLMConfig:
|
||||||
|
provider: str
|
||||||
|
model_name: str
|
||||||
|
temperature: float = 0.8
|
||||||
|
base_url: str = None
|
||||||
|
api_key: str = None
|
||||||
|
|
||||||
|
def create_message_content(text, image_path=None):
|
||||||
|
content = [{"type": "text", "text": text}]
|
||||||
|
|
||||||
|
if image_path:
|
||||||
|
from src.utils import utils
|
||||||
|
image_data = utils.encode_image(image_path)
|
||||||
|
content.append({
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"}
|
||||||
|
})
|
||||||
|
|
||||||
|
return content
|
||||||
|
|
||||||
|
def get_env_value(key, provider):
|
||||||
|
env_mappings = {
|
||||||
|
"openai": {"api_key": "OPENAI_API_KEY", "base_url": "OPENAI_ENDPOINT"},
|
||||||
|
"azure_openai": {"api_key": "AZURE_OPENAI_API_KEY", "base_url": "AZURE_OPENAI_ENDPOINT"},
|
||||||
|
"gemini": {"api_key": "GOOGLE_API_KEY"},
|
||||||
|
"deepseek": {"api_key": "DEEPSEEK_API_KEY", "base_url": "DEEPSEEK_ENDPOINT"}
|
||||||
|
}
|
||||||
|
|
||||||
|
if provider in env_mappings and key in env_mappings[provider]:
|
||||||
|
return os.getenv(env_mappings[provider][key], "")
|
||||||
|
return ""
|
||||||
|
|
||||||
|
def test_llm(config, query, image_path=None, system_message=None):
|
||||||
|
from src.utils import utils
|
||||||
|
|
||||||
|
# Special handling for Ollama-based models
|
||||||
|
if config.provider == "ollama":
|
||||||
|
if "deepseek-r1" in config.model_name:
|
||||||
|
from src.utils.llm import DeepSeekR1ChatOllama
|
||||||
|
llm = DeepSeekR1ChatOllama(model=config.model_name)
|
||||||
|
else:
|
||||||
|
llm = ChatOllama(model=config.model_name)
|
||||||
|
|
||||||
|
ai_msg = llm.invoke(query)
|
||||||
|
print(ai_msg.content)
|
||||||
|
if "deepseek-r1" in config.model_name:
|
||||||
|
pdb.set_trace()
|
||||||
|
return
|
||||||
|
|
||||||
|
# For other providers, use the standard configuration
|
||||||
|
llm = utils.get_llm_model(
|
||||||
|
provider=config.provider,
|
||||||
|
model_name=config.model_name,
|
||||||
|
temperature=config.temperature,
|
||||||
|
base_url=config.base_url or get_env_value("base_url", config.provider),
|
||||||
|
api_key=config.api_key or get_env_value("api_key", config.provider)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Prepare messages for non-Ollama models
|
||||||
|
messages = []
|
||||||
|
if system_message:
|
||||||
|
messages.append(SystemMessage(content=create_message_content(system_message)))
|
||||||
|
messages.append(HumanMessage(content=create_message_content(query, image_path)))
|
||||||
|
ai_msg = llm.invoke(messages)
|
||||||
|
|
||||||
|
# Handle different response types
|
||||||
|
if hasattr(ai_msg, "reasoning_content"):
|
||||||
|
print(ai_msg.reasoning_content)
|
||||||
|
print(ai_msg.content)
|
||||||
|
|
||||||
|
if config.provider == "deepseek" and "deepseek-reasoner" in config.model_name:
|
||||||
|
print(llm.model_name)
|
||||||
|
pdb.set_trace()
|
||||||
|
|
||||||
def test_openai_model():
|
def test_openai_model():
|
||||||
from langchain_core.messages import HumanMessage
|
config = LLMConfig(provider="openai", model_name="gpt-4o")
|
||||||
from src.utils import utils
|
test_llm(config, "Describe this image", "assets/examples/test.png")
|
||||||
|
|
||||||
llm = utils.get_llm_model(
|
|
||||||
provider="openai",
|
|
||||||
model_name="gpt-4o",
|
|
||||||
temperature=0.8,
|
|
||||||
base_url=os.getenv("OPENAI_ENDPOINT", ""),
|
|
||||||
api_key=os.getenv("OPENAI_API_KEY", "")
|
|
||||||
)
|
|
||||||
image_path = "assets/examples/test.png"
|
|
||||||
image_data = utils.encode_image(image_path)
|
|
||||||
message = HumanMessage(
|
|
||||||
content=[
|
|
||||||
{"type": "text", "text": "describe this image"},
|
|
||||||
{
|
|
||||||
"type": "image_url",
|
|
||||||
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
|
|
||||||
},
|
|
||||||
]
|
|
||||||
)
|
|
||||||
ai_msg = llm.invoke([message])
|
|
||||||
print(ai_msg.content)
|
|
||||||
|
|
||||||
|
|
||||||
def test_gemini_model():
|
def test_gemini_model():
|
||||||
# you need to enable your api key first: https://ai.google.dev/palm_docs/oauth_quickstart
|
# Enable your API key first if you haven't: https://ai.google.dev/palm_docs/oauth_quickstart
|
||||||
from langchain_core.messages import HumanMessage
|
config = LLMConfig(provider="gemini", model_name="gemini-2.0-flash-exp")
|
||||||
from src.utils import utils
|
test_llm(config, "Describe this image", "assets/examples/test.png")
|
||||||
|
|
||||||
llm = utils.get_llm_model(
|
|
||||||
provider="gemini",
|
|
||||||
model_name="gemini-2.0-flash-exp",
|
|
||||||
temperature=0.8,
|
|
||||||
api_key=os.getenv("GOOGLE_API_KEY", "")
|
|
||||||
)
|
|
||||||
|
|
||||||
image_path = "assets/examples/test.png"
|
|
||||||
image_data = utils.encode_image(image_path)
|
|
||||||
message = HumanMessage(
|
|
||||||
content=[
|
|
||||||
{"type": "text", "text": "describe this image"},
|
|
||||||
{
|
|
||||||
"type": "image_url",
|
|
||||||
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
|
|
||||||
},
|
|
||||||
]
|
|
||||||
)
|
|
||||||
ai_msg = llm.invoke([message])
|
|
||||||
print(ai_msg.content)
|
|
||||||
|
|
||||||
|
|
||||||
def test_azure_openai_model():
|
def test_azure_openai_model():
|
||||||
from langchain_core.messages import HumanMessage
|
config = LLMConfig(provider="azure_openai", model_name="gpt-4o")
|
||||||
from src.utils import utils
|
test_llm(config, "Describe this image", "assets/examples/test.png")
|
||||||
|
|
||||||
llm = utils.get_llm_model(
|
|
||||||
provider="azure_openai",
|
|
||||||
model_name="gpt-4o",
|
|
||||||
temperature=0.8,
|
|
||||||
base_url=os.getenv("AZURE_OPENAI_ENDPOINT", ""),
|
|
||||||
api_key=os.getenv("AZURE_OPENAI_API_KEY", "")
|
|
||||||
)
|
|
||||||
image_path = "assets/examples/test.png"
|
|
||||||
image_data = utils.encode_image(image_path)
|
|
||||||
message = HumanMessage(
|
|
||||||
content=[
|
|
||||||
{"type": "text", "text": "describe this image"},
|
|
||||||
{
|
|
||||||
"type": "image_url",
|
|
||||||
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
|
|
||||||
},
|
|
||||||
]
|
|
||||||
)
|
|
||||||
ai_msg = llm.invoke([message])
|
|
||||||
print(ai_msg.content)
|
|
||||||
|
|
||||||
|
|
||||||
def test_deepseek_model():
|
def test_deepseek_model():
|
||||||
from langchain_core.messages import HumanMessage
|
config = LLMConfig(provider="deepseek", model_name="deepseek-chat")
|
||||||
from src.utils import utils
|
test_llm(config, "Who are you?")
|
||||||
|
|
||||||
llm = utils.get_llm_model(
|
|
||||||
provider="deepseek",
|
|
||||||
model_name="deepseek-chat",
|
|
||||||
temperature=0.8,
|
|
||||||
base_url=os.getenv("DEEPSEEK_ENDPOINT", ""),
|
|
||||||
api_key=os.getenv("DEEPSEEK_API_KEY", "")
|
|
||||||
)
|
|
||||||
message = HumanMessage(
|
|
||||||
content=[
|
|
||||||
{"type": "text", "text": "who are you?"}
|
|
||||||
]
|
|
||||||
)
|
|
||||||
ai_msg = llm.invoke([message])
|
|
||||||
print(ai_msg.content)
|
|
||||||
|
|
||||||
def test_deepseek_r1_model():
|
def test_deepseek_r1_model():
|
||||||
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
|
config = LLMConfig(provider="deepseek", model_name="deepseek-reasoner")
|
||||||
from src.utils import utils
|
test_llm(config, "Which is greater, 9.11 or 9.8?", system_message="You are a helpful AI assistant.")
|
||||||
|
|
||||||
llm = utils.get_llm_model(
|
|
||||||
provider="deepseek",
|
|
||||||
model_name="deepseek-reasoner",
|
|
||||||
temperature=0.8,
|
|
||||||
base_url=os.getenv("DEEPSEEK_ENDPOINT", ""),
|
|
||||||
api_key=os.getenv("DEEPSEEK_API_KEY", "")
|
|
||||||
)
|
|
||||||
messages = []
|
|
||||||
sys_message = SystemMessage(
|
|
||||||
content=[{"type": "text", "text": "you are a helpful AI assistant"}]
|
|
||||||
)
|
|
||||||
messages.append(sys_message)
|
|
||||||
user_message = HumanMessage(
|
|
||||||
content=[
|
|
||||||
{"type": "text", "text": "9.11 and 9.8, which is greater?"}
|
|
||||||
]
|
|
||||||
)
|
|
||||||
messages.append(user_message)
|
|
||||||
ai_msg = llm.invoke(messages)
|
|
||||||
print(ai_msg.reasoning_content)
|
|
||||||
print(ai_msg.content)
|
|
||||||
print(llm.model_name)
|
|
||||||
pdb.set_trace()
|
|
||||||
|
|
||||||
def test_ollama_model():
|
def test_ollama_model():
|
||||||
from langchain_ollama import ChatOllama
|
config = LLMConfig(provider="ollama", model_name="qwen2.5:7b")
|
||||||
|
test_llm(config, "Sing a ballad of LangChain.")
|
||||||
|
|
||||||
llm = ChatOllama(model="qwen2.5:7b")
|
|
||||||
ai_msg = llm.invoke("Sing a ballad of LangChain.")
|
|
||||||
print(ai_msg.content)
|
|
||||||
|
|
||||||
def test_deepseek_r1_ollama_model():
|
def test_deepseek_r1_ollama_model():
|
||||||
from src.utils.llm import DeepSeekR1ChatOllama
|
config = LLMConfig(provider="ollama", model_name="deepseek-r1:14b")
|
||||||
|
test_llm(config, "How many 'r's are in the word 'strawberry'?")
|
||||||
|
|
||||||
llm = DeepSeekR1ChatOllama(model="deepseek-r1:14b")
|
if __name__ == "__main__":
|
||||||
ai_msg = llm.invoke("how many r in strawberry?")
|
|
||||||
print(ai_msg.content)
|
|
||||||
pdb.set_trace()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
# test_openai_model()
|
# test_openai_model()
|
||||||
# test_gemini_model()
|
# test_gemini_model()
|
||||||
# test_azure_openai_model()
|
# test_azure_openai_model()
|
||||||
test_deepseek_model()
|
test_deepseek_model()
|
||||||
# test_ollama_model()
|
# test_ollama_model()
|
||||||
# test_deepseek_r1_model()
|
# test_deepseek_r1_model()
|
||||||
# test_deepseek_r1_ollama_model()
|
# test_deepseek_r1_ollama_model()
|
||||||
|
|||||||
Reference in New Issue
Block a user