|
|
|
|
@@ -1,4 +1,3 @@
|
|
|
|
|
|
|
|
|
|
import pdb
|
|
|
|
|
|
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
|
@@ -21,17 +20,51 @@ from json_repair import repair_json
|
|
|
|
|
from src.agent.custom_prompts import CustomSystemPrompt, CustomAgentMessagePrompt
|
|
|
|
|
from src.controller.custom_controller import CustomController
|
|
|
|
|
from src.browser.custom_browser import CustomBrowser
|
|
|
|
|
from src.browser.custom_context import BrowserContextConfig
|
|
|
|
|
from browser_use.browser.context import (
|
|
|
|
|
BrowserContextConfig,
|
|
|
|
|
BrowserContextWindowSize,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
async def deep_research(task, llm, agent_state, **kwargs):
|
|
|
|
|
|
|
|
|
|
async def deep_research(task, llm, agent_state=None, **kwargs):
|
|
|
|
|
task_id = str(uuid4())
|
|
|
|
|
save_dir = kwargs.get("save_dir", os.path.join(f"./tmp/deep_research/{task_id}"))
|
|
|
|
|
logger.info(f"Save Deep Research at: {save_dir}")
|
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# max qyery num per iteration
|
|
|
|
|
max_query_num = kwargs.get("max_query_num", 3)
|
|
|
|
|
|
|
|
|
|
use_own_browser = kwargs.get("use_own_browser", False)
|
|
|
|
|
extra_chromium_args = []
|
|
|
|
|
if use_own_browser:
|
|
|
|
|
# TODO: if use own browser, max query num must be 1 per iter, how to solve it?
|
|
|
|
|
max_query_num = 1
|
|
|
|
|
chrome_path = os.getenv("CHROME_PATH", None)
|
|
|
|
|
if chrome_path == "":
|
|
|
|
|
chrome_path = None
|
|
|
|
|
chrome_user_data = os.getenv("CHROME_USER_DATA", None)
|
|
|
|
|
if chrome_user_data:
|
|
|
|
|
extra_chromium_args += [f"--user-data-dir={chrome_user_data}"]
|
|
|
|
|
|
|
|
|
|
browser = CustomBrowser(
|
|
|
|
|
config=BrowserConfig(
|
|
|
|
|
headless=kwargs.get("headless", False),
|
|
|
|
|
disable_security=kwargs.get("disable_security", True),
|
|
|
|
|
chrome_instance_path=chrome_path,
|
|
|
|
|
extra_chromium_args=extra_chromium_args,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
browser_context = await browser.new_context()
|
|
|
|
|
else:
|
|
|
|
|
browser = None
|
|
|
|
|
browser_context = None
|
|
|
|
|
|
|
|
|
|
controller = CustomController()
|
|
|
|
|
|
|
|
|
|
search_system_prompt = f"""
|
|
|
|
|
You are a **Deep Researcher**, an AI agent specializing in in-depth information gathering and research using a web browser with **automated execution capabilities**. Your expertise lies in formulating comprehensive research plans and executing them meticulously to fulfill complex user requests. You will analyze user instructions, devise a detailed research plan, and determine the necessary search queries to gather the required information.
|
|
|
|
|
|
|
|
|
|
@@ -111,26 +144,12 @@ Provide your output as a JSON formatted list. Each item in the list must adhere
|
|
|
|
|
|
|
|
|
|
1. **User Instruction:** The original instruction given by the user. This helps you determine what kind of information will be useful and how to structure your thinking.
|
|
|
|
|
2. **Previous Recorded Information:** Textual data gathered and recorded from previous searches and processing, represented as a single text string.
|
|
|
|
|
3. **Current Search Results:** Textual data gathered from the most recent search query.
|
|
|
|
|
3. **Current Search Plan:** Research plan for current search.
|
|
|
|
|
4. **Current Search Query:** The current search query.
|
|
|
|
|
5. **Current Search Results:** Textual data gathered from the most recent search query.
|
|
|
|
|
"""
|
|
|
|
|
record_messages = [SystemMessage(content=record_system_prompt)]
|
|
|
|
|
|
|
|
|
|
use_own_browser = kwargs.get("use_own_browser", False)
|
|
|
|
|
extra_chromium_args = []
|
|
|
|
|
if use_own_browser:
|
|
|
|
|
# if use own browser, max query num should be 1 per iter
|
|
|
|
|
max_query_num = 1
|
|
|
|
|
chrome_path = os.getenv("CHROME_PATH", None)
|
|
|
|
|
if chrome_path == "":
|
|
|
|
|
chrome_path = None
|
|
|
|
|
chrome_user_data = os.getenv("CHROME_USER_DATA", None)
|
|
|
|
|
if chrome_user_data:
|
|
|
|
|
extra_chromium_args += [f"--user-data-dir={chrome_user_data}"]
|
|
|
|
|
else:
|
|
|
|
|
chrome_path = None
|
|
|
|
|
browser = None
|
|
|
|
|
controller = CustomController()
|
|
|
|
|
|
|
|
|
|
search_iteration = 0
|
|
|
|
|
max_search_iterations = kwargs.get("max_search_iterations", 10) # Limit search iterations to prevent infinite loop
|
|
|
|
|
use_vision = kwargs.get("use_vision", False)
|
|
|
|
|
@@ -167,35 +186,42 @@ Provide your output as a JSON formatted list. Each item in the list must adhere
|
|
|
|
|
logger.info(query_tasks)
|
|
|
|
|
|
|
|
|
|
# 2. Perform Web Search and Auto exec
|
|
|
|
|
# Paralle BU agents
|
|
|
|
|
# Parallel BU agents
|
|
|
|
|
add_infos = "1. Please click on the most relevant link to get information and go deeper, instead of just staying on the search page. \n" \
|
|
|
|
|
"2. When opening a PDF file, please remember to extract the content using extract_content instead of simply opening it for the user to view."
|
|
|
|
|
"2. When opening a PDF file, please remember to extract the content using extract_content instead of simply opening it for the user to view.\n"
|
|
|
|
|
if use_own_browser:
|
|
|
|
|
browser = CustomBrowser(
|
|
|
|
|
config=BrowserConfig(
|
|
|
|
|
headless=kwargs.get("headless", False),
|
|
|
|
|
disable_security=kwargs.get("disable_security", True),
|
|
|
|
|
chrome_instance_path=chrome_path,
|
|
|
|
|
extra_chromium_args=extra_chromium_args,
|
|
|
|
|
)
|
|
|
|
|
agent = CustomAgent(
|
|
|
|
|
task=query_tasks[0],
|
|
|
|
|
llm=llm,
|
|
|
|
|
add_infos=add_infos,
|
|
|
|
|
browser=browser,
|
|
|
|
|
browser_context=browser_context,
|
|
|
|
|
use_vision=use_vision,
|
|
|
|
|
system_prompt_class=CustomSystemPrompt,
|
|
|
|
|
agent_prompt_class=CustomAgentMessagePrompt,
|
|
|
|
|
max_actions_per_step=5,
|
|
|
|
|
controller=controller,
|
|
|
|
|
agent_state=agent_state
|
|
|
|
|
)
|
|
|
|
|
agents = [CustomAgent(
|
|
|
|
|
task=task,
|
|
|
|
|
llm=llm,
|
|
|
|
|
add_infos=add_infos,
|
|
|
|
|
browser=browser,
|
|
|
|
|
use_vision=use_vision,
|
|
|
|
|
system_prompt_class=CustomSystemPrompt,
|
|
|
|
|
agent_prompt_class=CustomAgentMessagePrompt,
|
|
|
|
|
max_actions_per_step=5,
|
|
|
|
|
controller=controller,
|
|
|
|
|
agent_state=agent_state
|
|
|
|
|
) for task in query_tasks]
|
|
|
|
|
query_results = await asyncio.gather(*[agent.run(max_steps=kwargs.get("max_steps", 10)) for agent in agents])
|
|
|
|
|
if browser:
|
|
|
|
|
await browser.close()
|
|
|
|
|
browser = None
|
|
|
|
|
logger.info("Browser closed.")
|
|
|
|
|
agent_result = await agent.run(max_steps=kwargs.get("max_steps", 10))
|
|
|
|
|
query_results = [agent_result]
|
|
|
|
|
else:
|
|
|
|
|
agents = [CustomAgent(
|
|
|
|
|
task=query_tasks[0],
|
|
|
|
|
llm=llm,
|
|
|
|
|
add_infos=add_infos,
|
|
|
|
|
browser=browser,
|
|
|
|
|
browser_context=browser_context,
|
|
|
|
|
use_vision=use_vision,
|
|
|
|
|
system_prompt_class=CustomSystemPrompt,
|
|
|
|
|
agent_prompt_class=CustomAgentMessagePrompt,
|
|
|
|
|
max_actions_per_step=5,
|
|
|
|
|
controller=controller,
|
|
|
|
|
agent_state=agent_state
|
|
|
|
|
) for task in query_tasks]
|
|
|
|
|
query_results = await asyncio.gather(
|
|
|
|
|
*[agent.run(max_steps=kwargs.get("max_steps", 10)) for agent in agents])
|
|
|
|
|
|
|
|
|
|
if agent_state and agent_state.is_stop_requested():
|
|
|
|
|
# Stop
|
|
|
|
|
break
|
|
|
|
|
@@ -211,19 +237,27 @@ Provide your output as a JSON formatted list. Each item in the list must adhere
|
|
|
|
|
with open(querr_save_path, "w", encoding="utf-8") as fw:
|
|
|
|
|
fw.write(f"Query: {query_tasks[i]}\n")
|
|
|
|
|
fw.write(query_result)
|
|
|
|
|
history_infos_ = json.dumps(history_infos, indent=4)
|
|
|
|
|
record_prompt = f"User Instruction:{task}. \nPrevious Recorded Information:\n {json.dumps(history_infos_)} \n Current Search Results: {query_result}\n "
|
|
|
|
|
record_messages.append(HumanMessage(content=record_prompt))
|
|
|
|
|
ai_record_msg = llm.invoke(record_messages[:1] + record_messages[-1:])
|
|
|
|
|
record_messages.append(ai_record_msg)
|
|
|
|
|
if hasattr(ai_record_msg, "reasoning_content"):
|
|
|
|
|
logger.info("🤯 Start Record Deep Thinking: ")
|
|
|
|
|
logger.info(ai_record_msg.reasoning_content)
|
|
|
|
|
logger.info("🤯 End Record Deep Thinking")
|
|
|
|
|
record_content = ai_record_msg.content
|
|
|
|
|
record_content = repair_json(record_content)
|
|
|
|
|
new_record_infos = json.loads(record_content)
|
|
|
|
|
history_infos.extend(new_record_infos)
|
|
|
|
|
# split query result in case the content is too long
|
|
|
|
|
query_results_split = query_result.split("Extracted page content:")
|
|
|
|
|
for qi, query_result_ in enumerate(query_results_split):
|
|
|
|
|
if not query_result_:
|
|
|
|
|
continue
|
|
|
|
|
else:
|
|
|
|
|
# TODO: limit content lenght: 128k tokens, ~3 chars per token
|
|
|
|
|
query_result_ = query_result_[:128000*3]
|
|
|
|
|
history_infos_ = json.dumps(history_infos, indent=4)
|
|
|
|
|
record_prompt = f"User Instruction:{task}. \nPrevious Recorded Information:\n {history_infos_}\n Current Search Iteration: {search_iteration}\n Current Search Plan:\n{query_plan}\n Current Search Query:\n {query_tasks[i]}\n Current Search Results: {query_result_}\n "
|
|
|
|
|
record_messages.append(HumanMessage(content=record_prompt))
|
|
|
|
|
ai_record_msg = llm.invoke(record_messages[:1] + record_messages[-1:])
|
|
|
|
|
record_messages.append(ai_record_msg)
|
|
|
|
|
if hasattr(ai_record_msg, "reasoning_content"):
|
|
|
|
|
logger.info("🤯 Start Record Deep Thinking: ")
|
|
|
|
|
logger.info(ai_record_msg.reasoning_content)
|
|
|
|
|
logger.info("🤯 End Record Deep Thinking")
|
|
|
|
|
record_content = ai_record_msg.content
|
|
|
|
|
record_content = repair_json(record_content)
|
|
|
|
|
new_record_infos = json.loads(record_content)
|
|
|
|
|
history_infos.extend(new_record_infos)
|
|
|
|
|
|
|
|
|
|
logger.info("\nFinish Searching, Start Generating Report...")
|
|
|
|
|
|
|
|
|
|
@@ -258,7 +292,7 @@ Provide your output as a JSON formatted list. Each item in the list must adhere
|
|
|
|
|
1. **User Instruction:** The original instruction given by the user. This helps you determine what kind of information will be useful and how to structure your thinking.
|
|
|
|
|
2. **Search Information:** Information gathered from the search queries.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
history_infos_ = json.dumps(history_infos, indent=4)
|
|
|
|
|
record_json_path = os.path.join(save_dir, "record_infos.json")
|
|
|
|
|
logger.info(f"save All recorded information at {record_json_path}")
|
|
|
|
|
@@ -288,5 +322,6 @@ Provide your output as a JSON formatted list. Each item in the list must adhere
|
|
|
|
|
finally:
|
|
|
|
|
if browser:
|
|
|
|
|
await browser.close()
|
|
|
|
|
browser = None
|
|
|
|
|
logger.info("Browser closed.")
|
|
|
|
|
if browser_context:
|
|
|
|
|
await browser_context.close()
|
|
|
|
|
logger.info("Browser closed.")
|
|
|
|
|
|