mirror of
https://github.com/exo-explore/exo.git
synced 2025-10-23 02:57:14 +03:00
Merge pull request #617 from exo-explore/runners2
Lots of fixes and QoL improvements.
This commit is contained in:
@@ -254,6 +254,33 @@ jobs:
|
||||
prompt: "Keep responses concise. Who was the king of pop?"
|
||||
expected_output: "Michael Jackson"
|
||||
|
||||
chatgpt_api_integration_test_tinygrad_linux:
|
||||
machine:
|
||||
image: ubuntu-2204:current
|
||||
resource_class: xlarge
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Set up Python
|
||||
command: |
|
||||
sudo apt-get update
|
||||
sudo add-apt-repository -y ppa:deadsnakes/ppa
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y python3.12 python3.12-venv clang
|
||||
python3.12 -m venv env
|
||||
source env/bin/activate
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install .
|
||||
- run_chatgpt_api_test:
|
||||
inference_engine: tinygrad
|
||||
model_id: llama-3.2-1b
|
||||
prompt: "Keep responses concise. Who was the king of pop?"
|
||||
expected_output: "Michael Jackson"
|
||||
|
||||
measure_pip_sizes:
|
||||
macos:
|
||||
xcode: "16.0.0"
|
||||
@@ -342,5 +369,6 @@ workflows:
|
||||
- discovery_integration_test
|
||||
- chatgpt_api_integration_test_mlx
|
||||
- chatgpt_api_integration_test_tinygrad
|
||||
- chatgpt_api_integration_test_tinygrad_linux
|
||||
- chatgpt_api_integration_test_dummy
|
||||
- measure_pip_sizes
|
||||
|
||||
401
.github/bench.py
vendored
Normal file
401
.github/bench.py
vendored
Normal file
@@ -0,0 +1,401 @@
|
||||
import aiohttp
|
||||
import asyncio
|
||||
import time
|
||||
import json
|
||||
import os
|
||||
import boto3
|
||||
from typing import Dict, Any
|
||||
from datetime import datetime
|
||||
import subprocess
|
||||
import psutil
|
||||
import platform
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def check_system_state():
|
||||
print("\n=== System State Check ===", flush=True)
|
||||
|
||||
# Add macOS-specific checks
|
||||
try:
|
||||
# Check powermetrics with sudo
|
||||
try:
|
||||
power_metrics = subprocess.run(
|
||||
['sudo', 'powermetrics', '-n', '1', '-i', '1000', '--samplers', 'cpu_power'],
|
||||
capture_output=True, text=True
|
||||
)
|
||||
print("\nPower Metrics:", power_metrics.stdout, flush=True)
|
||||
except Exception as e:
|
||||
print(f"Error getting power metrics: {e}", flush=True)
|
||||
|
||||
# Check thermal state
|
||||
thermal_state = subprocess.run(['pmset', '-g', 'therm'], capture_output=True, text=True)
|
||||
print("\nThermal State:", thermal_state.stdout, flush=True)
|
||||
|
||||
# Check if running under Rosetta
|
||||
arch = subprocess.run(['arch'], capture_output=True, text=True)
|
||||
print("\nArchitecture:", arch.stdout, flush=True)
|
||||
|
||||
# Check MLX compilation mode - only if mlx is available
|
||||
try:
|
||||
import mlx.core as mx
|
||||
if hasattr(mx, 'build_info'):
|
||||
print("\nMLX Build Info:", mx.build_info(), flush=True)
|
||||
else:
|
||||
print("\nMLX Build Info: Not available in this version", flush=True)
|
||||
except ImportError:
|
||||
print("\nMLX: Not installed", flush=True)
|
||||
except Exception as e:
|
||||
print(f"\nError checking MLX: {e}", flush=True)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error in macOS checks: {e}", flush=True)
|
||||
|
||||
# CPU Info
|
||||
print("\nCPU Information:", flush=True)
|
||||
try:
|
||||
if platform.system() == 'Darwin' and platform.processor() == 'arm':
|
||||
# Use sysctl for Apple Silicon Macs
|
||||
cpu_info = subprocess.run(['sysctl', 'machdep.cpu'], capture_output=True, text=True)
|
||||
if cpu_info.returncode == 0:
|
||||
print(f"CPU Info (Apple Silicon):", cpu_info.stdout, flush=True)
|
||||
|
||||
# Parse powermetrics output for clearer CPU frequency display
|
||||
try:
|
||||
power_metrics = subprocess.run(
|
||||
['sudo', 'powermetrics', '-n', '1', '-i', '100', '--samplers', 'cpu_power'],
|
||||
capture_output=True, text=True
|
||||
)
|
||||
if power_metrics.returncode == 0:
|
||||
output = power_metrics.stdout
|
||||
print("\nDetailed CPU Frequency Information:")
|
||||
|
||||
# Extract cluster frequencies and max frequencies
|
||||
current_cluster = None
|
||||
max_freqs = {'E': 0, 'P0': 0, 'P1': 0}
|
||||
|
||||
for line in output.split('\n'):
|
||||
# Track which cluster we're processing
|
||||
if "E-Cluster" in line:
|
||||
current_cluster = 'E'
|
||||
elif "P0-Cluster" in line:
|
||||
current_cluster = 'P0'
|
||||
elif "P1-Cluster" in line:
|
||||
current_cluster = 'P1'
|
||||
|
||||
# Get current frequencies
|
||||
if "HW active frequency:" in line:
|
||||
freq = line.split(':')[1].strip()
|
||||
if freq != "0 MHz":
|
||||
print(f"Current {current_cluster}-Cluster Frequency: {freq}")
|
||||
|
||||
# Get max frequencies from residency lines
|
||||
if current_cluster and "active residency:" in line and "MHz:" in line:
|
||||
try:
|
||||
# Extract all frequency values
|
||||
freqs = []
|
||||
parts = line.split('MHz:')[:-1] # Skip last part as it's not a frequency
|
||||
for part in parts:
|
||||
freq_str = part.split()[-1]
|
||||
try:
|
||||
freq = float(freq_str)
|
||||
freqs.append(freq)
|
||||
except ValueError:
|
||||
continue
|
||||
if freqs:
|
||||
max_freqs[current_cluster] = max(max_freqs[current_cluster], max(freqs))
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
# Print max frequencies
|
||||
print("\nMaximum Available Frequencies:")
|
||||
for cluster, max_freq in max_freqs.items():
|
||||
if max_freq > 0:
|
||||
print(f"{cluster}-Cluster Max: {max_freq:.0f} MHz")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error parsing powermetrics: {e}", flush=True)
|
||||
else:
|
||||
# Use psutil for other systems
|
||||
cpu_freq = psutil.cpu_freq()
|
||||
print(f"CPU Frequency - Current: {cpu_freq.current:.2f}MHz, Min: {cpu_freq.min:.2f}MHz, Max: {cpu_freq.max:.2f}MHz", flush=True)
|
||||
|
||||
print(f"\nCPU Usage per Core: {psutil.cpu_percent(percpu=True)}%", flush=True)
|
||||
|
||||
# Check if running in low power mode
|
||||
power_mode = subprocess.run(['pmset', '-g'], capture_output=True, text=True)
|
||||
print("\nPower Settings:", power_mode.stdout, flush=True)
|
||||
except Exception as e:
|
||||
print(f"Error getting CPU info: {e}", flush=True)
|
||||
|
||||
# Memory Info
|
||||
print("\nMemory Information:", flush=True)
|
||||
try:
|
||||
mem = psutil.virtual_memory()
|
||||
print(f"Total: {mem.total/1024/1024/1024:.2f}GB", flush=True)
|
||||
print(f"Available: {mem.available/1024/1024/1024:.2f}GB", flush=True)
|
||||
print(f"Used: {mem.used/1024/1024/1024:.2f}GB ({mem.percent}%)", flush=True)
|
||||
|
||||
# Check swap
|
||||
swap = psutil.swap_memory()
|
||||
print(f"Swap Used: {swap.used/1024/1024/1024:.2f}GB of {swap.total/1024/1024/1024:.2f}GB", flush=True)
|
||||
except Exception as e:
|
||||
print(f"Error getting memory info: {e}", flush=True)
|
||||
|
||||
# GPU Info
|
||||
print("\nGPU Information:", flush=True)
|
||||
try:
|
||||
# Check MLX GPU settings
|
||||
print("MLX Environment Variables:", flush=True)
|
||||
mlx_vars = {k: v for k, v in os.environ.items() if k.startswith('MLX')}
|
||||
print(json.dumps(mlx_vars, indent=2), flush=True)
|
||||
|
||||
# Check Metal GPU memory allocation
|
||||
gpu_mem = subprocess.run(['sysctl', 'iogpu'], capture_output=True, text=True)
|
||||
print("GPU Memory Settings:", gpu_mem.stdout, flush=True)
|
||||
except Exception as e:
|
||||
print(f"Error getting GPU info: {e}", flush=True)
|
||||
|
||||
# Process Priority
|
||||
print("\nProcess Priority Information:", flush=True)
|
||||
try:
|
||||
current_process = psutil.Process()
|
||||
print(f"Process Nice Value: {current_process.nice()}", flush=True)
|
||||
# Only try to get ionice if the platform supports it
|
||||
if hasattr(current_process, 'ionice'):
|
||||
print(f"Process IO Nice Value: {current_process.ionice()}", flush=True)
|
||||
except Exception as e:
|
||||
print(f"Error getting process priority info: {e}", flush=True)
|
||||
|
||||
# System Load
|
||||
print("\nSystem Load:", flush=True)
|
||||
try:
|
||||
load_avg = psutil.getloadavg()
|
||||
print(f"Load Average: {load_avg}", flush=True)
|
||||
|
||||
# Get top processes by CPU and Memory
|
||||
print("\nTop Processes by CPU Usage:", flush=True)
|
||||
processes = []
|
||||
for proc in psutil.process_iter(['pid', 'name', 'cpu_percent', 'memory_percent']):
|
||||
try:
|
||||
pinfo = proc.info
|
||||
if pinfo['cpu_percent'] is not None and pinfo['memory_percent'] is not None:
|
||||
processes.append(pinfo)
|
||||
except (psutil.NoSuchProcess, psutil.AccessDenied):
|
||||
continue
|
||||
|
||||
# Sort and display top 5 CPU-consuming processes
|
||||
sorted_by_cpu = sorted(processes, key=lambda x: x['cpu_percent'] or 0, reverse=True)[:5]
|
||||
for proc in sorted_by_cpu:
|
||||
print(f"PID: {proc['pid']}, Name: {proc['name']}, CPU: {proc['cpu_percent']}%, Memory: {proc['memory_percent']:.1f}%")
|
||||
except Exception as e:
|
||||
print(f"Error getting system load info: {e}", flush=True)
|
||||
|
||||
print("\n=== End System State Check ===\n", flush=True)
|
||||
|
||||
|
||||
def check_gpu_access():
|
||||
try:
|
||||
# Check if MLX can see the GPU
|
||||
import mlx.core as mx
|
||||
print("MLX device info:", mx.default_device())
|
||||
|
||||
# Check Metal device availability
|
||||
result = subprocess.run(['system_profiler', 'SPDisplaysDataType'], capture_output=True, text=True)
|
||||
print("GPU Info:", result.stdout)
|
||||
except Exception as e:
|
||||
print(f"Failed to check GPU access: {e}")
|
||||
|
||||
|
||||
async def measure_performance(api_endpoint: str, prompt: str, model: str) -> Dict[str, Any]:
|
||||
"""
|
||||
Measures the performance of an API endpoint by sending a prompt and recording metrics.
|
||||
|
||||
Args:
|
||||
api_endpoint (str): The API endpoint URL.
|
||||
prompt (str): The prompt to send to the API.
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: A dictionary containing performance metrics or error information.
|
||||
"""
|
||||
|
||||
results = {
|
||||
'model': model,
|
||||
'run_id': os.environ.get('GITHUB_RUN_ID', 'unknown'),
|
||||
'branch': os.environ.get('GITHUB_REF_NAME', 'unknown'),
|
||||
'commit': os.environ.get('GITHUB_SHA', 'unknown'),
|
||||
'configuration': json.loads(os.environ.get('HARDWARE_CONFIG', '{}'))
|
||||
}
|
||||
|
||||
# Get token count
|
||||
session = aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=600, connect=10, sock_read=600, sock_connect=10))
|
||||
try:
|
||||
response = await session.post(
|
||||
"http://localhost:52415/v1/chat/token/encode",
|
||||
json={
|
||||
"model": model,
|
||||
"messages": [{"role": "user", "content": prompt}]
|
||||
}
|
||||
)
|
||||
response.raise_for_status()
|
||||
token_data = await response.json()
|
||||
results['prompt_len'] = token_data['num_tokens']
|
||||
except Exception as e:
|
||||
await session.close()
|
||||
raise RuntimeError(f"Failed to get token count: {str(e)}")
|
||||
|
||||
# Measure completion performance
|
||||
try:
|
||||
start_time = time.time()
|
||||
response = await session.post(
|
||||
api_endpoint,
|
||||
json={
|
||||
"model": model,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"temperature": 0,
|
||||
"stream": True
|
||||
}
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
first_token_time = None
|
||||
total_tokens = 0
|
||||
|
||||
async for line in response.content.iter_chunks():
|
||||
line = line[0].decode('utf-8').strip()
|
||||
if not line.startswith('data: '):
|
||||
continue
|
||||
|
||||
data = json.loads(line[6:]) # Skip 'data: ' prefix
|
||||
if content := data.get('choices', [{}])[0].get('delta', {}).get('content'):
|
||||
print(f"Received content: {content}", flush=True)
|
||||
if first_token_time is None:
|
||||
first_token_time = time.time()
|
||||
ttft = first_token_time - start_time
|
||||
results.update({
|
||||
'ttft': ttft,
|
||||
'prompt_tps': results['prompt_len'] / ttft
|
||||
})
|
||||
total_tokens += 1
|
||||
|
||||
total_time = time.time() - start_time
|
||||
results.update({
|
||||
'generation_tps': total_tokens / total_time,
|
||||
'response_len': total_tokens,
|
||||
'total_time': total_time
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Performance measurement failed: {str(e)}")
|
||||
finally:
|
||||
await session.close()
|
||||
|
||||
return results
|
||||
|
||||
|
||||
async def main() -> None:
|
||||
api_endpoint = "http://localhost:52415/v1/chat/completions"
|
||||
|
||||
# Define prompts
|
||||
prompt_warmup = "what is the capital of France?"
|
||||
prompt_essay = "write an essay about cats"
|
||||
|
||||
model = os.environ.get('model', 'llama-3.2-1b')
|
||||
# Warmup request
|
||||
print("\nPerforming warmup request...", flush=True)
|
||||
try:
|
||||
warmup_results = await measure_performance(api_endpoint, prompt_warmup, model)
|
||||
print("Warmup completed successfully", flush=True)
|
||||
except Exception as e:
|
||||
print(f"Warmup request failed: {e}", flush=True)
|
||||
|
||||
# Measure performance for the essay prompt
|
||||
print("\nMeasuring performance for the essay prompt...", flush=True)
|
||||
results = await measure_performance(api_endpoint, prompt_essay, model)
|
||||
|
||||
try:
|
||||
s3_client = boto3.client(
|
||||
's3',
|
||||
aws_access_key_id=os.environ.get('aws_access_key_id'),
|
||||
aws_secret_access_key=os.environ.get('aws_secret_key')
|
||||
)
|
||||
job_name = os.environ.get('GITHUB_JOB')
|
||||
|
||||
# Create S3 key with timestamp and commit info
|
||||
now = datetime.utcnow()
|
||||
timestamp = now.strftime('%H-%M-%S')
|
||||
commit_sha = os.environ.get('GITHUB_SHA', 'unknown')[:7]
|
||||
s3_key = f"{job_name}/{model}/{now.year}/{now.month}/{now.day}/{timestamp}_{commit_sha}.json"
|
||||
|
||||
# Upload to S3
|
||||
s3_client.put_object(
|
||||
Bucket='exo-benchmarks',
|
||||
Key=s3_key,
|
||||
Body=json.dumps(results),
|
||||
ContentType='application/json'
|
||||
)
|
||||
print(f"Performance metrics uploaded to S3: s3://exo-benchmarks/{s3_key}", flush=True)
|
||||
except Exception as e:
|
||||
print(f"Failed to upload metrics to S3: {e}", flush=True)
|
||||
|
||||
# Optionally print the metrics for visibility
|
||||
print("Performance metrics:", flush=True)
|
||||
print(json.dumps(results, indent=4), flush=True)
|
||||
|
||||
|
||||
def optimize_system_performance():
|
||||
"""Set optimal system performance settings before running benchmark."""
|
||||
try:
|
||||
# Try to set high performance power mode
|
||||
subprocess.run(['sudo', 'pmset', '-a', 'powermode', '2'], check=False)
|
||||
|
||||
# Ensure MLX uses performance cores and GPU
|
||||
os.environ['MLX_FORCE_P_CORES'] = '1'
|
||||
os.environ['MLX_METAL_PREWARM'] = '1'
|
||||
os.environ['MLX_USE_GPU'] = '1'
|
||||
|
||||
# Set process priority
|
||||
current_process = psutil.Process()
|
||||
try:
|
||||
# Set highest priority
|
||||
subprocess.run(['sudo', 'renice', '-n', '-20', '-p', str(current_process.pid)], check=False)
|
||||
|
||||
# Print current process state
|
||||
print("\nProcess State Before Benchmark:", flush=True)
|
||||
proc_info = subprocess.run(
|
||||
['ps', '-o', 'pid,ppid,user,%cpu,%mem,nice,stat,pri,command', '-p', str(current_process.pid)],
|
||||
capture_output=True, text=True
|
||||
)
|
||||
print(proc_info.stdout, flush=True)
|
||||
|
||||
# Verify power mode
|
||||
power_info = subprocess.run(['pmset', '-g'], capture_output=True, text=True)
|
||||
if 'powermode 0' in power_info.stdout:
|
||||
print("\nWarning: System still in normal power mode. Trying to set high performance mode again...", flush=True)
|
||||
subprocess.run(['sudo', 'pmset', '-a', 'powermode', '2'], check=False)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Warning: Could not set process priority: {e}", flush=True)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Warning: Could not optimize system performance: {e}", flush=True)
|
||||
|
||||
# Print optimization status
|
||||
print("\nOptimization Settings:", flush=True)
|
||||
print("MLX Environment Variables:", flush=True)
|
||||
for var in ['MLX_FORCE_P_CORES', 'MLX_METAL_PREWARM', 'MLX_USE_GPU']:
|
||||
print(f"{var}: {os.environ.get(var, 'Not set')}", flush=True)
|
||||
|
||||
try:
|
||||
nice_value = psutil.Process().nice()
|
||||
print(f"Process Nice Value: {nice_value}", flush=True)
|
||||
if nice_value != -20:
|
||||
print("Warning: Process not running at highest priority", flush=True)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
check_system_state()
|
||||
check_gpu_access()
|
||||
optimize_system_performance()
|
||||
asyncio.run(main())
|
||||
330
.github/bootstrap.sh
vendored
Executable file
330
.github/bootstrap.sh
vendored
Executable file
@@ -0,0 +1,330 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
command_exists() {
|
||||
command -v "$1" >/dev/null 2>&1
|
||||
}
|
||||
|
||||
log() {
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S')] $1"
|
||||
}
|
||||
|
||||
if [ "$EUID" -eq 0 ]; then
|
||||
log "Please do not run as root. Run as regular user with sudo access."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Check for required arguments
|
||||
if [ -z "$1" ]; then
|
||||
log "Error: Runner token is required"
|
||||
log "Usage: $0 <runner-token> [tailscale-auth-key]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
RUNNER_TOKEN=$1
|
||||
TAILSCALE_AUTH_KEY=$2
|
||||
REPO="exo-explore/exo"
|
||||
|
||||
# Add sudoers configuration
|
||||
log "Configuring sudo access..."
|
||||
SUDOERS_CONTENT="$(whoami) ALL=(ALL) NOPASSWD: ALL"
|
||||
echo "$SUDOERS_CONTENT" | sudo tee /etc/sudoers.d/github-runner > /dev/null
|
||||
sudo chmod 440 /etc/sudoers.d/github-runner
|
||||
|
||||
log "Configuring privacy permissions..."
|
||||
sudo tccutil reset All
|
||||
sudo tccutil reset SystemPolicyAllFiles
|
||||
sudo tccutil reset SystemPolicyNetworkVolumes
|
||||
|
||||
# Configure power management for maximum performance
|
||||
log "Configuring power management..."
|
||||
sudo pmset -a powermode 2 # Force highest performance mode
|
||||
sudo pmset -a gpuswitch 2 # Force discrete/high-performance GPU
|
||||
sudo pmset -a lowpowermode 0
|
||||
sudo pmset -a lessbright 0
|
||||
sudo pmset -a disablesleep 1
|
||||
sudo pmset -a sleep 0
|
||||
sudo pmset -a hibernatemode 0
|
||||
sudo pmset -a autopoweroff 0
|
||||
sudo pmset -a standby 0
|
||||
sudo pmset -a powernap 0
|
||||
|
||||
# For Python specifically
|
||||
PYTHON_PATH="/opt/homebrew/bin/python3.12"
|
||||
sudo chmod 755 "$PYTHON_PATH"
|
||||
|
||||
# Add to firewall
|
||||
log "Configuring firewall access..."
|
||||
sudo /usr/libexec/ApplicationFirewall/socketfilterfw --add "$PYTHON_PATH"
|
||||
sudo /usr/libexec/ApplicationFirewall/socketfilterfw --unblock "$PYTHON_PATH"
|
||||
|
||||
# Set Homebrew paths based on architecture
|
||||
if [ "$(uname -p)" = "arm" ]; then
|
||||
BREW_PREFIX="/opt/homebrew"
|
||||
else
|
||||
BREW_PREFIX="/usr/local"
|
||||
fi
|
||||
|
||||
# Install Homebrew if not present
|
||||
if ! command_exists brew; then
|
||||
log "Installing Homebrew..."
|
||||
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
|
||||
echo 'eval "$(/opt/homebrew/bin/brew shellenv)"' >> ~/.zshrc
|
||||
eval "$(/opt/homebrew/bin/brew shellenv)"
|
||||
fi
|
||||
|
||||
# Install required packages
|
||||
log "Installing required packages..."
|
||||
export HOMEBREW_NO_AUTO_UPDATE=1
|
||||
brew install python@3.12 coreutils
|
||||
|
||||
# Optional Tailscale setup if auth key is provided
|
||||
if [ -n "$TAILSCALE_AUTH_KEY" ]; then
|
||||
log "Installing and configuring Tailscale..."
|
||||
brew install --quiet tailscale
|
||||
sudo brew services stop tailscale 2>/dev/null || true
|
||||
sudo rm -f /var/db/tailscale/tailscaled.state 2>/dev/null || true
|
||||
sudo brew services start tailscale
|
||||
sleep 2
|
||||
sudo tailscale up --authkey=$TAILSCALE_AUTH_KEY
|
||||
|
||||
# Enable SSH and Screen Sharing
|
||||
log "Enabling remote access services..."
|
||||
sudo launchctl load -w /System/Library/LaunchDaemons/ssh.plist
|
||||
sudo /System/Library/CoreServices/RemoteManagement/ARDAgent.app/Contents/Resources/kickstart \
|
||||
-activate \
|
||||
-configure -access -on \
|
||||
-configure -allowAccessFor -allUsers \
|
||||
-configure -restart -agent -privs -all
|
||||
|
||||
# Create launch daemon for remote access
|
||||
sudo bash -c 'cat > /Library/LaunchDaemons/com.remote.access.setup.plist' << 'EOL'
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
|
||||
<plist version="1.0">
|
||||
<dict>
|
||||
<key>Label</key>
|
||||
<string>com.remote.access.setup</string>
|
||||
<key>ProgramArguments</key>
|
||||
<array>
|
||||
<string>/bin/bash</string>
|
||||
<string>-c</string>
|
||||
<string>
|
||||
launchctl load -w /System/Library/LaunchDaemons/ssh.plist;
|
||||
/System/Library/CoreServices/RemoteManagement/ARDAgent.app/Contents/Resources/kickstart -activate -configure -access -on
|
||||
</string>
|
||||
</array>
|
||||
<key>RunAtLoad</key>
|
||||
<true/>
|
||||
</dict>
|
||||
</plist>
|
||||
EOL
|
||||
|
||||
sudo chmod 644 /Library/LaunchDaemons/com.remote.access.setup.plist
|
||||
sudo launchctl load -w /Library/LaunchDaemons/com.remote.access.setup.plist
|
||||
fi
|
||||
|
||||
# Configure GitHub Actions Runner
|
||||
log "Gathering system metadata..."
|
||||
MACHINE_NAME=$(scutil --get ComputerName)
|
||||
MACHINE_NAME="runner-$(echo -n "$MACHINE_NAME" | tr '[:upper:]' '[:lower:]' | tr -cd '[:alnum:]-')"
|
||||
|
||||
# Enhanced Apple Silicon detection
|
||||
MACHINE_INFO=$(system_profiler SPHardwareDataType)
|
||||
CHIP_FULL=$(echo "$MACHINE_INFO" | grep "Chip" | cut -d: -f2 | xargs)
|
||||
if [[ $CHIP_FULL =~ "Apple" ]]; then
|
||||
CHIP_MODEL=$(echo "$CHIP_FULL" | sed 's/^Apple //' | tr -d ' ' | tr '[:lower:]' '[:upper:]')
|
||||
GPU_CORES=$(ioreg -l | grep "gpu-core-count" | awk -F'= ' '{print $2}')
|
||||
if [ -z "$GPU_CORES" ]; then
|
||||
GPU_CORES="N/A"
|
||||
fi
|
||||
else
|
||||
CHIP_MODEL="Intel"
|
||||
GPU_CORES="N/A"
|
||||
fi
|
||||
|
||||
MEMORY=$(($(sysctl -n hw.memsize) / 1024 / 1024 / 1024))
|
||||
|
||||
# Set up GitHub Runner
|
||||
RUNNER_DIR="$HOME/actions-runner"
|
||||
|
||||
# Check if runner is already configured
|
||||
if [ -f "$RUNNER_DIR/.runner" ]; then
|
||||
log "Runner already configured. Stopping existing service..."
|
||||
sudo launchctl unload /Library/LaunchDaemons/com.github.runner.plist 2>/dev/null || true
|
||||
fi
|
||||
|
||||
# Create runner directory if it doesn't exist
|
||||
mkdir -p "$RUNNER_DIR"
|
||||
cd "$RUNNER_DIR"
|
||||
|
||||
CUSTOM_LABELS="self-hosted,macos,arm64,${CHIP_MODEL}_GPU${GPU_CORES}_${MEMORY}GB"
|
||||
|
||||
# Only download and extract if not already present or if forced
|
||||
if [ ! -f "$RUNNER_DIR/run.sh" ] || [ "${FORCE_SETUP:-false}" = "true" ]; then
|
||||
log "Downloading GitHub Actions runner..."
|
||||
RUNNER_VERSION=$(curl -s https://api.github.com/repos/actions/runner/releases/latest | grep '"tag_name":' | cut -d'"' -f4)
|
||||
curl -o actions-runner.tar.gz -L "https://github.com/actions/runner/releases/download/${RUNNER_VERSION}/actions-runner-osx-arm64-${RUNNER_VERSION#v}.tar.gz"
|
||||
tar xzf actions-runner.tar.gz
|
||||
rm actions-runner.tar.gz
|
||||
else
|
||||
log "Runner already downloaded, skipping download step"
|
||||
fi
|
||||
|
||||
log "Configuring runner with labels: $CUSTOM_LABELS"
|
||||
./config.sh --unattended \
|
||||
--url "https://github.com/${REPO}" \
|
||||
--token "${RUNNER_TOKEN}" \
|
||||
--name "${MACHINE_NAME}" \
|
||||
--labels "${CUSTOM_LABELS}" \
|
||||
--work "_work"
|
||||
|
||||
# Set optimal performance settings
|
||||
log "Configuring system for optimal performance..."
|
||||
|
||||
# Configure CPU performance
|
||||
log "Setting CPU performance controls..."
|
||||
# Disable timer coalescing
|
||||
sudo sysctl -w kern.timer.coalescing_enabled=0
|
||||
sudo sysctl -w kern.timer_coalesce_bg_scale=-5
|
||||
sudo sysctl -w kern.timer_resort_threshold_ns=0
|
||||
# Set minimum timer intervals
|
||||
sudo sysctl -w kern.wq_max_timer_interval_usecs=1000
|
||||
sudo sysctl -w kern.timer_coalesce_bg_ns_max=1000
|
||||
# Set minimum timer coalescing for all tiers
|
||||
sudo sysctl -w kern.timer_coalesce_tier0_scale=-5
|
||||
sudo sysctl -w kern.timer_coalesce_tier0_ns_max=1000
|
||||
sudo sysctl -w kern.timer_coalesce_tier1_scale=-5
|
||||
sudo sysctl -w kern.timer_coalesce_tier1_ns_max=1000
|
||||
sudo sysctl -w kern.timer_coalesce_tier2_scale=-5
|
||||
sudo sysctl -w kern.timer_coalesce_tier2_ns_max=1000
|
||||
sudo sysctl -w kern.timer_coalesce_tier3_scale=-5
|
||||
sudo sysctl -w kern.timer_coalesce_tier3_ns_max=1000
|
||||
sudo sysctl -w kern.timer_coalesce_tier4_scale=-5
|
||||
sudo sysctl -w kern.timer_coalesce_tier4_ns_max=1000
|
||||
# Disable QoS restrictions
|
||||
sudo sysctl -w net.qos.policy.restricted=0
|
||||
sudo sysctl -w net.qos.policy.restrict_avapps=0
|
||||
sudo sysctl -w net.qos.policy.wifi_enabled=0
|
||||
sudo sysctl -w net.qos.policy.capable_enabled=0
|
||||
# Set scheduler parameters
|
||||
sudo sysctl -w kern.sched_rt_avoid_cpu0=0
|
||||
sudo sysctl -w debug.sched=2
|
||||
sudo sysctl -w net.pktsched.netem.sched_output_ival_ms=1
|
||||
|
||||
# Clean up any existing runner services
|
||||
log "Cleaning up existing runner services..."
|
||||
for service in com.github.runner com.github.runner.monitor com.github.runner.cpuaffinity com.github.runner.affinity; do
|
||||
sudo launchctl bootout system/$service 2>/dev/null || true
|
||||
sudo rm -f /Library/LaunchDaemons/$service.plist
|
||||
done
|
||||
|
||||
# Create a simple runner service configuration
|
||||
sudo tee /Library/LaunchDaemons/com.github.runner.plist > /dev/null << EOF
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
|
||||
<plist version="1.0">
|
||||
<dict>
|
||||
<key>Label</key>
|
||||
<string>com.github.runner</string>
|
||||
<key>UserName</key>
|
||||
<string>$(whoami)</string>
|
||||
<key>GroupName</key>
|
||||
<string>staff</string>
|
||||
<key>WorkingDirectory</key>
|
||||
<string>$RUNNER_DIR</string>
|
||||
<key>ProgramArguments</key>
|
||||
<array>
|
||||
<string>$RUNNER_DIR/run.sh</string>
|
||||
</array>
|
||||
<key>RunAtLoad</key>
|
||||
<true/>
|
||||
<key>KeepAlive</key>
|
||||
<dict>
|
||||
<key>SuccessfulExit</key>
|
||||
<false/>
|
||||
<key>Crashed</key>
|
||||
<true/>
|
||||
</dict>
|
||||
<key>ProcessType</key>
|
||||
<string>Interactive</string>
|
||||
<key>LowPriorityIO</key>
|
||||
<false/>
|
||||
<key>AbandonProcessGroup</key>
|
||||
<false/>
|
||||
<key>EnableTransactions</key>
|
||||
<true/>
|
||||
<key>ThrottleInterval</key>
|
||||
<integer>0</integer>
|
||||
<key>HardResourceLimits</key>
|
||||
<dict>
|
||||
<key>NumberOfFiles</key>
|
||||
<integer>524288</integer>
|
||||
<key>MemoryLock</key>
|
||||
<integer>-1</integer>
|
||||
</dict>
|
||||
<key>SoftResourceLimits</key>
|
||||
<dict>
|
||||
<key>NumberOfFiles</key>
|
||||
<integer>524288</integer>
|
||||
<key>MemoryLock</key>
|
||||
<integer>-1</integer>
|
||||
</dict>
|
||||
<key>QOSClass</key>
|
||||
<string>User-Interactive</string>
|
||||
<key>StandardOutPath</key>
|
||||
<string>$RUNNER_DIR/_diag/runner.log</string>
|
||||
<key>StandardErrorPath</key>
|
||||
<string>$RUNNER_DIR/_diag/runner.err</string>
|
||||
<key>EnvironmentVariables</key>
|
||||
<dict>
|
||||
<key>PATH</key>
|
||||
<string>/usr/local/bin:/opt/homebrew/bin:/usr/bin:/bin:/usr/sbin:/sbin</string>
|
||||
</dict>
|
||||
<key>Nice</key>
|
||||
<integer>-20</integer>
|
||||
</dict>
|
||||
</plist>
|
||||
EOF
|
||||
|
||||
# Set proper permissions for the LaunchDaemon
|
||||
sudo chown root:wheel /Library/LaunchDaemons/com.github.runner.plist
|
||||
sudo chmod 644 /Library/LaunchDaemons/com.github.runner.plist
|
||||
|
||||
# Remove any existing service
|
||||
sudo launchctl bootout system/com.github.runner 2>/dev/null || true
|
||||
|
||||
# Load the new service using bootstrap
|
||||
sudo launchctl bootstrap system /Library/LaunchDaemons/com.github.runner.plist
|
||||
|
||||
# Add Runner.Listener permissions (after runner installation)
|
||||
RUNNER_PATH="$RUNNER_DIR/bin/Runner.Listener"
|
||||
sudo chmod 755 "$RUNNER_PATH"
|
||||
sudo /usr/libexec/ApplicationFirewall/socketfilterfw --add "$RUNNER_PATH"
|
||||
sudo /usr/libexec/ApplicationFirewall/socketfilterfw --unblock "$RUNNER_PATH"
|
||||
|
||||
# Create connection info file if Tailscale is configured
|
||||
if [ -n "$TAILSCALE_AUTH_KEY" ]; then
|
||||
TAILSCALE_IP=$(tailscale ip)
|
||||
cat > "$HOME/remote_access_info.txt" << EOL
|
||||
Mac Remote Access Information
|
||||
============================
|
||||
Computer Name: $MACHINE_NAME
|
||||
Username: $USER
|
||||
Tailscale IP: $TAILSCALE_IP
|
||||
|
||||
SSH Command: ssh $USER@$TAILSCALE_IP
|
||||
Screen Sharing: vnc://$TAILSCALE_IP
|
||||
EOL
|
||||
chmod 600 "$HOME/remote_access_info.txt"
|
||||
fi
|
||||
|
||||
log "Verifying runner service status..."
|
||||
if sudo launchctl list | grep com.github.runner > /dev/null; then
|
||||
log "GitHub Actions runner service is running successfully!"
|
||||
log "Runner labels: $CUSTOM_LABELS"
|
||||
[ -n "$TAILSCALE_AUTH_KEY" ] && log "Remote access details saved to: $HOME/remote_access_info.txt"
|
||||
else
|
||||
log "Error: Failed to start GitHub Actions runner service"
|
||||
exit 1
|
||||
fi
|
||||
95
.github/optimize_performance.sh
vendored
Executable file
95
.github/optimize_performance.sh
vendored
Executable file
@@ -0,0 +1,95 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
# Function to log with timestamp
|
||||
log() {
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S')] $1"
|
||||
}
|
||||
|
||||
log "Applying comprehensive performance optimizations..."
|
||||
|
||||
# System-wide power management
|
||||
log "Configuring power management..."
|
||||
sudo pmset -a lessbright 0
|
||||
sudo pmset -a disablesleep 1
|
||||
sudo pmset -a sleep 0
|
||||
sudo pmset -a hibernatemode 0
|
||||
sudo pmset -a autopoweroff 0
|
||||
sudo pmset -a standby 0
|
||||
sudo pmset -a powernap 0
|
||||
sudo pmset -a proximitywake 0
|
||||
sudo pmset -a tcpkeepalive 1
|
||||
sudo pmset -a powermode 2
|
||||
sudo pmset -a gpuswitch 2
|
||||
sudo pmset -a displaysleep 0
|
||||
sudo pmset -a disksleep 0
|
||||
|
||||
# Memory and kernel optimizations
|
||||
log "Configuring memory and kernel settings..."
|
||||
sudo sysctl -w kern.memorystatus_purge_on_warning=0
|
||||
sudo sysctl -w kern.memorystatus_purge_on_critical=0
|
||||
sudo sysctl -w kern.timer.coalescing_enabled=0
|
||||
|
||||
# Metal and GPU optimizations
|
||||
log "Configuring Metal and GPU settings..."
|
||||
defaults write com.apple.CoreML MPSEnableGPUValidation -bool false
|
||||
defaults write com.apple.CoreML MPSEnableMetalValidation -bool false
|
||||
defaults write com.apple.CoreML MPSEnableGPUDebug -bool false
|
||||
defaults write com.apple.Metal GPUDebug -bool false
|
||||
defaults write com.apple.Metal GPUValidation -bool false
|
||||
defaults write com.apple.Metal MetalValidation -bool false
|
||||
defaults write com.apple.Metal MetalCaptureEnabled -bool false
|
||||
defaults write com.apple.Metal MTLValidationBehavior -string "Disabled"
|
||||
defaults write com.apple.Metal EnableMTLDebugLayer -bool false
|
||||
defaults write com.apple.Metal MTLDebugLevel -int 0
|
||||
defaults write com.apple.Metal PreferIntegratedGPU -bool false
|
||||
defaults write com.apple.Metal ForceMaximumPerformance -bool true
|
||||
defaults write com.apple.Metal MTLPreferredDeviceGPUFrame -bool true
|
||||
|
||||
# Create MPS cache directory with proper permissions
|
||||
sudo mkdir -p /tmp/mps_cache
|
||||
sudo chmod 777 /tmp/mps_cache
|
||||
|
||||
# Process and resource limits
|
||||
log "Configuring process limits..."
|
||||
sudo launchctl limit maxfiles 524288 524288
|
||||
ulimit -n 524288 || log "Warning: Could not set file descriptor limit"
|
||||
ulimit -c 0
|
||||
ulimit -l unlimited || log "Warning: Could not set memory lock limit"
|
||||
|
||||
# Export performance-related environment variables
|
||||
cat << 'EOF' > /tmp/performance_env.sh
|
||||
# Metal optimizations
|
||||
export MTL_DEBUG_LAYER=0
|
||||
export METAL_DEVICE_WRAPPER_TYPE=1
|
||||
export METAL_DEBUG_ERROR_MODE=0
|
||||
export METAL_FORCE_PERFORMANCE_MODE=1
|
||||
export METAL_DEVICE_PRIORITY=high
|
||||
export METAL_MAX_COMMAND_QUEUES=1024
|
||||
export METAL_LOAD_LIMIT=0
|
||||
export METAL_VALIDATION_ENABLED=0
|
||||
export METAL_ENABLE_VALIDATION_LAYER=0
|
||||
export OBJC_DEBUG_MISSING_POOLS=NO
|
||||
export MPS_CACHEDIR=/tmp/mps_cache
|
||||
|
||||
# MLX optimizations
|
||||
export MLX_USE_GPU=1
|
||||
export MLX_METAL_COMPILE_ASYNC=1
|
||||
export MLX_METAL_PREALLOCATE=1
|
||||
export MLX_METAL_MEMORY_GUARD=0
|
||||
export MLX_METAL_CACHE_KERNELS=1
|
||||
export MLX_PLACEMENT_POLICY=metal
|
||||
export MLX_METAL_VALIDATION=0
|
||||
export MLX_METAL_DEBUG=0
|
||||
export MLX_FORCE_P_CORES=1
|
||||
export MLX_METAL_MEMORY_BUDGET=0
|
||||
export MLX_METAL_PREWARM=1
|
||||
|
||||
# Python optimizations
|
||||
export PYTHONUNBUFFERED=1
|
||||
export PYTHONOPTIMIZE=2
|
||||
export PYTHONHASHSEED=0
|
||||
export PYTHONDONTWRITEBYTECODE=1
|
||||
EOF
|
||||
|
||||
log "Performance optimizations completed. Environment variables written to /tmp/performance_env.sh"
|
||||
206
.github/workflows/bench_job.yml
vendored
Normal file
206
.github/workflows/bench_job.yml
vendored
Normal file
@@ -0,0 +1,206 @@
|
||||
# This is the reusable workflow file
|
||||
name: Distributed Job Runner
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
config:
|
||||
required: true
|
||||
type: string
|
||||
model:
|
||||
required: true
|
||||
type: string
|
||||
calling_job_name:
|
||||
required: true
|
||||
type: string
|
||||
network_interface:
|
||||
required: true
|
||||
type: string
|
||||
jobs:
|
||||
generate-matrix:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
steps:
|
||||
- id: set-matrix
|
||||
env:
|
||||
CONFIG: ${{ inputs.config }}
|
||||
run: |
|
||||
MATRIX=$(echo $CONFIG | jq -c '{cpu: [to_entries | .[] | .key as $k | range(.value) | $k]}')
|
||||
echo "matrix=$MATRIX" >> $GITHUB_OUTPUT
|
||||
|
||||
run-distributed-job:
|
||||
needs: generate-matrix
|
||||
strategy:
|
||||
matrix: ${{fromJson(needs.generate-matrix.outputs.matrix)}}
|
||||
runs-on: ['self-hosted', 'macOS', '${{ matrix.cpu }}']
|
||||
env:
|
||||
HARDWARE_CONFIG: ${{ inputs.config }}
|
||||
model: ${{ inputs.model }}
|
||||
# Add performance-related environment variables
|
||||
MTL_DEBUG_LAYER: 0
|
||||
METAL_VALIDATION_ENABLED: 0
|
||||
MLX_METAL_VALIDATION: 0
|
||||
MLX_METAL_DEBUG: 0
|
||||
MLX_FORCE_P_CORES: 1
|
||||
MLX_METAL_PREWARM: 1
|
||||
PYTHONOPTIMIZE: 2
|
||||
steps:
|
||||
- name: Cleanup workspace
|
||||
run: |
|
||||
sudo rm -rf "$GITHUB_WORKSPACE"
|
||||
sudo mkdir -p "$GITHUB_WORKSPACE"
|
||||
sudo chown -R $(whoami):$(id -g) "$GITHUB_WORKSPACE"
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
export PATH="/usr/local/bin:/opt/homebrew/bin:$PATH"
|
||||
python3.12 -m venv .venv || {
|
||||
echo "Failed to find python3.12. Checking installation locations:"
|
||||
ls -l /usr/local/bin/python* /opt/homebrew/bin/python* 2>/dev/null || true
|
||||
exit 1
|
||||
}
|
||||
source .venv/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install -e .
|
||||
pip install boto3==1.35.76
|
||||
|
||||
- name: Apply Performance Optimizations
|
||||
run: |
|
||||
# Export performance-related environment variables
|
||||
cat << 'EOF' > /tmp/performance_env.sh
|
||||
# MLX and Metal optimizations
|
||||
export MTL_DEBUG_LAYER=0
|
||||
export METAL_VALIDATION_ENABLED=0
|
||||
export MLX_METAL_VALIDATION=0
|
||||
export MLX_METAL_DEBUG=0
|
||||
export MLX_FORCE_P_CORES=1
|
||||
export MLX_METAL_PREWARM=1
|
||||
export PYTHONOPTIMIZE=2
|
||||
EOF
|
||||
|
||||
# Source the performance environment variables
|
||||
source /tmp/performance_env.sh
|
||||
|
||||
# MLX Memory Settings
|
||||
./configure_mlx.sh
|
||||
|
||||
# Verify optimizations
|
||||
echo "Verifying performance settings..."
|
||||
env | grep -E "MLX_|METAL_|MTL_"
|
||||
|
||||
- name: Run exo
|
||||
env:
|
||||
aws_access_key_id: ${{ secrets.S3_EXO_BENCHMARKS_AWS_ACCESS_KEY_ID }}
|
||||
aws_secret_key: ${{ secrets.S3_EXO_BENCHMARKS_AWS_SECRET_ACCESS_KEY }}
|
||||
run: |
|
||||
# Source performance environment variables
|
||||
source /tmp/performance_env.sh
|
||||
|
||||
# Debug information
|
||||
echo "Current commit SHA: $GITHUB_SHA"
|
||||
git rev-parse HEAD
|
||||
git status
|
||||
|
||||
CALLING_JOB="${{ inputs.calling_job_name }}"
|
||||
UNIQUE_JOB_ID="${CALLING_JOB}_${model}_${GITHUB_RUN_ID}"
|
||||
ALL_NODE_IDS=$(for i in $(seq ${{ strategy.job-total }} -1 0); do echo -n "${UNIQUE_JOB_ID}_${i},"; done | sed 's/,$//')
|
||||
MY_NODE_ID="${UNIQUE_JOB_ID}_${{ strategy.job-index }}"
|
||||
|
||||
source .venv/bin/activate
|
||||
export PATH="/usr/local/bin:/opt/homebrew/bin:$PATH"
|
||||
|
||||
echo "=== Before starting exo ==="
|
||||
ps -eo pid,ppid,user,%cpu,%mem,nice,state,pri,command | head -1
|
||||
ps -eo pid,ppid,user,%cpu,%mem,nice,state,pri,command | grep -i python
|
||||
|
||||
echo "Starting exo daemon..."
|
||||
|
||||
echo "Power mode settings:"
|
||||
sudo pmset -g
|
||||
|
||||
# Start exo with explicit process control
|
||||
sudo taskpolicy -d default -g default -a -t 0 -l 0 .venv/bin/exo \
|
||||
--node-id="${MY_NODE_ID}" \
|
||||
--node-id-filter="${ALL_NODE_IDS}" \
|
||||
--interface-type-filter="${{ inputs.network_interface }}" \
|
||||
--disable-tui \
|
||||
--max-generate-tokens 250 \
|
||||
--chatgpt-api-port 52415 > output1.log 2>&1 &
|
||||
PID1=$!
|
||||
|
||||
echo "Exo process started with PID: $PID1"
|
||||
tail -f output1.log &
|
||||
TAIL1=$!
|
||||
|
||||
# Give process time to start
|
||||
sleep 2
|
||||
|
||||
# Set additional process priorities
|
||||
sudo renice -n -20 -p $PID1
|
||||
sudo taskpolicy -t 4 -p $PID1
|
||||
|
||||
echo "=== After starting exo ==="
|
||||
ps -eo pid,ppid,user,%cpu,%mem,nice,state,pri,command | head -1
|
||||
ps -eo pid,ppid,user,%cpu,%mem,nice,state,pri,command | grep $PID1
|
||||
|
||||
echo "Additional process details:"
|
||||
sudo powermetrics -n 1 -i 1000 --show-process-energy | grep -A 5 $PID1 || true
|
||||
|
||||
trap 'kill $TAIL1' EXIT
|
||||
trap 'kill $PID1' EXIT
|
||||
|
||||
echo "Waiting for all nodes to connect..."
|
||||
for i in {1..20}; do
|
||||
echo "Attempt $i: Checking node count..."
|
||||
nodes=$(curl -s http://localhost:52415/topology | jq ".nodes | length")
|
||||
echo "Current node count: $nodes"
|
||||
if [ "$nodes" -eq "${{ strategy.job-total }}" ]; then
|
||||
echo "All nodes connected successfully!"
|
||||
break
|
||||
fi
|
||||
if [ $i -eq 20 ]; then
|
||||
echo "ERROR: Failed to connect all nodes after 20 attempts. Expected ${{ strategy.job-total }} nodes, but got $nodes"
|
||||
exit 1
|
||||
fi
|
||||
sleep 5
|
||||
done
|
||||
|
||||
if ! kill -0 $PID1 2>/dev/null; then
|
||||
echo "ERROR: Instance (PID $PID1) died unexpectedly. Full log output:"
|
||||
cat output1.log
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ "${{ strategy.job-index }}" -eq "0" ]; then
|
||||
sleep 10
|
||||
echo "This is the primary node (index 0). Running benchmark..."
|
||||
GITHUB_JOB=$CALLING_JOB python .github/bench.py
|
||||
else
|
||||
echo "This is a secondary node (index ${{ strategy.job-index }}). Waiting for completion..."
|
||||
sleep 10
|
||||
while true; do
|
||||
echo "Checking if primary node is still running..."
|
||||
nodes=$(curl -s http://localhost:52415/topology | jq ".nodes | length")
|
||||
echo "Current node count: $nodes"
|
||||
if [ "$nodes" -lt "${{ strategy.job-total }}" ]; then
|
||||
echo "Primary node completed, exiting..."
|
||||
break
|
||||
fi
|
||||
sleep 5
|
||||
done
|
||||
fi
|
||||
|
||||
- name: Check Final System State
|
||||
if: always()
|
||||
run: |
|
||||
echo "=== Final System State ==="
|
||||
sudo pmset -g
|
||||
sudo powermetrics -n 1 -i 1000 --show-process-energy || true
|
||||
system_profiler SPDisplaysDataType
|
||||
sysctl iogpu
|
||||
ps -eo pid,ppid,user,%cpu,%mem,nice,state,command | grep -i python
|
||||
env | grep -E "MLX_|METAL_|MTL_"
|
||||
echo "=== End Final System State ==="
|
||||
71
.github/workflows/benchmarks.yml
vendored
Normal file
71
.github/workflows/benchmarks.yml
vendored
Normal file
@@ -0,0 +1,71 @@
|
||||
name: Build and Test
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ '*' ]
|
||||
tags: [ '*' ]
|
||||
pull_request:
|
||||
branches: [ '*' ]
|
||||
|
||||
jobs:
|
||||
single-m4-pro:
|
||||
strategy:
|
||||
matrix:
|
||||
model: ['llama-3.2-1b', 'llama-3.2-3b', 'llama-3.1-8b']
|
||||
uses: ./.github/workflows/bench_job.yml
|
||||
with:
|
||||
config: '{"M4PRO_GPU16_24GB": 1}'
|
||||
model: ${{ matrix.model }}
|
||||
calling_job_name: 'single-m4-pro'
|
||||
network_interface: 'Ethernet'
|
||||
secrets: inherit
|
||||
|
||||
two-m4-pro-cluster:
|
||||
strategy:
|
||||
matrix:
|
||||
model: ['llama-3.2-1b', 'llama-3.2-3b', 'llama-3.1-8b']
|
||||
uses: ./.github/workflows/bench_job.yml
|
||||
with:
|
||||
config: '{"M4PRO_GPU16_24GB": 2}'
|
||||
model: ${{ matrix.model }}
|
||||
calling_job_name: 'two-m4-pro-cluster'
|
||||
network_interface: 'Ethernet'
|
||||
secrets: inherit
|
||||
|
||||
# two-m4-pro-cluster-thunderbolt:
|
||||
# strategy:
|
||||
# matrix:
|
||||
# model: ['llama-3.2-1b', 'llama-3.2-3b', 'llama-3.1-8b']
|
||||
# uses: ./.github/workflows/bench_job.yml
|
||||
# with:
|
||||
# config: '{"M4PRO_GPU16_24GB": 2}'
|
||||
# model: ${{ matrix.model }}
|
||||
# calling_job_name: 'two-m4-pro-cluster-thunderbolt'
|
||||
# network_interface: 'Thunderbolt'
|
||||
# secrets: inherit
|
||||
|
||||
three-m4-pro-cluster:
|
||||
strategy:
|
||||
matrix:
|
||||
model: ['llama-3.2-1b', 'llama-3.2-3b', 'llama-3.1-8b', 'llama-3.3-70b']
|
||||
fail-fast: false
|
||||
uses: ./.github/workflows/bench_job.yml
|
||||
with:
|
||||
config: '{"M4PRO_GPU16_24GB": 3}'
|
||||
model: ${{ matrix.model }}
|
||||
calling_job_name: 'three-m4-pro-cluster'
|
||||
network_interface: 'Ethernet'
|
||||
secrets: inherit
|
||||
|
||||
# test-m3-single-node:
|
||||
# strategy:
|
||||
# matrix:
|
||||
# model: ['llama-3.2-1b']
|
||||
# fail-fast: false
|
||||
# uses: ./.github/workflows/bench_job.yml
|
||||
# with:
|
||||
# config: '{"M3MAX_GPU40_128GB": 1}'
|
||||
# model: ${{ matrix.model }}
|
||||
# calling_job_name: 'test-m3-cluster'
|
||||
# network_interface: 'Ethernet'
|
||||
# secrets: inherit
|
||||
@@ -3,16 +3,41 @@
|
||||
# Get the total memory in MB
|
||||
TOTAL_MEM_MB=$(($(sysctl -n hw.memsize) / 1024 / 1024))
|
||||
|
||||
# Set WIRED_LIMIT_MB to 80%
|
||||
WIRED_LIMIT_MB=$(($TOTAL_MEM_MB * 80 / 100))
|
||||
# Set WIRED_LWM_MB to 70%
|
||||
WIRED_LWM_MB=$(($TOTAL_MEM_MB * 70 / 100))
|
||||
# Calculate 80% and TOTAL_MEM_GB-5GB in MB
|
||||
EIGHTY_PERCENT=$(($TOTAL_MEM_MB * 80 / 100))
|
||||
MINUS_5GB=$((($TOTAL_MEM_MB - 5120)))
|
||||
|
||||
# Calculate 70% and TOTAL_MEM_GB-8GB in MB
|
||||
SEVENTY_PERCENT=$(($TOTAL_MEM_MB * 70 / 100))
|
||||
MINUS_8GB=$((($TOTAL_MEM_MB - 8192)))
|
||||
|
||||
# Set WIRED_LIMIT_MB to higher value
|
||||
if [ $EIGHTY_PERCENT -gt $MINUS_5GB ]; then
|
||||
WIRED_LIMIT_MB=$EIGHTY_PERCENT
|
||||
else
|
||||
WIRED_LIMIT_MB=$MINUS_5GB
|
||||
fi
|
||||
|
||||
# Set WIRED_LWM_MB to higher value
|
||||
if [ $SEVENTY_PERCENT -gt $MINUS_8GB ]; then
|
||||
WIRED_LWM_MB=$SEVENTY_PERCENT
|
||||
else
|
||||
WIRED_LWM_MB=$MINUS_8GB
|
||||
fi
|
||||
|
||||
# Display the calculated values
|
||||
echo "Total memory: $TOTAL_MEM_MB MB"
|
||||
echo "Maximum limit (iogpu.wired_limit_mb): $WIRED_LIMIT_MB MB"
|
||||
echo "Lower bound (iogpu.wired_lwm_mb): $WIRED_LWM_MB MB"
|
||||
|
||||
# Apply the values with sysctl
|
||||
sudo sysctl -w iogpu.wired_limit_mb=$WIRED_LIMIT_MB
|
||||
sudo sysctl -w iogpu.wired_lwm_mb=$WIRED_LWM_MB
|
||||
# Apply the values with sysctl, but check if we're already root
|
||||
if [ "$EUID" -eq 0 ]; then
|
||||
sysctl -w iogpu.wired_limit_mb=$WIRED_LIMIT_MB
|
||||
sysctl -w iogpu.wired_lwm_mb=$WIRED_LWM_MB
|
||||
else
|
||||
# Try without sudo first, fall back to sudo if needed
|
||||
sysctl -w iogpu.wired_limit_mb=$WIRED_LIMIT_MB 2>/dev/null || \
|
||||
sudo sysctl -w iogpu.wired_limit_mb=$WIRED_LIMIT_MB
|
||||
sysctl -w iogpu.wired_lwm_mb=$WIRED_LWM_MB 2>/dev/null || \
|
||||
sudo sysctl -w iogpu.wired_lwm_mb=$WIRED_LWM_MB
|
||||
fi
|
||||
@@ -33,6 +33,7 @@ from exo.download.hf.hf_shard_download import HFShardDownloader
|
||||
import shutil
|
||||
from exo.download.hf.hf_helpers import get_hf_home, get_repo_root
|
||||
from exo.apputil import create_animation_mp4
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
class Message:
|
||||
@@ -199,6 +200,11 @@ class ChatGPTAPI:
|
||||
self.prev_token_lens: Dict[str, int] = {}
|
||||
self.stream_tasks: Dict[str, asyncio.Task] = {}
|
||||
self.default_model = default_model or "llama-3.2-1b"
|
||||
self.token_queues = defaultdict(asyncio.Queue)
|
||||
|
||||
# Get the callback system and register our handler
|
||||
self.token_callback = node.on_token.register("chatgpt-api-token-handler")
|
||||
self.token_callback.on_next(lambda _request_id, tokens, is_finished: asyncio.create_task(self.handle_tokens(_request_id, tokens, is_finished)))
|
||||
self.system_prompt = system_prompt
|
||||
|
||||
cors = aiohttp_cors.setup(self.app)
|
||||
@@ -223,6 +229,7 @@ class ChatGPTAPI:
|
||||
cors.add(self.app.router.add_get("/initial_models", self.handle_get_initial_models), {"*": cors_options})
|
||||
cors.add(self.app.router.add_post("/create_animation", self.handle_create_animation), {"*": cors_options})
|
||||
cors.add(self.app.router.add_post("/download", self.handle_post_download), {"*": cors_options})
|
||||
cors.add(self.app.router.add_get("/v1/topology", self.handle_get_topology), {"*": cors_options})
|
||||
cors.add(self.app.router.add_get("/topology", self.handle_get_topology), {"*": cors_options})
|
||||
|
||||
# Add static routes
|
||||
@@ -348,13 +355,13 @@ class ChatGPTAPI:
|
||||
|
||||
async def handle_post_chat_completions(self, request):
|
||||
data = await request.json()
|
||||
if DEBUG >= 2: print(f"Handling chat completions request from {request.remote}: {data}")
|
||||
if DEBUG >= 2: print(f"[ChatGPTAPI] Handling chat completions request from {request.remote}: {data}")
|
||||
stream = data.get("stream", False)
|
||||
chat_request = parse_chat_request(data, self.default_model)
|
||||
if chat_request.model and chat_request.model.startswith("gpt-"): # to be compatible with ChatGPT tools, point all gpt- model requests to default model
|
||||
chat_request.model = self.default_model
|
||||
if not chat_request.model or chat_request.model not in model_cards:
|
||||
if DEBUG >= 1: print(f"Invalid model: {chat_request.model}. Supported: {list(model_cards.keys())}. Defaulting to {self.default_model}")
|
||||
if DEBUG >= 1: print(f"[ChatGPTAPI] Invalid model: {chat_request.model}. Supported: {list(model_cards.keys())}. Defaulting to {self.default_model}")
|
||||
chat_request.model = self.default_model
|
||||
shard = build_base_shard(chat_request.model, self.inference_engine_classname)
|
||||
if not shard:
|
||||
@@ -365,7 +372,7 @@ class ChatGPTAPI:
|
||||
)
|
||||
|
||||
tokenizer = await resolve_tokenizer(get_repo(shard.model_id, self.inference_engine_classname))
|
||||
if DEBUG >= 4: print(f"Resolved tokenizer: {tokenizer}")
|
||||
if DEBUG >= 4: print(f"[ChatGPTAPI] Resolved tokenizer: {tokenizer}")
|
||||
|
||||
# Add system prompt if set
|
||||
if self.system_prompt and not any(msg.role == "system" for msg in chat_request.messages):
|
||||
@@ -378,28 +385,13 @@ class ChatGPTAPI:
|
||||
self.on_chat_completion_request(request_id, chat_request, prompt)
|
||||
except Exception as e:
|
||||
if DEBUG >= 2: traceback.print_exc()
|
||||
# request_id = None
|
||||
# match = self.prompts.find_longest_prefix(prompt)
|
||||
# if match and len(prompt) > len(match[1].prompt):
|
||||
# if DEBUG >= 2:
|
||||
# print(f"Prompt for request starts with previous prompt {len(match[1].prompt)} of {len(prompt)}: {match[1].prompt}")
|
||||
# request_id = match[1].request_id
|
||||
# self.prompts.add(prompt, PromptSession(request_id=request_id, timestamp=int(time.time()), prompt=prompt))
|
||||
# # remove the matching prefix from the prompt
|
||||
# prompt = prompt[len(match[1].prompt):]
|
||||
# else:
|
||||
# request_id = str(uuid.uuid4())
|
||||
# self.prompts.add(prompt, PromptSession(request_id=request_id, timestamp=int(time.time()), prompt=prompt))
|
||||
|
||||
callback_id = f"chatgpt-api-wait-response-{request_id}"
|
||||
callback = self.node.on_token.register(callback_id)
|
||||
|
||||
if DEBUG >= 2: print(f"Sending prompt from ChatGPT api {request_id=} {shard=} {prompt=}")
|
||||
if DEBUG >= 2: print(f"[ChatGPTAPI] Processing prompt: {request_id=} {shard=} {prompt=}")
|
||||
|
||||
try:
|
||||
await asyncio.wait_for(asyncio.shield(asyncio.create_task(self.node.process_prompt(shard, prompt, request_id=request_id))), timeout=self.response_timeout)
|
||||
|
||||
if DEBUG >= 2: print(f"Waiting for response to finish. timeout={self.response_timeout}s")
|
||||
if DEBUG >= 2: print(f"[ChatGPTAPI] Waiting for response to finish. timeout={self.response_timeout}s")
|
||||
|
||||
if stream:
|
||||
response = web.StreamResponse(
|
||||
@@ -412,62 +404,74 @@ class ChatGPTAPI:
|
||||
)
|
||||
await response.prepare(request)
|
||||
|
||||
async def stream_result(_request_id: str, tokens: List[int], is_finished: bool):
|
||||
prev_last_tokens_len = self.prev_token_lens.get(_request_id, 0)
|
||||
self.prev_token_lens[_request_id] = max(prev_last_tokens_len, len(tokens))
|
||||
new_tokens = tokens[prev_last_tokens_len:]
|
||||
finish_reason = None
|
||||
eos_token_id = tokenizer.special_tokens_map.get("eos_token_id") if hasattr(tokenizer, "_tokenizer") and isinstance(tokenizer._tokenizer,
|
||||
AutoTokenizer) else getattr(tokenizer, "eos_token_id", None)
|
||||
if len(new_tokens) > 0 and new_tokens[-1] == eos_token_id:
|
||||
new_tokens = new_tokens[:-1]
|
||||
if is_finished:
|
||||
finish_reason = "stop"
|
||||
if is_finished and not finish_reason:
|
||||
finish_reason = "length"
|
||||
try:
|
||||
# Stream tokens while waiting for inference to complete
|
||||
while True:
|
||||
if DEBUG >= 2: print(f"[ChatGPTAPI] Waiting for token from queue: {request_id=}")
|
||||
tokens, is_finished = await asyncio.wait_for(
|
||||
self.token_queues[request_id].get(),
|
||||
timeout=self.response_timeout
|
||||
)
|
||||
if DEBUG >= 2: print(f"[ChatGPTAPI] Got token from queue: {request_id=} {tokens=} {is_finished=}")
|
||||
|
||||
eos_token_id = None
|
||||
if not eos_token_id and hasattr(tokenizer, "eos_token_id"): eos_token_id = tokenizer.eos_token_id
|
||||
if not eos_token_id and hasattr(tokenizer, "_tokenizer"): eos_token_id = tokenizer.special_tokens_map.get("eos_token_id")
|
||||
|
||||
finish_reason = None
|
||||
if is_finished: finish_reason = "stop" if tokens[-1] == eos_token_id else "length"
|
||||
if DEBUG >= 2: print(f"{eos_token_id=} {tokens[-1]=} {finish_reason=}")
|
||||
|
||||
completion = generate_completion(
|
||||
chat_request,
|
||||
tokenizer,
|
||||
prompt,
|
||||
request_id,
|
||||
tokens,
|
||||
stream,
|
||||
finish_reason,
|
||||
"chat.completion",
|
||||
)
|
||||
|
||||
completion = generate_completion(
|
||||
chat_request,
|
||||
tokenizer,
|
||||
prompt,
|
||||
request_id,
|
||||
new_tokens,
|
||||
stream,
|
||||
finish_reason,
|
||||
"chat.completion",
|
||||
)
|
||||
if DEBUG >= 2: print(f"Streaming completion: {completion}")
|
||||
try:
|
||||
await response.write(f"data: {json.dumps(completion)}\n\n".encode())
|
||||
except Exception as e:
|
||||
if DEBUG >= 2: print(f"Error streaming completion: {e}")
|
||||
if DEBUG >= 2: traceback.print_exc()
|
||||
|
||||
def on_result(_request_id: str, tokens: List[int], is_finished: bool):
|
||||
if _request_id == request_id: self.stream_tasks[_request_id] = asyncio.create_task(stream_result(_request_id, tokens, is_finished))
|
||||
if is_finished:
|
||||
break
|
||||
|
||||
return _request_id == request_id and is_finished
|
||||
await response.write_eof()
|
||||
return response
|
||||
|
||||
_, tokens, _ = await callback.wait(on_result, timeout=self.response_timeout)
|
||||
if request_id in self.stream_tasks: # in case there is still a stream task running, wait for it to complete
|
||||
if DEBUG >= 2: print("Pending stream task. Waiting for stream task to complete.")
|
||||
try:
|
||||
await asyncio.wait_for(self.stream_tasks[request_id], timeout=30)
|
||||
except asyncio.TimeoutError:
|
||||
print("WARNING: Stream task timed out. This should not happen.")
|
||||
await response.write_eof()
|
||||
return response
|
||||
except asyncio.TimeoutError:
|
||||
if DEBUG >= 2: print(f"[ChatGPTAPI] Timeout waiting for token: {request_id=}")
|
||||
return web.json_response({"detail": "Response generation timed out"}, status=408)
|
||||
|
||||
except Exception as e:
|
||||
if DEBUG >= 2:
|
||||
print(f"[ChatGPTAPI] Error processing prompt: {e}")
|
||||
traceback.print_exc()
|
||||
return web.json_response(
|
||||
{"detail": f"Error processing prompt: {str(e)}"},
|
||||
status=500
|
||||
)
|
||||
|
||||
finally:
|
||||
# Clean up the queue for this request
|
||||
if request_id in self.token_queues:
|
||||
if DEBUG >= 2: print(f"[ChatGPTAPI] Cleaning up token queue: {request_id=}")
|
||||
del self.token_queues[request_id]
|
||||
else:
|
||||
_, tokens, _ = await callback.wait(
|
||||
lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished,
|
||||
timeout=self.response_timeout,
|
||||
)
|
||||
|
||||
tokens = []
|
||||
while True:
|
||||
_tokens, is_finished = await asyncio.wait_for(self.token_queues[request_id].get(), timeout=self.response_timeout)
|
||||
tokens.extend(_tokens)
|
||||
if is_finished:
|
||||
break
|
||||
finish_reason = "length"
|
||||
eos_token_id = tokenizer.special_tokens_map.get("eos_token_id") if isinstance(getattr(tokenizer, "_tokenizer", None), AutoTokenizer) else tokenizer.eos_token_id
|
||||
eos_token_id = None
|
||||
if not eos_token_id and hasattr(tokenizer, "eos_token_id"): eos_token_id = tokenizer.eos_token_id
|
||||
if not eos_token_id and hasattr(tokenizer, "_tokenizer"): eos_token_id = tokenizer.special_tokens_map.get("eos_token_id")
|
||||
if DEBUG >= 2: print(f"Checking if end of tokens result {tokens[-1]=} is {eos_token_id=}")
|
||||
if tokens[-1] == eos_token_id:
|
||||
tokens = tokens[:-1]
|
||||
finish_reason = "stop"
|
||||
|
||||
return web.json_response(generate_completion(chat_request, tokenizer, prompt, request_id, tokens, stream, finish_reason, "chat.completion"))
|
||||
@@ -476,9 +480,6 @@ class ChatGPTAPI:
|
||||
except Exception as e:
|
||||
if DEBUG >= 2: traceback.print_exc()
|
||||
return web.json_response({"detail": f"Error processing prompt (see logs with DEBUG>=2): {str(e)}"}, status=500)
|
||||
finally:
|
||||
deregistered_callback = self.node.on_token.deregister(callback_id)
|
||||
if DEBUG >= 2: print(f"Deregister {callback_id=} {deregistered_callback=}")
|
||||
|
||||
async def handle_post_image_generations(self, request):
|
||||
data = await request.json()
|
||||
@@ -678,6 +679,9 @@ class ChatGPTAPI:
|
||||
if DEBUG >= 2: traceback.print_exc()
|
||||
return web.json_response({"detail": f"Error getting topology: {str(e)}"}, status=500)
|
||||
|
||||
async def handle_tokens(self, request_id: str, tokens: List[int], is_finished: bool):
|
||||
await self.token_queues[request_id].put((tokens, is_finished))
|
||||
|
||||
async def run(self, host: str = "0.0.0.0", port: int = 52415):
|
||||
runner = web.AppRunner(self.app)
|
||||
await runner.setup()
|
||||
|
||||
@@ -441,7 +441,7 @@ def get_allow_patterns(weight_map: Dict[str, str], shard: Shard) -> List[str]:
|
||||
shard_specific_patterns.add(sorted_file_names[-1])
|
||||
else:
|
||||
shard_specific_patterns = set(["*.safetensors"])
|
||||
if DEBUG >= 2: print(f"get_allow_patterns {weight_map=} {shard=} {shard_specific_patterns=}")
|
||||
if DEBUG >= 3: print(f"get_allow_patterns {weight_map=} {shard=} {shard_specific_patterns=}")
|
||||
return list(default_patterns | shard_specific_patterns)
|
||||
|
||||
async def get_file_download_percentage(
|
||||
|
||||
@@ -159,13 +159,14 @@ class HFShardDownloader(ShardDownloader):
|
||||
print(f"Download calculation for {self.current_repo_id}:")
|
||||
print(f"Total bytes: {total_bytes}")
|
||||
print(f"Downloaded bytes: {downloaded_bytes}")
|
||||
if DEBUG >= 3:
|
||||
for file in relevant_files:
|
||||
print(f"File {file['path']}: size={file['size']}, percentage={status[file['path']]}")
|
||||
|
||||
return status
|
||||
|
||||
except Exception as e:
|
||||
if DEBUG >= 2:
|
||||
if DEBUG >= 3:
|
||||
print(f"Error getting shard download status: {e}")
|
||||
traceback.print_exc()
|
||||
return None
|
||||
|
||||
@@ -14,6 +14,7 @@ from pathlib import Path
|
||||
import tempfile
|
||||
import json
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import traceback
|
||||
|
||||
DEBUG = int(os.getenv("DEBUG", default="0"))
|
||||
DEBUG_DISCOVERY = int(os.getenv("DEBUG_DISCOVERY", default="0"))
|
||||
@@ -230,20 +231,21 @@ def pretty_print_bytes_per_second(bytes_per_second: int) -> str:
|
||||
|
||||
|
||||
def get_all_ip_addresses_and_interfaces():
|
||||
try:
|
||||
ip_addresses = []
|
||||
for interface in get_if_list():
|
||||
ip = get_if_addr(interface)
|
||||
# Include all addresses, including loopback
|
||||
# Filter out link-local addresses
|
||||
if not ip.startswith('169.254.') and not ip.startswith('0.0.'):
|
||||
# Remove "\\Device\\NPF_" prefix from interface name
|
||||
try:
|
||||
ip = get_if_addr(interface)
|
||||
if ip.startswith("0.0."): continue
|
||||
simplified_interface = re.sub(r'^\\Device\\NPF_', '', interface)
|
||||
ip_addresses.append((ip, simplified_interface))
|
||||
except:
|
||||
if DEBUG >= 1: print(f"Failed to get IP address for interface {interface}")
|
||||
if DEBUG >= 1: traceback.print_exc()
|
||||
if not ip_addresses:
|
||||
if DEBUG >= 1: print("Failed to get any IP addresses. Defaulting to localhost.")
|
||||
return [("localhost", "lo")]
|
||||
return list(set(ip_addresses))
|
||||
except:
|
||||
if DEBUG >= 1: print("Failed to get all IP addresses. Defaulting to localhost.")
|
||||
return [("localhost", "lo")]
|
||||
|
||||
|
||||
|
||||
async def get_macos_interface_type(ifname: str) -> Optional[Tuple[int, str]]:
|
||||
@@ -329,6 +331,30 @@ def is_frozen():
|
||||
or ('Contents/MacOS' in str(os.path.dirname(sys.executable))) \
|
||||
or '__nuitka__' in globals() or getattr(sys, '__compiled__', False)
|
||||
|
||||
async def get_mac_system_info() -> Tuple[str, str, int]:
|
||||
"""Get Mac system information using system_profiler."""
|
||||
try:
|
||||
output = await asyncio.get_running_loop().run_in_executor(
|
||||
subprocess_pool,
|
||||
lambda: subprocess.check_output(["system_profiler", "SPHardwareDataType"]).decode("utf-8")
|
||||
)
|
||||
|
||||
model_line = next((line for line in output.split("\n") if "Model Name" in line), None)
|
||||
model_id = model_line.split(": ")[1] if model_line else "Unknown Model"
|
||||
|
||||
chip_line = next((line for line in output.split("\n") if "Chip" in line), None)
|
||||
chip_id = chip_line.split(": ")[1] if chip_line else "Unknown Chip"
|
||||
|
||||
memory_line = next((line for line in output.split("\n") if "Memory" in line), None)
|
||||
memory_str = memory_line.split(": ")[1] if memory_line else "Unknown Memory"
|
||||
memory_units = memory_str.split()
|
||||
memory_value = int(memory_units[0])
|
||||
memory = memory_value * 1024 if memory_units[1] == "GB" else memory_value
|
||||
|
||||
return model_id, chip_id, memory
|
||||
except Exception as e:
|
||||
if DEBUG >= 2: print(f"Error getting Mac system info: {e}")
|
||||
return "Unknown Model", "Unknown Chip", 0
|
||||
|
||||
def get_exo_home() -> Path:
|
||||
if psutil.WINDOWS: docs_folder = Path(os.environ["USERPROFILE"])/"Documents"
|
||||
|
||||
7
exo/inference/mlx/perf_improvements.md
Normal file
7
exo/inference/mlx/perf_improvements.md
Normal file
@@ -0,0 +1,7 @@
|
||||
# Perf improvements
|
||||
|
||||
Target: 460 tok/sec
|
||||
- removing sample goes from 369 -> 402
|
||||
- performance degrades as we generate more tokens
|
||||
- make mlx inference engien synchronous, removing thread pool executor: 402 -> 413
|
||||
- remove self.on_opaque_status.trigger_all: 413 -> 418
|
||||
@@ -1,155 +1,167 @@
|
||||
import numpy as np
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from mlx_lm.sample_utils import top_p_sampling
|
||||
from mlx_lm.sample_utils import top_p_sampling, make_sampler
|
||||
import mlx.optimizers as optim
|
||||
from ..inference_engine import InferenceEngine
|
||||
from .sharded_utils import load_shard, get_image_from_str
|
||||
from .losses import loss_fns
|
||||
from .losses import loss_fns
|
||||
from ..shard import Shard
|
||||
from typing import Dict, Optional, Tuple
|
||||
from exo.download.shard_download import ShardDownloader
|
||||
import asyncio
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from functools import partial
|
||||
from collections import OrderedDict
|
||||
from mlx_lm.models.cache import make_prompt_cache
|
||||
|
||||
def sample_logits(
|
||||
logits: mx.array,
|
||||
temp: float = 0.0,
|
||||
top_p: float = 1.0,
|
||||
logit_bias: Optional[Dict[int, float]] = None
|
||||
) -> Tuple[mx.array, float]:
|
||||
if logit_bias:
|
||||
indices = mx.array(list(logit_bias.keys()))
|
||||
values = mx.array(list(logit_bias.values()))
|
||||
logits[:, indices] += values
|
||||
|
||||
if temp == 0:
|
||||
token = mx.argmax(logits, axis=-1)
|
||||
else:
|
||||
if top_p > 0 and top_p < 1.0:
|
||||
token = top_p_sampling(logits, top_p, temp)
|
||||
else:
|
||||
token = mx.random.categorical(logits*(1/temp))
|
||||
|
||||
return token
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
class MLXDynamicShardInferenceEngine(InferenceEngine):
|
||||
def __init__(self, shard_downloader: ShardDownloader):
|
||||
self.shard = None
|
||||
self.shard_downloader = shard_downloader
|
||||
self.executor = ThreadPoolExecutor(max_workers=1)
|
||||
self.caches = OrderedDict()
|
||||
self.sampler_params: tuple[float, float] = (0.0, 0.0, 0.0, 1)
|
||||
self.sampler = make_sampler(*self.sampler_params)
|
||||
self._mlx_thread = ThreadPoolExecutor(max_workers=1, thread_name_prefix="mlx")
|
||||
self._tokenizer_thread = ThreadPoolExecutor(max_workers=1, thread_name_prefix="tokenizer")
|
||||
self.session = {}
|
||||
|
||||
async def _eval_mlx(self, *args):
|
||||
await asyncio.get_running_loop().run_in_executor(self._mlx_thread, mx.eval, *args)
|
||||
|
||||
async def poll_state(self, request_id: str, max_caches=2):
|
||||
if request_id in self.caches:
|
||||
self.caches.move_to_end(request_id)
|
||||
else:
|
||||
newcache = await asyncio.get_running_loop().run_in_executor(self.executor, make_prompt_cache, self.model)
|
||||
newcache = make_prompt_cache(self.model)
|
||||
if len(self.caches) > max_caches:
|
||||
self.caches.popitem(last=False)
|
||||
self.caches[request_id] = newcache
|
||||
return {"cache": self.caches[request_id]}
|
||||
|
||||
async def sample(self, x, temp: float = 0.0, top_p: float = 1.0) -> np.ndarray:
|
||||
y = mx.array(x)
|
||||
logits = y[:, -1, :]
|
||||
out = np.array(sample_logits(logits, temp=temp, top_p=top_p), dtype=int)
|
||||
return out
|
||||
async def sample(self, x: np.ndarray, temp: float = 0.0, top_p: float = 1.0) -> np.ndarray:
|
||||
if (temp, top_p, 0.0, 1) != self.sampler_params:
|
||||
self.sampler_params = (temp, top_p, 0.0, 1)
|
||||
self.sampler = make_sampler(*self.sampler_params)
|
||||
logits = mx.array(x)
|
||||
logits = logits[:, -1, :]
|
||||
logprobs = logits - mx.logsumexp(logits, keepdims=True)
|
||||
result = self.sampler(logprobs)
|
||||
await self._eval_mlx(result)
|
||||
return np.asarray(result, dtype=int)
|
||||
|
||||
async def encode(self, shard: Shard, prompt: str) -> np.ndarray:
|
||||
await self.ensure_shard(shard)
|
||||
tokens = await asyncio.get_running_loop().run_in_executor(self.executor, self.tokenizer.encode, prompt)
|
||||
return np.array(tokens)
|
||||
return np.asarray(
|
||||
await asyncio.get_running_loop().run_in_executor(
|
||||
self._tokenizer_thread,
|
||||
self.tokenizer.encode,
|
||||
prompt
|
||||
)
|
||||
)
|
||||
|
||||
async def decode(self, shard: Shard, tokens) -> str:
|
||||
await self.ensure_shard(shard)
|
||||
tokens = await asyncio.get_running_loop().run_in_executor(self.executor, self.tokenizer.decode, tokens)
|
||||
return tokens
|
||||
return await asyncio.get_running_loop().run_in_executor(
|
||||
self._tokenizer_thread,
|
||||
self.tokenizer.decode,
|
||||
tokens
|
||||
)
|
||||
|
||||
async def save_checkpoint(self, shard: Shard, path: str):
|
||||
await self.ensure_shard(shard)
|
||||
await asyncio.get_running_loop().run_in_executor(self.executor, self.model.save_weights, path)
|
||||
await asyncio.get_running_loop().run_in_executor(self._mlx_thread, lambda: self.model.save_weights(path))
|
||||
|
||||
async def load_checkpoint(self, shard: Shard, path: str):
|
||||
await self.ensure_shard(shard)
|
||||
await asyncio.get_running_loop().run_in_executor(self.executor, self.model.load_weights, path)
|
||||
|
||||
await asyncio.get_running_loop().run_in_executor(self._mlx_thread, lambda: self.model.load_weights(path))
|
||||
|
||||
async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[dict] = None) -> tuple[np.ndarray, Optional[dict]]:
|
||||
await self.ensure_shard(shard)
|
||||
loop = asyncio.get_running_loop()
|
||||
state = await self.poll_state(request_id) if self.model.model_type != 'StableDiffusionPipeline' else {}
|
||||
x = mx.array(input_data)
|
||||
|
||||
if self.model.model_type != 'StableDiffusionPipeline':
|
||||
output_data = await loop.run_in_executor(self.executor, lambda: self.model(x, **state, **(inference_state or {})))
|
||||
output_data = await asyncio.get_running_loop().run_in_executor(
|
||||
self._mlx_thread,
|
||||
lambda: self.model(x, **state, **(inference_state or {}))
|
||||
)
|
||||
inference_state = None
|
||||
else:
|
||||
output_data, inference_state = await loop.run_in_executor(self.executor, lambda: self.model(x, **state, **(inference_state or {})))
|
||||
output_data = np.array(output_data)
|
||||
result = await asyncio.get_running_loop().run_in_executor(
|
||||
self._mlx_thread,
|
||||
lambda: self.model(x, **state, **(inference_state or {}))
|
||||
)
|
||||
output_data, inference_state = result
|
||||
|
||||
output_data = np.array(output_data, copy=False)
|
||||
return output_data, inference_state
|
||||
|
||||
async def evaluate(self, request_id: str, shard: Shard, inputs, targets, lengths, loss: str = "length_masked_ce"):
|
||||
await self.ensure_shard(shard)
|
||||
await self.save_session('loss', loss_fns[loss])
|
||||
loop = asyncio.get_running_loop()
|
||||
#print(f"evaluate in <- {inputs}")
|
||||
x = mx.array(inputs)
|
||||
y = mx.array(targets)
|
||||
l = mx.array(lengths)
|
||||
score = await loop.run_in_executor(self.executor, self.session['loss'], self.model, x, y, l)
|
||||
#print(f"evaluate out -> {score}")
|
||||
|
||||
score = await asyncio.get_running_loop().run_in_executor(
|
||||
self._mlx_thread,
|
||||
lambda: self.session['loss'](self.model, x, y, l)
|
||||
)
|
||||
return score
|
||||
|
||||
async def ensure_train(self, shard: Shard, loss: str, opt=optim.SGD, lr=1e-5, trainable_layers=['input_layernorm', 'gate_proj']):
|
||||
await self.ensure_shard(shard)
|
||||
|
||||
if 'train_layers' not in self.session or self.session['train_layers'] != trainable_layers:
|
||||
await self.save_session('train_layers', trainable_layers)
|
||||
self.model.freeze()
|
||||
self.model.apply_to_modules(lambda k, v: v.unfreeze() if any(lambda: k.endswith(i) for i in trainable_layers) else None)
|
||||
def freeze_unfreeze():
|
||||
self.model.freeze()
|
||||
self.model.apply_to_modules(
|
||||
lambda k, v: v.unfreeze() if any(k.endswith(layer_name) for layer_name in trainable_layers) else None
|
||||
)
|
||||
await asyncio.get_running_loop().run_in_executor(self._mlx_thread, freeze_unfreeze)
|
||||
|
||||
if 'lossname' not in self.session or 'LVaG' not in self.session or self.session['lossname'] != loss:
|
||||
await self.save_session('lossname', loss)
|
||||
await self.save_session('LVaG', nn.value_and_grad(self.model, loss_fns[loss]))
|
||||
|
||||
if 'opt' not in self.session:
|
||||
await self.save_session('opt', opt(lr))
|
||||
return True
|
||||
|
||||
async def train(self, request_id: str, shard: Shard, inputs, targets, lengths, loss: str = "length_masked_ce", opt=optim.SGD, lr=1e-5):
|
||||
loop = asyncio.get_running_loop()
|
||||
nothin = await self.ensure_train(shard, loss, opt, lr)
|
||||
await self.ensure_train(shard, loss, opt, lr)
|
||||
|
||||
def train_step(inp, tar, lng):
|
||||
lval, grad = self.session['LVaG'](self.model, inp, tar, lng)
|
||||
gradlayers = grad['model']['layers']
|
||||
self.session['opt'].update(self.model, grad)
|
||||
mx.eval(self.model.parameters(), self.session['opt'].state, lval)
|
||||
return lval, gradlayers
|
||||
return lval, gradlayers, (self.model.parameters(), self.session['opt'].state, lval)
|
||||
|
||||
x = mx.array(inputs)
|
||||
y = mx.array(targets)
|
||||
l = mx.array(lengths)
|
||||
score, gradients, eval_args = await asyncio.get_running_loop().run_in_executor(
|
||||
self._mlx_thread,
|
||||
lambda: train_step(x, y, l)
|
||||
)
|
||||
await self._eval_mlx(*eval_args)
|
||||
|
||||
score, gradients = await loop.run_in_executor(self.executor, train_step, x, y, l)
|
||||
#print(f"{score=}")
|
||||
|
||||
layers = [{k: v["weight"] for k,v in l.items() if 'weight' in v} for l in gradients if l]
|
||||
#print(layers[0])
|
||||
|
||||
return score, np.array(layers[0]['input_layernorm'])
|
||||
layers = [{k: v["weight"] for k, v in layer.items() if 'weight' in v} for layer in gradients if layer]
|
||||
first_layer = np.array(layers[0]['input_layernorm'], copy=False)
|
||||
await self._eval_mlx(first_layer)
|
||||
return score, first_layer
|
||||
|
||||
async def ensure_shard(self, shard: Shard):
|
||||
if self.shard == shard:
|
||||
return
|
||||
|
||||
model_path = await self.shard_downloader.ensure_shard(shard, self.__class__.__name__)
|
||||
|
||||
if self.shard != shard:
|
||||
|
||||
def load_shard_wrapper():
|
||||
return asyncio.run(load_shard(model_path, shard))
|
||||
|
||||
model_shard, self.tokenizer = await asyncio.get_running_loop().run_in_executor(self.executor, load_shard_wrapper)
|
||||
model_shard, self.tokenizer = await load_shard(model_path, shard)
|
||||
self.shard = shard
|
||||
self.model = model_shard
|
||||
self.model = model_shard
|
||||
self.caches = OrderedDict()
|
||||
self.session = {}
|
||||
|
||||
async def cleanup(self):
|
||||
self._mlx_thread.shutdown(wait=True)
|
||||
|
||||
81
exo/inference/mlx/test_non_blocking.py
Normal file
81
exo/inference/mlx/test_non_blocking.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import asyncio
|
||||
import time
|
||||
import numpy as np
|
||||
from exo.inference.mlx.sharded_inference_engine import MLXDynamicShardInferenceEngine
|
||||
from exo.download.hf.hf_shard_download import HFShardDownloader
|
||||
from exo.inference.shard import Shard
|
||||
from exo.models import build_base_shard
|
||||
from collections import deque
|
||||
from statistics import mean, median
|
||||
|
||||
async def test_non_blocking():
|
||||
# Setup
|
||||
shard_downloader = HFShardDownloader()
|
||||
engine = MLXDynamicShardInferenceEngine(shard_downloader)
|
||||
_shard = build_base_shard("llama-3.1-8b", "MLXDynamicShardInferenceEngine")
|
||||
shard = Shard(_shard.model_id, _shard.start_layer, _shard.n_layers - 1, _shard.n_layers)
|
||||
await engine.ensure_shard(shard)
|
||||
|
||||
queue = asyncio.Queue()
|
||||
measurements = deque(maxlen=1000000)
|
||||
running = True
|
||||
|
||||
async def mlx_worker():
|
||||
try:
|
||||
start_time = time.time()
|
||||
count = 0
|
||||
while running and (time.time() - start_time) < 5: # Hard time limit
|
||||
start = time.perf_counter_ns()
|
||||
await engine.infer_prompt("req1", shard, "test prompt")
|
||||
duration = (time.perf_counter_ns() - start) / 1_000_000 # Convert to ms
|
||||
count += 1
|
||||
print(f"MLX operation {count} took: {duration:.3f}ms")
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
finally:
|
||||
print(f"\nTotal MLX operations completed: {count}")
|
||||
print(f"Average rate: {count/5:.1f} ops/second")
|
||||
|
||||
async def latency_producer():
|
||||
try:
|
||||
start_time = time.perf_counter_ns()
|
||||
count = 0
|
||||
while running:
|
||||
await queue.put(time.perf_counter_ns())
|
||||
count += 1
|
||||
await asyncio.sleep(0) # Yield to event loop without delay
|
||||
duration = (time.perf_counter_ns() - start_time) / 1e9 # Convert to seconds
|
||||
print(f"\nProducer iterations: {count}")
|
||||
print(f"Producer rate: {count/duration:.1f} iterations/second")
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
async def latency_consumer():
|
||||
try:
|
||||
while running:
|
||||
timestamp = await queue.get()
|
||||
latency = (time.perf_counter_ns() - timestamp) / 1_000_000 # Convert to ms
|
||||
measurements.append(latency)
|
||||
queue.task_done()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
tasks = [
|
||||
asyncio.create_task(mlx_worker()),
|
||||
asyncio.create_task(latency_producer()),
|
||||
asyncio.create_task(latency_consumer())
|
||||
]
|
||||
|
||||
try:
|
||||
await asyncio.wait_for(asyncio.gather(*tasks), timeout=6)
|
||||
except asyncio.TimeoutError:
|
||||
print("\nTest timed out")
|
||||
finally:
|
||||
running = False
|
||||
for task in tasks:
|
||||
task.cancel()
|
||||
await asyncio.gather(*tasks, return_exceptions=True)
|
||||
print(f"\nFinal measurement count: {len(measurements)}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(test_non_blocking())
|
||||
108
exo/main.py
108
exo/main.py
@@ -13,7 +13,6 @@ import uuid
|
||||
import numpy as np
|
||||
from functools import partial
|
||||
from tqdm import tqdm
|
||||
from tqdm.asyncio import tqdm_asyncio
|
||||
from exo.train.dataset import load_dataset, iterate_batches, compose
|
||||
from exo.networking.manual.manual_discovery import ManualDiscovery
|
||||
from exo.networking.manual.network_topology_config import NetworkTopology
|
||||
@@ -33,6 +32,46 @@ from exo.inference.tokenizers import resolve_tokenizer
|
||||
from exo.models import build_base_shard, get_repo
|
||||
from exo.viz.topology_viz import TopologyViz
|
||||
from exo.download.hf.hf_helpers import has_hf_home_read_access, has_hf_home_write_access, get_hf_home, move_models_to_hf
|
||||
import uvloop
|
||||
from contextlib import asynccontextmanager
|
||||
import concurrent.futures
|
||||
import socket
|
||||
import resource
|
||||
import psutil
|
||||
|
||||
# TODO: figure out why this is happening
|
||||
os.environ["GRPC_VERBOSITY"] = "error"
|
||||
os.environ["TRANSFORMERS_VERBOSITY"] = "error"
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
||||
|
||||
# Configure uvloop for maximum performance
|
||||
def configure_uvloop():
|
||||
# Install uvloop as event loop policy
|
||||
uvloop.install()
|
||||
|
||||
# Create new event loop
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
|
||||
# Increase file descriptor limits on Unix systems
|
||||
if not psutil.WINDOWS:
|
||||
soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
||||
try:
|
||||
resource.setrlimit(resource.RLIMIT_NOFILE, (hard, hard))
|
||||
except ValueError:
|
||||
try:
|
||||
resource.setrlimit(resource.RLIMIT_NOFILE, (8192, hard))
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
# Configure thread pool for blocking operations
|
||||
loop.set_default_executor(
|
||||
concurrent.futures.ThreadPoolExecutor(
|
||||
max_workers=min(32, (os.cpu_count() or 1) * 4)
|
||||
)
|
||||
)
|
||||
|
||||
return loop
|
||||
|
||||
# parse args
|
||||
parser = argparse.ArgumentParser(description="Initialize GRPC Discovery")
|
||||
@@ -52,7 +91,6 @@ parser.add_argument("--models-seed-dir", type=str, default=None, help="Model see
|
||||
parser.add_argument("--listen-port", type=int, default=5678, help="Listening port for discovery")
|
||||
parser.add_argument("--download-quick-check", action="store_true", help="Quick check local path for model shards download")
|
||||
parser.add_argument("--max-parallel-downloads", type=int, default=4, help="Max parallel downloads for model shards download")
|
||||
parser.add_argument("--prometheus-client-port", type=int, default=None, help="Prometheus client port")
|
||||
parser.add_argument("--broadcast-port", type=int, default=5678, help="Broadcast port for discovery")
|
||||
parser.add_argument("--discovery-module", type=str, choices=["udp", "tailscale", "manual"], default="udp", help="Discovery module to use")
|
||||
parser.add_argument("--discovery-timeout", type=int, default=30, help="Discovery timeout in seconds")
|
||||
@@ -69,6 +107,7 @@ parser.add_argument("--default-temp", type=float, help="Default token sampling t
|
||||
parser.add_argument("--tailscale-api-key", type=str, default=None, help="Tailscale API key")
|
||||
parser.add_argument("--tailnet-name", type=str, default=None, help="Tailnet name")
|
||||
parser.add_argument("--node-id-filter", type=str, default=None, help="Comma separated list of allowed node IDs (only for UDP and Tailscale discovery)")
|
||||
parser.add_argument("--interface-type-filter", type=str, default=None, help="Comma separated list of allowed interface types (only for UDP discovery)")
|
||||
parser.add_argument("--system-prompt", type=str, default=None, help="System prompt for the ChatGPT API")
|
||||
args = parser.parse_args()
|
||||
print(f"Selected inference engine: {args.inference_engine}")
|
||||
@@ -101,8 +140,9 @@ if DEBUG >= 0:
|
||||
for chatgpt_api_endpoint in chatgpt_api_endpoints:
|
||||
print(f" - {terminal_link(chatgpt_api_endpoint)}")
|
||||
|
||||
# Convert node-id-filter to list if provided
|
||||
# Convert node-id-filter and interface-type-filter to lists if provided
|
||||
allowed_node_ids = args.node_id_filter.split(',') if args.node_id_filter else None
|
||||
allowed_interface_types = args.interface_type_filter.split(',') if args.interface_type_filter else None
|
||||
|
||||
if args.discovery_module == "udp":
|
||||
discovery = UDPDiscovery(
|
||||
@@ -112,7 +152,8 @@ if args.discovery_module == "udp":
|
||||
args.broadcast_port,
|
||||
lambda peer_id, address, description, device_capabilities: GRPCPeerHandle(peer_id, address, description, device_capabilities),
|
||||
discovery_timeout=args.discovery_timeout,
|
||||
allowed_node_ids=allowed_node_ids
|
||||
allowed_node_ids=allowed_node_ids,
|
||||
allowed_interface_types=allowed_interface_types
|
||||
)
|
||||
elif args.discovery_module == "tailscale":
|
||||
discovery = TailscaleDiscovery(
|
||||
@@ -150,9 +191,16 @@ api = ChatGPTAPI(
|
||||
default_model=args.default_model,
|
||||
system_prompt=args.system_prompt
|
||||
)
|
||||
node.on_token.register("update_topology_viz").on_next(
|
||||
lambda req_id, tokens, __: topology_viz.update_prompt_output(req_id, inference_engine.tokenizer.decode(tokens)) if topology_viz and hasattr(inference_engine, "tokenizer") and inference_engine.shard.model_id != 'stable-diffusion-2-1-base' else None
|
||||
)
|
||||
buffered_token_output = {}
|
||||
def update_topology_viz(req_id, tokens, __):
|
||||
if not topology_viz: return
|
||||
if not inference_engine.shard: return
|
||||
if inference_engine.shard.model_id == 'stable-diffusion-2-1-base': return
|
||||
|
||||
if req_id in buffered_token_output: buffered_token_output[req_id].extend(tokens)
|
||||
else: buffered_token_output[req_id] = tokens
|
||||
topology_viz.update_prompt_output(req_id, inference_engine.tokenizer.decode(buffered_token_output[req_id]))
|
||||
node.on_token.register("update_topology_viz").on_next(update_topology_viz)
|
||||
|
||||
def preemptively_start_download(request_id: str, opaque_status: str):
|
||||
try:
|
||||
@@ -169,10 +217,6 @@ def preemptively_start_download(request_id: str, opaque_status: str):
|
||||
|
||||
node.on_opaque_status.register("start_download").on_next(preemptively_start_download)
|
||||
|
||||
if args.prometheus_client_port:
|
||||
from exo.stats.metrics import start_metrics_server
|
||||
start_metrics_server(node, args.prometheus_client_port)
|
||||
|
||||
last_broadcast_time = 0
|
||||
|
||||
|
||||
@@ -204,7 +248,11 @@ async def run_model_cli(node: Node, inference_engine: InferenceEngine, model_nam
|
||||
print(f"Processing prompt: {prompt}")
|
||||
await node.process_prompt(shard, prompt, request_id=request_id)
|
||||
|
||||
_, tokens, _ = await callback.wait(lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished, timeout=300)
|
||||
tokens = []
|
||||
def on_token(_request_id, _tokens, _is_finished):
|
||||
tokens.extend(_tokens)
|
||||
return _request_id == request_id and _is_finished
|
||||
await callback.wait(on_token, timeout=300)
|
||||
|
||||
print("\nGenerated response:")
|
||||
print(tokenizer.decode(tokens))
|
||||
@@ -223,7 +271,7 @@ def clean_path(path):
|
||||
async def hold_outstanding(node: Node):
|
||||
while node.outstanding_requests:
|
||||
await asyncio.sleep(.5)
|
||||
return
|
||||
return
|
||||
|
||||
async def run_iter(node: Node, shard: Shard, train: bool, data, batch_size=1):
|
||||
losses = []
|
||||
@@ -234,7 +282,7 @@ async def run_iter(node: Node, shard: Shard, train: bool, data, batch_size=1):
|
||||
tokens.append(np.sum(lengths))
|
||||
total_tokens = np.sum(tokens)
|
||||
total_loss = np.sum(losses) / total_tokens
|
||||
|
||||
|
||||
return total_loss, total_tokens
|
||||
|
||||
async def eval_model_cli(node: Node, inference_engine: InferenceEngine, model_name, dataloader, batch_size, num_batches=-1):
|
||||
@@ -270,7 +318,7 @@ async def train_model_cli(node: Node, inference_engine: InferenceEngine, model_n
|
||||
await hold_outstanding(node)
|
||||
await hold_outstanding(node)
|
||||
|
||||
|
||||
|
||||
async def main():
|
||||
loop = asyncio.get_running_loop()
|
||||
|
||||
@@ -285,7 +333,7 @@ async def main():
|
||||
{"❌ No read access" if not has_read else ""}
|
||||
{"❌ No write access" if not has_write else ""}
|
||||
""")
|
||||
|
||||
|
||||
if not args.models_seed_dir is None:
|
||||
try:
|
||||
models_seed_dir = clean_path(args.models_seed_dir)
|
||||
@@ -330,29 +378,31 @@ async def main():
|
||||
print("Error: This train ain't leaving the station without a model")
|
||||
return
|
||||
await train_model_cli(node, inference_engine, model_name, dataloader, args.batch_size, args.iters, save_interval=args.save_every, checkpoint_dir=args.save_checkpoint_dir)
|
||||
|
||||
|
||||
else:
|
||||
asyncio.create_task(api.run(port=args.chatgpt_api_port)) # Start the API server as a non-blocking task
|
||||
await asyncio.Event().wait()
|
||||
|
||||
|
||||
if args.wait_for_peers > 0:
|
||||
print("Cooldown to allow peers to exit gracefully")
|
||||
for i in tqdm(range(50)):
|
||||
await asyncio.sleep(.1)
|
||||
|
||||
@asynccontextmanager
|
||||
async def setup_node(args):
|
||||
# Rest of setup_node implementation...
|
||||
pass
|
||||
|
||||
def run():
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
try:
|
||||
loop.run_until_complete(main())
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("Received keyboard interrupt. Shutting down...")
|
||||
finally:
|
||||
loop.run_until_complete(shutdown(signal.SIGTERM, loop, node.server))
|
||||
loop.close()
|
||||
|
||||
loop = None
|
||||
try:
|
||||
loop = configure_uvloop()
|
||||
loop.run_until_complete(main())
|
||||
except KeyboardInterrupt:
|
||||
print("\nShutdown requested... exiting")
|
||||
finally:
|
||||
if loop:
|
||||
loop.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
run()
|
||||
|
||||
@@ -28,6 +28,19 @@ class GRPCPeerHandle(PeerHandle):
|
||||
self._device_capabilities = device_capabilities
|
||||
self.channel = None
|
||||
self.stub = None
|
||||
self.channel_options = [
|
||||
("grpc.max_metadata_size", 64 * 1024 * 1024),
|
||||
("grpc.max_receive_message_length", 256 * 1024 * 1024),
|
||||
("grpc.max_send_message_length", 256 * 1024 * 1024),
|
||||
("grpc.max_concurrent_streams", 100),
|
||||
("grpc.http2.min_time_between_pings_ms", 10000),
|
||||
("grpc.keepalive_time_ms", 20000),
|
||||
("grpc.keepalive_timeout_ms", 10000),
|
||||
("grpc.keepalive_permit_without_calls", 1),
|
||||
("grpc.http2.max_pings_without_data", 0),
|
||||
("grpc.tcp_nodelay", 1),
|
||||
("grpc.optimization_target", "throughput"),
|
||||
]
|
||||
|
||||
def id(self) -> str:
|
||||
return self._id
|
||||
@@ -44,7 +57,9 @@ class GRPCPeerHandle(PeerHandle):
|
||||
async def connect(self):
|
||||
if self.channel is None:
|
||||
self.channel = grpc.aio.insecure_channel(
|
||||
self.address, options=[("grpc.max_metadata_size", 32*1024*1024), ('grpc.max_receive_message_length', 32*1024*1024), ('grpc.max_send_message_length', 32*1024*1024)]
|
||||
self.address,
|
||||
options=self.channel_options,
|
||||
compression=grpc.Compression.Gzip
|
||||
)
|
||||
self.stub = node_service_pb2_grpc.NodeServiceStub(self.channel)
|
||||
await self.channel.channel_ready()
|
||||
@@ -59,7 +74,13 @@ class GRPCPeerHandle(PeerHandle):
|
||||
self.stub = None
|
||||
|
||||
async def _ensure_connected(self):
|
||||
if not await self.is_connected(): await asyncio.wait_for(self.connect(), timeout=5)
|
||||
if not await self.is_connected():
|
||||
try:
|
||||
await asyncio.wait_for(self.connect(), timeout=10.0)
|
||||
except asyncio.TimeoutError:
|
||||
if DEBUG >= 2: print(f"Connection timeout for {self._id}@{self.address}")
|
||||
await self.disconnect()
|
||||
raise
|
||||
|
||||
async def health_check(self) -> bool:
|
||||
try:
|
||||
@@ -88,12 +109,7 @@ class GRPCPeerHandle(PeerHandle):
|
||||
request_id=request_id,
|
||||
inference_state=None if inference_state is None else self.serialize_inference_state(inference_state)
|
||||
)
|
||||
response = await self.stub.SendPrompt(request)
|
||||
|
||||
if not response.tensor_data or not response.shape or not response.dtype:
|
||||
return None
|
||||
|
||||
return np.frombuffer(response.tensor_data, dtype=np.dtype(response.dtype)).reshape(response.shape)
|
||||
await self.stub.SendPrompt(request)
|
||||
|
||||
async def send_tensor(self, shard: Shard, tensor: np.ndarray, inference_state: Optional[dict] = None, request_id: Optional[str] = None) -> Optional[np.array]:
|
||||
request = node_service_pb2.TensorRequest(
|
||||
@@ -154,16 +170,6 @@ class GRPCPeerHandle(PeerHandle):
|
||||
|
||||
return np.frombuffer(response.tensor_data, dtype=np.dtype(response.dtype)).reshape(response.shape)
|
||||
|
||||
async def get_inference_result(self, request_id: str) -> Tuple[Optional[np.ndarray], bool]:
|
||||
request = node_service_pb2.GetInferenceResultRequest(request_id=request_id)
|
||||
response = await self.stub.GetInferenceResult(request)
|
||||
if response.tensor is None:
|
||||
return None, response.is_finished
|
||||
return (
|
||||
np.frombuffer(response.tensor.tensor_data, dtype=np.dtype(response.tensor.dtype)).reshape(response.tensor.shape),
|
||||
response.is_finished,
|
||||
)
|
||||
|
||||
async def collect_topology(self, visited: set[str], max_depth: int) -> Topology:
|
||||
request = node_service_pb2.CollectTopologyRequest(visited=visited, max_depth=max_depth)
|
||||
response = await self.stub.CollectTopology(request)
|
||||
|
||||
@@ -27,11 +27,19 @@ class GRPCServer(node_service_pb2_grpc.NodeServiceServicer):
|
||||
|
||||
async def start(self) -> None:
|
||||
self.server = grpc.aio.server(
|
||||
futures.ThreadPoolExecutor(max_workers=10),
|
||||
futures.ThreadPoolExecutor(max_workers=32),
|
||||
options=[
|
||||
("grpc.max_metadata_size", 32*1024*1024),
|
||||
("grpc.max_send_message_length", 128*1024*1024),
|
||||
("grpc.max_receive_message_length", 128*1024*1024),
|
||||
("grpc.max_send_message_length", 256*1024*1024),
|
||||
("grpc.max_receive_message_length", 256*1024*1024),
|
||||
("grpc.keepalive_time_ms", 10000),
|
||||
("grpc.keepalive_timeout_ms", 5000),
|
||||
("grpc.http2.max_pings_without_data", 0),
|
||||
("grpc.http2.min_time_between_pings_ms", 10000),
|
||||
("grpc.http2.min_ping_interval_without_data_ms", 5000),
|
||||
("grpc.max_concurrent_streams", 100),
|
||||
("grpc.tcp_nodelay", 1),
|
||||
("grpc.optimization_target", "throughput"),
|
||||
],
|
||||
)
|
||||
node_service_pb2_grpc.add_NodeServiceServicer_to_server(self, self.server)
|
||||
|
||||
@@ -6,7 +6,6 @@ service NodeService {
|
||||
rpc SendPrompt (PromptRequest) returns (Tensor) {}
|
||||
rpc SendTensor (TensorRequest) returns (Tensor) {}
|
||||
rpc SendExample (ExampleRequest) returns (Loss) {}
|
||||
rpc GetInferenceResult (GetInferenceResultRequest) returns (InferenceResult) {}
|
||||
rpc CollectTopology (CollectTopologyRequest) returns (Topology) {}
|
||||
rpc SendResult (SendResultRequest) returns (Empty) {}
|
||||
rpc SendOpaqueStatus (SendOpaqueStatusRequest) returns (Empty) {}
|
||||
@@ -47,15 +46,6 @@ message Loss {
|
||||
float loss = 1;
|
||||
optional Tensor grads = 2;
|
||||
}
|
||||
|
||||
message GetInferenceResultRequest {
|
||||
string request_id = 1;
|
||||
}
|
||||
|
||||
message InferenceResult {
|
||||
optional Tensor tensor = 1;
|
||||
bool is_finished = 2;
|
||||
}
|
||||
|
||||
message Tensor {
|
||||
bytes tensor_data = 1;
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -3,7 +3,7 @@
|
||||
import grpc
|
||||
import warnings
|
||||
|
||||
from exo.networking.grpc import node_service_pb2 as exo_dot_networking_dot_grpc_dot_node__service__pb2
|
||||
from . import node_service_pb2 as node__service__pb2
|
||||
|
||||
GRPC_GENERATED_VERSION = '1.68.0'
|
||||
GRPC_VERSION = grpc.__version__
|
||||
@@ -18,7 +18,7 @@ except ImportError:
|
||||
if _version_not_supported:
|
||||
raise RuntimeError(
|
||||
f'The grpc package installed is at version {GRPC_VERSION},'
|
||||
+ f' but the generated code in exo/networking/grpc/node_service_pb2_grpc.py depends on'
|
||||
+ f' but the generated code in node_service_pb2_grpc.py depends on'
|
||||
+ f' grpcio>={GRPC_GENERATED_VERSION}.'
|
||||
+ f' Please upgrade your grpc module to grpcio>={GRPC_GENERATED_VERSION}'
|
||||
+ f' or downgrade your generated code using grpcio-tools<={GRPC_VERSION}.'
|
||||
@@ -36,43 +36,38 @@ class NodeServiceStub(object):
|
||||
"""
|
||||
self.SendPrompt = channel.unary_unary(
|
||||
'/node_service.NodeService/SendPrompt',
|
||||
request_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.PromptRequest.SerializeToString,
|
||||
response_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.Tensor.FromString,
|
||||
request_serializer=node__service__pb2.PromptRequest.SerializeToString,
|
||||
response_deserializer=node__service__pb2.Tensor.FromString,
|
||||
_registered_method=True)
|
||||
self.SendTensor = channel.unary_unary(
|
||||
'/node_service.NodeService/SendTensor',
|
||||
request_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.TensorRequest.SerializeToString,
|
||||
response_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.Tensor.FromString,
|
||||
request_serializer=node__service__pb2.TensorRequest.SerializeToString,
|
||||
response_deserializer=node__service__pb2.Tensor.FromString,
|
||||
_registered_method=True)
|
||||
self.SendExample = channel.unary_unary(
|
||||
'/node_service.NodeService/SendExample',
|
||||
request_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.ExampleRequest.SerializeToString,
|
||||
response_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.Loss.FromString,
|
||||
_registered_method=True)
|
||||
self.GetInferenceResult = channel.unary_unary(
|
||||
'/node_service.NodeService/GetInferenceResult',
|
||||
request_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.GetInferenceResultRequest.SerializeToString,
|
||||
response_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.InferenceResult.FromString,
|
||||
request_serializer=node__service__pb2.ExampleRequest.SerializeToString,
|
||||
response_deserializer=node__service__pb2.Loss.FromString,
|
||||
_registered_method=True)
|
||||
self.CollectTopology = channel.unary_unary(
|
||||
'/node_service.NodeService/CollectTopology',
|
||||
request_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.CollectTopologyRequest.SerializeToString,
|
||||
response_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.Topology.FromString,
|
||||
request_serializer=node__service__pb2.CollectTopologyRequest.SerializeToString,
|
||||
response_deserializer=node__service__pb2.Topology.FromString,
|
||||
_registered_method=True)
|
||||
self.SendResult = channel.unary_unary(
|
||||
'/node_service.NodeService/SendResult',
|
||||
request_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.SendResultRequest.SerializeToString,
|
||||
response_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.Empty.FromString,
|
||||
request_serializer=node__service__pb2.SendResultRequest.SerializeToString,
|
||||
response_deserializer=node__service__pb2.Empty.FromString,
|
||||
_registered_method=True)
|
||||
self.SendOpaqueStatus = channel.unary_unary(
|
||||
'/node_service.NodeService/SendOpaqueStatus',
|
||||
request_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.SendOpaqueStatusRequest.SerializeToString,
|
||||
response_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.Empty.FromString,
|
||||
request_serializer=node__service__pb2.SendOpaqueStatusRequest.SerializeToString,
|
||||
response_deserializer=node__service__pb2.Empty.FromString,
|
||||
_registered_method=True)
|
||||
self.HealthCheck = channel.unary_unary(
|
||||
'/node_service.NodeService/HealthCheck',
|
||||
request_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.HealthCheckRequest.SerializeToString,
|
||||
response_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.HealthCheckResponse.FromString,
|
||||
request_serializer=node__service__pb2.HealthCheckRequest.SerializeToString,
|
||||
response_deserializer=node__service__pb2.HealthCheckResponse.FromString,
|
||||
_registered_method=True)
|
||||
|
||||
|
||||
@@ -97,12 +92,6 @@ class NodeServiceServicer(object):
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GetInferenceResult(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def CollectTopology(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
@@ -132,43 +121,38 @@ def add_NodeServiceServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'SendPrompt': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.SendPrompt,
|
||||
request_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.PromptRequest.FromString,
|
||||
response_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.Tensor.SerializeToString,
|
||||
request_deserializer=node__service__pb2.PromptRequest.FromString,
|
||||
response_serializer=node__service__pb2.Tensor.SerializeToString,
|
||||
),
|
||||
'SendTensor': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.SendTensor,
|
||||
request_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.TensorRequest.FromString,
|
||||
response_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.Tensor.SerializeToString,
|
||||
request_deserializer=node__service__pb2.TensorRequest.FromString,
|
||||
response_serializer=node__service__pb2.Tensor.SerializeToString,
|
||||
),
|
||||
'SendExample': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.SendExample,
|
||||
request_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.ExampleRequest.FromString,
|
||||
response_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.Loss.SerializeToString,
|
||||
),
|
||||
'GetInferenceResult': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GetInferenceResult,
|
||||
request_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.GetInferenceResultRequest.FromString,
|
||||
response_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.InferenceResult.SerializeToString,
|
||||
request_deserializer=node__service__pb2.ExampleRequest.FromString,
|
||||
response_serializer=node__service__pb2.Loss.SerializeToString,
|
||||
),
|
||||
'CollectTopology': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.CollectTopology,
|
||||
request_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.CollectTopologyRequest.FromString,
|
||||
response_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.Topology.SerializeToString,
|
||||
request_deserializer=node__service__pb2.CollectTopologyRequest.FromString,
|
||||
response_serializer=node__service__pb2.Topology.SerializeToString,
|
||||
),
|
||||
'SendResult': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.SendResult,
|
||||
request_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.SendResultRequest.FromString,
|
||||
response_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.Empty.SerializeToString,
|
||||
request_deserializer=node__service__pb2.SendResultRequest.FromString,
|
||||
response_serializer=node__service__pb2.Empty.SerializeToString,
|
||||
),
|
||||
'SendOpaqueStatus': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.SendOpaqueStatus,
|
||||
request_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.SendOpaqueStatusRequest.FromString,
|
||||
response_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.Empty.SerializeToString,
|
||||
request_deserializer=node__service__pb2.SendOpaqueStatusRequest.FromString,
|
||||
response_serializer=node__service__pb2.Empty.SerializeToString,
|
||||
),
|
||||
'HealthCheck': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.HealthCheck,
|
||||
request_deserializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.HealthCheckRequest.FromString,
|
||||
response_serializer=exo_dot_networking_dot_grpc_dot_node__service__pb2.HealthCheckResponse.SerializeToString,
|
||||
request_deserializer=node__service__pb2.HealthCheckRequest.FromString,
|
||||
response_serializer=node__service__pb2.HealthCheckResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
@@ -196,8 +180,8 @@ class NodeService(object):
|
||||
request,
|
||||
target,
|
||||
'/node_service.NodeService/SendPrompt',
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.PromptRequest.SerializeToString,
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.Tensor.FromString,
|
||||
node__service__pb2.PromptRequest.SerializeToString,
|
||||
node__service__pb2.Tensor.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
@@ -223,8 +207,8 @@ class NodeService(object):
|
||||
request,
|
||||
target,
|
||||
'/node_service.NodeService/SendTensor',
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.TensorRequest.SerializeToString,
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.Tensor.FromString,
|
||||
node__service__pb2.TensorRequest.SerializeToString,
|
||||
node__service__pb2.Tensor.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
@@ -250,35 +234,8 @@ class NodeService(object):
|
||||
request,
|
||||
target,
|
||||
'/node_service.NodeService/SendExample',
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.ExampleRequest.SerializeToString,
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.Loss.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
call_credentials,
|
||||
compression,
|
||||
wait_for_ready,
|
||||
timeout,
|
||||
metadata,
|
||||
_registered_method=True)
|
||||
|
||||
@staticmethod
|
||||
def GetInferenceResult(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(
|
||||
request,
|
||||
target,
|
||||
'/node_service.NodeService/GetInferenceResult',
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.GetInferenceResultRequest.SerializeToString,
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.InferenceResult.FromString,
|
||||
node__service__pb2.ExampleRequest.SerializeToString,
|
||||
node__service__pb2.Loss.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
@@ -304,8 +261,8 @@ class NodeService(object):
|
||||
request,
|
||||
target,
|
||||
'/node_service.NodeService/CollectTopology',
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.CollectTopologyRequest.SerializeToString,
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.Topology.FromString,
|
||||
node__service__pb2.CollectTopologyRequest.SerializeToString,
|
||||
node__service__pb2.Topology.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
@@ -331,8 +288,8 @@ class NodeService(object):
|
||||
request,
|
||||
target,
|
||||
'/node_service.NodeService/SendResult',
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.SendResultRequest.SerializeToString,
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.Empty.FromString,
|
||||
node__service__pb2.SendResultRequest.SerializeToString,
|
||||
node__service__pb2.Empty.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
@@ -358,8 +315,8 @@ class NodeService(object):
|
||||
request,
|
||||
target,
|
||||
'/node_service.NodeService/SendOpaqueStatus',
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.SendOpaqueStatusRequest.SerializeToString,
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.Empty.FromString,
|
||||
node__service__pb2.SendOpaqueStatusRequest.SerializeToString,
|
||||
node__service__pb2.Empty.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
@@ -385,8 +342,8 @@ class NodeService(object):
|
||||
request,
|
||||
target,
|
||||
'/node_service.NodeService/HealthCheck',
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.HealthCheckRequest.SerializeToString,
|
||||
exo_dot_networking_dot_grpc_dot_node__service__pb2.HealthCheckResponse.FromString,
|
||||
node__service__pb2.HealthCheckRequest.SerializeToString,
|
||||
node__service__pb2.HealthCheckResponse.FromString,
|
||||
options,
|
||||
channel_credentials,
|
||||
insecure,
|
||||
|
||||
@@ -63,8 +63,7 @@ class ManualDiscovery(Discovery):
|
||||
print(f"{peer_id=} at {peer_config.address}:{peer_config.port} is not healthy. Removing.")
|
||||
except Exception as e:
|
||||
if DEBUG_DISCOVERY >= 2: print(f"Exception occured when attempting to add {peer_id=}: {e}")
|
||||
self.known_peers = new_known_peers
|
||||
await asyncio.sleep(1.0)
|
||||
await asyncio.sleep(5.0)
|
||||
|
||||
if DEBUG_DISCOVERY >= 2: print(f"Current known peers: {[peer.id() for peer in self.known_peers.values()]}")
|
||||
|
||||
|
||||
@@ -51,10 +51,6 @@ class PeerHandle(ABC):
|
||||
async def send_result(self, request_id: str, result: List[int], is_finished: bool) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def get_inference_result(self, request_id: str) -> Tuple[Optional[np.ndarray], bool]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def collect_topology(self, visited: set[str], max_depth: int) -> Topology:
|
||||
pass
|
||||
|
||||
@@ -40,7 +40,7 @@ class TailscaleDiscovery(Discovery):
|
||||
self.update_task = None
|
||||
|
||||
async def start(self):
|
||||
self.device_capabilities = device_capabilities()
|
||||
self.device_capabilities = await device_capabilities()
|
||||
self.discovery_task = asyncio.create_task(self.task_discover_peers())
|
||||
self.cleanup_task = asyncio.create_task(self.task_cleanup_peers())
|
||||
self.update_task = asyncio.create_task(self.task_update_device_posture_attributes())
|
||||
|
||||
@@ -3,7 +3,7 @@ import json
|
||||
import socket
|
||||
import time
|
||||
import traceback
|
||||
from typing import List, Dict, Callable, Tuple, Coroutine
|
||||
from typing import List, Dict, Callable, Tuple, Coroutine, Optional
|
||||
from exo.networking.discovery import Discovery
|
||||
from exo.networking.peer_handle import PeerHandle
|
||||
from exo.topology.device_capabilities import DeviceCapabilities, device_capabilities, UNKNOWN_DEVICE_CAPABILITIES
|
||||
@@ -23,15 +23,29 @@ class ListenProtocol(asyncio.DatagramProtocol):
|
||||
asyncio.create_task(self.on_message(data, addr))
|
||||
|
||||
|
||||
def get_broadcast_address(ip_addr: str) -> str:
|
||||
try:
|
||||
# Split IP into octets and create broadcast address for the subnet
|
||||
ip_parts = ip_addr.split('.')
|
||||
return f"{ip_parts[0]}.{ip_parts[1]}.{ip_parts[2]}.255"
|
||||
except:
|
||||
return "255.255.255.255"
|
||||
|
||||
|
||||
class BroadcastProtocol(asyncio.DatagramProtocol):
|
||||
def __init__(self, message: str, broadcast_port: int):
|
||||
def __init__(self, message: str, broadcast_port: int, source_ip: str):
|
||||
self.message = message
|
||||
self.broadcast_port = broadcast_port
|
||||
self.source_ip = source_ip
|
||||
|
||||
def connection_made(self, transport):
|
||||
sock = transport.get_extra_info("socket")
|
||||
sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
|
||||
transport.sendto(self.message.encode("utf-8"), ("<broadcast>", self.broadcast_port))
|
||||
# Try both subnet-specific and global broadcast
|
||||
broadcast_addr = get_broadcast_address(self.source_ip)
|
||||
transport.sendto(self.message.encode("utf-8"), (broadcast_addr, self.broadcast_port))
|
||||
if broadcast_addr != "255.255.255.255":
|
||||
transport.sendto(self.message.encode("utf-8"), ("255.255.255.255", self.broadcast_port))
|
||||
|
||||
|
||||
class UDPDiscovery(Discovery):
|
||||
@@ -45,7 +59,8 @@ class UDPDiscovery(Discovery):
|
||||
broadcast_interval: int = 2.5,
|
||||
discovery_timeout: int = 30,
|
||||
device_capabilities: DeviceCapabilities = UNKNOWN_DEVICE_CAPABILITIES,
|
||||
allowed_node_ids: List[str] = None,
|
||||
allowed_node_ids: Optional[List[str]] = None,
|
||||
allowed_interface_types: Optional[List[str]] = None,
|
||||
):
|
||||
self.node_id = node_id
|
||||
self.node_port = node_port
|
||||
@@ -56,13 +71,14 @@ class UDPDiscovery(Discovery):
|
||||
self.discovery_timeout = discovery_timeout
|
||||
self.device_capabilities = device_capabilities
|
||||
self.allowed_node_ids = allowed_node_ids
|
||||
self.allowed_interface_types = allowed_interface_types
|
||||
self.known_peers: Dict[str, Tuple[PeerHandle, float, float, int]] = {}
|
||||
self.broadcast_task = None
|
||||
self.listen_task = None
|
||||
self.cleanup_task = None
|
||||
|
||||
async def start(self):
|
||||
self.device_capabilities = device_capabilities()
|
||||
self.device_capabilities = await device_capabilities()
|
||||
self.broadcast_task = asyncio.create_task(self.task_broadcast_presence())
|
||||
self.listen_task = asyncio.create_task(self.task_listen_for_peers())
|
||||
self.cleanup_task = asyncio.create_task(self.task_cleanup_peers())
|
||||
@@ -82,11 +98,7 @@ class UDPDiscovery(Discovery):
|
||||
return [peer_handle for peer_handle, _, _, _ in self.known_peers.values()]
|
||||
|
||||
async def task_broadcast_presence(self):
|
||||
if DEBUG_DISCOVERY >= 2: print("Starting task_broadcast_presence...")
|
||||
|
||||
while True:
|
||||
# Explicitly broadcasting on all assigned ips since broadcasting on `0.0.0.0` on MacOS does not broadcast over
|
||||
# the Thunderbolt bridge when other connection modalities exist such as WiFi or Ethernet
|
||||
for addr, interface_name in get_all_ip_addresses_and_interfaces():
|
||||
interface_priority, interface_type = await get_interface_priority_and_type(interface_name)
|
||||
message = json.dumps({
|
||||
@@ -94,16 +106,26 @@ class UDPDiscovery(Discovery):
|
||||
"node_id": self.node_id,
|
||||
"grpc_port": self.node_port,
|
||||
"device_capabilities": self.device_capabilities.to_dict(),
|
||||
"priority": interface_priority, # TODO: Prioritise interfaces based on bandwidth, latency, and jitter e.g. prioritise Thunderbolt over WiFi.
|
||||
"priority": interface_priority,
|
||||
"interface_name": interface_name,
|
||||
"interface_type": interface_type,
|
||||
})
|
||||
if DEBUG_DISCOVERY >= 3: print(f"Broadcasting presence at ({addr} - {interface_name} - {interface_priority}): {message}")
|
||||
|
||||
transport = None
|
||||
try:
|
||||
transport, _ = await asyncio.get_event_loop().create_datagram_endpoint(lambda: BroadcastProtocol(message, self.broadcast_port), local_addr=(addr, 0), family=socket.AF_INET)
|
||||
if DEBUG_DISCOVERY >= 3: print(f"Broadcasting presence at ({addr} - {interface_name} - {interface_priority})")
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
||||
sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
|
||||
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
||||
try:
|
||||
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)
|
||||
except AttributeError:
|
||||
pass
|
||||
sock.bind((addr, 0))
|
||||
|
||||
transport, _ = await asyncio.get_event_loop().create_datagram_endpoint(
|
||||
lambda: BroadcastProtocol(message, self.broadcast_port, addr),
|
||||
sock=sock
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error in broadcast presence ({addr} - {interface_name} - {interface_priority}): {e}")
|
||||
finally:
|
||||
@@ -111,7 +133,7 @@ class UDPDiscovery(Discovery):
|
||||
try: transport.close()
|
||||
except Exception as e:
|
||||
if DEBUG_DISCOVERY >= 2: print(f"Error closing transport: {e}")
|
||||
if DEBUG_DISCOVERY >= 2: traceback.print_exc()
|
||||
|
||||
await asyncio.sleep(self.broadcast_interval)
|
||||
|
||||
async def on_listen_message(self, data, addr):
|
||||
@@ -147,6 +169,12 @@ class UDPDiscovery(Discovery):
|
||||
peer_prio = message["priority"]
|
||||
peer_interface_name = message["interface_name"]
|
||||
peer_interface_type = message["interface_type"]
|
||||
|
||||
# Skip if interface type is not in allowed list
|
||||
if self.allowed_interface_types and peer_interface_type not in self.allowed_interface_types:
|
||||
if DEBUG_DISCOVERY >= 2: print(f"Ignoring peer {peer_id} as its interface type {peer_interface_type} is not in the allowed interface types list")
|
||||
return
|
||||
|
||||
device_capabilities = DeviceCapabilities(**message["device_capabilities"])
|
||||
|
||||
if peer_id not in self.known_peers or self.known_peers[peer_id][0].addr() != f"{peer_host}:{peer_port}":
|
||||
|
||||
@@ -8,7 +8,7 @@ from typing import List, Dict, Optional, Tuple, Union, Set
|
||||
from exo.networking import Discovery, PeerHandle, Server
|
||||
from exo.inference.inference_engine import InferenceEngine, Shard
|
||||
from exo.topology.topology import Topology
|
||||
from exo.topology.device_capabilities import device_capabilities
|
||||
from exo.topology.device_capabilities import device_capabilities, UNKNOWN_DEVICE_CAPABILITIES
|
||||
from exo.topology.partitioning_strategy import Partition, PartitioningStrategy, map_partitions_to_shards
|
||||
from exo import DEBUG
|
||||
from exo.helpers import AsyncCallbackSystem
|
||||
@@ -37,7 +37,7 @@ class Node:
|
||||
self.partitioning_strategy = partitioning_strategy
|
||||
self.peers: List[PeerHandle] = {}
|
||||
self.topology: Topology = Topology()
|
||||
self.device_capabilities = device_capabilities()
|
||||
self.device_capabilities = UNKNOWN_DEVICE_CAPABILITIES
|
||||
self.buffered_token_output: Dict[str, Tuple[List[int], bool]] = {}
|
||||
self.buffered_logits: Dict[str, List[np.ndarray]] = {}
|
||||
self.buffered_inputs: Dict[str, List[np.ndarray]] = {}
|
||||
@@ -56,6 +56,7 @@ class Node:
|
||||
self.outstanding_requests = {}
|
||||
|
||||
async def start(self, wait_for_peers: int = 0) -> None:
|
||||
self.device_capabilities = await device_capabilities()
|
||||
await self.server.start()
|
||||
await self.discovery.start()
|
||||
await self.update_peers(wait_for_peers)
|
||||
@@ -70,25 +71,28 @@ class Node:
|
||||
def on_node_status(self, request_id, opaque_status):
|
||||
try:
|
||||
status_data = json.loads(opaque_status)
|
||||
if status_data.get("type", "") == "supported_inference_engines":
|
||||
status_type = status_data.get("type", "")
|
||||
if status_type == "supported_inference_engines":
|
||||
node_id = status_data.get("node_id")
|
||||
engines = status_data.get("engines", [])
|
||||
self.topology_inference_engines_pool.append(engines)
|
||||
if status_data.get("type", "") == "node_status":
|
||||
elif status_type == "node_status":
|
||||
if status_data.get("status", "").startswith("start_"):
|
||||
self.current_topology.active_node_id = status_data.get("node_id")
|
||||
elif status_data.get("status", "").startswith("end_"):
|
||||
if status_data.get("node_id") == self.current_topology.active_node_id:
|
||||
self.current_topology.active_node_id = None
|
||||
|
||||
download_progress = None
|
||||
if status_data.get("type", "") == "download_progress":
|
||||
if status_type == "download_progress":
|
||||
if DEBUG >= 8: print(f"Download progress from {status_data.get('node_id')}: {status_data.get('progress')}")
|
||||
download_progress = RepoProgressEvent.from_dict(status_data.get('progress'))
|
||||
self.node_download_progress[status_data.get('node_id')] = download_progress
|
||||
|
||||
if self.topology_viz:
|
||||
self.topology_viz.update_visualization(self.topology, self.partitioning_strategy.partition(self.topology), self.id, self.node_download_progress)
|
||||
except Exception as e:
|
||||
if DEBUG >= 1: print(f"Error updating visualization: {e}")
|
||||
if DEBUG >= 1: print(f"Error on_node_status: {e}")
|
||||
if DEBUG >= 1: traceback.print_exc()
|
||||
|
||||
def get_supported_inference_engines(self):
|
||||
@@ -107,6 +111,8 @@ class Node:
|
||||
def get_topology_inference_engines(self) -> List[List[str]]:
|
||||
return self.topology_inference_engines_pool
|
||||
|
||||
token_count = 0
|
||||
first_token_time = 0
|
||||
async def process_inference_result(
|
||||
self,
|
||||
shard,
|
||||
@@ -124,9 +130,8 @@ class Node:
|
||||
self.buffered_token_output[request_id][0].append(token.item())
|
||||
is_finished = token.item() == self.inference_engine.tokenizer.eos_token_id or is_finished or len(self.buffered_token_output[request_id][0]) >= self.max_generate_tokens
|
||||
if DEBUG >= 2: print(f"[{request_id}] result size: {result.size}, is finished: {is_finished}, buffered tokens: {len(self.buffered_token_output[request_id][0])}")
|
||||
asyncio.create_task(self.broadcast_result(request_id, *self.buffered_token_output[request_id]))
|
||||
forward = token.reshape(1, -1)
|
||||
intermediate_result = self.buffered_token_output[request_id][0]
|
||||
intermediate_result = [self.buffered_token_output[request_id][0][-1]]
|
||||
else:
|
||||
forward = result
|
||||
else:
|
||||
@@ -157,6 +162,7 @@ class Node:
|
||||
inference_state: Optional[dict] = {},
|
||||
) -> Optional[np.ndarray]:
|
||||
shard = self.get_current_shard(base_shard)
|
||||
start_time = time.perf_counter_ns()
|
||||
asyncio.create_task(
|
||||
self.broadcast_opaque_status(
|
||||
request_id,
|
||||
@@ -187,18 +193,17 @@ class Node:
|
||||
"prompt": prompt,
|
||||
"request_id": request_id,
|
||||
"elapsed_time_ns": elapsed_time_ns,
|
||||
"result_size": resp.size if resp is not None else 0,
|
||||
}),
|
||||
)
|
||||
)
|
||||
return resp
|
||||
if DEBUG >= 2: print(f"[{request_id}] process prompt: {base_shard=} {shard=} {prompt=} {elapsed_time_ns=}")
|
||||
|
||||
async def _process_prompt(self, base_shard: Shard, prompt: str, request_id: Optional[str] = None, inference_state: Optional[dict] = None) -> Optional[np.ndarray]:
|
||||
if request_id is None:
|
||||
request_id = str(uuid.uuid4())
|
||||
shard = self.get_current_shard(base_shard)
|
||||
|
||||
if DEBUG >= 2: print(f"[{request_id}] process prompt: {base_shard=} {shard=} {prompt=}")
|
||||
|
||||
if not shard.is_first_layer():
|
||||
if DEBUG >= 2: print(f"[{request_id}] forwarding to next shard: {base_shard=} {shard=} {prompt=}")
|
||||
self.outstanding_requests[request_id] = "waiting"
|
||||
@@ -355,41 +360,11 @@ class Node:
|
||||
inference_state: Optional[dict] = None,
|
||||
) -> Optional[np.ndarray]:
|
||||
shard = self.get_current_shard(base_shard)
|
||||
asyncio.create_task(
|
||||
self.broadcast_opaque_status(
|
||||
request_id,
|
||||
json.dumps({
|
||||
"type": "node_status",
|
||||
"node_id": self.id,
|
||||
"status": "start_process_tensor",
|
||||
"base_shard": base_shard.to_dict(),
|
||||
"shard": shard.to_dict(),
|
||||
"tensor_size": tensor.size,
|
||||
"tensor_shape": tensor.shape,
|
||||
"request_id": request_id,
|
||||
}),
|
||||
)
|
||||
)
|
||||
start_time = time.perf_counter_ns()
|
||||
resp = await self._process_tensor(shard, tensor, request_id, inference_state)
|
||||
end_time = time.perf_counter_ns()
|
||||
elapsed_time_ns = end_time - start_time
|
||||
asyncio.create_task(
|
||||
self.broadcast_opaque_status(
|
||||
request_id,
|
||||
json.dumps({
|
||||
"type": "node_status",
|
||||
"node_id": self.id,
|
||||
"status": "end_process_tensor",
|
||||
"base_shard": base_shard.to_dict(),
|
||||
"shard": shard.to_dict(),
|
||||
"request_id": request_id,
|
||||
"elapsed_time_ns": elapsed_time_ns,
|
||||
"result_size": resp.size if resp is not None else 0,
|
||||
}),
|
||||
)
|
||||
)
|
||||
return resp
|
||||
if DEBUG >= 2: print(f"[{request_id}] process_tensor: {base_shard=} {shard=} {tensor.size=} {tensor.shape=} {elapsed_time_ns=}")
|
||||
|
||||
async def _process_tensor(
|
||||
self,
|
||||
@@ -402,7 +377,6 @@ class Node:
|
||||
request_id = str(uuid.uuid4())
|
||||
shard = self.get_current_shard(base_shard)
|
||||
|
||||
if DEBUG >= 1: print(f"[{request_id}] process_tensor: {tensor.size=} {tensor.shape=}")
|
||||
try:
|
||||
self.outstanding_requests[request_id] = "processing"
|
||||
result, inference_state = await self.inference_engine.infer_tensor(request_id, shard, tensor, inference_state)
|
||||
@@ -412,7 +386,6 @@ class Node:
|
||||
self.outstanding_requests.pop(request_id)
|
||||
print(f"Error processing tensor for shard {shard}: {e}")
|
||||
traceback.print_exc()
|
||||
return None
|
||||
|
||||
async def forward_example(
|
||||
self,
|
||||
@@ -558,18 +531,13 @@ class Node:
|
||||
try:
|
||||
did_peers_change = await self.update_peers()
|
||||
if DEBUG >= 2: print(f"{did_peers_change=}")
|
||||
await self.collect_topology(set())
|
||||
if did_peers_change:
|
||||
await self.collect_topology(set())
|
||||
await self.select_best_inference_engine()
|
||||
except Exception as e:
|
||||
print(f"Error collecting topology: {e}")
|
||||
traceback.print_exc()
|
||||
|
||||
async def get_inference_result(self, request_id: str) -> Tuple[Optional[np.ndarray], bool]:
|
||||
if request_id not in self.buffered_token_output:
|
||||
return None, False
|
||||
return np.array(self.buffered_token_output[request_id][0]), self.buffered_token_output[request_id][1]
|
||||
|
||||
async def collect_topology(self, visited: set[str], max_depth: int = 4) -> Topology:
|
||||
next_topology = Topology()
|
||||
next_topology.update_node(self.id, self.device_capabilities)
|
||||
@@ -614,7 +582,7 @@ class Node:
|
||||
return self._on_opaque_status
|
||||
|
||||
def trigger_on_token_callbacks(self, request_id: str, tokens: List[int], is_finished: bool) -> None:
|
||||
if DEBUG >= 2: print(f"Triggering all on_token callbacks with {request_id=} num_tokens={len(tokens)} {is_finished=}")
|
||||
if DEBUG >= 2: print(f"Triggering all on_token callbacks with {request_id=} {tokens=} {is_finished=}")
|
||||
self.on_token.trigger_all(request_id, tokens, is_finished)
|
||||
|
||||
async def broadcast_result(self, request_id: str, result: List[int], is_finished: bool) -> None:
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import unittest
|
||||
from unittest.mock import Mock, AsyncMock
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from .node import Node
|
||||
from exo.networking.peer_handle import PeerHandle
|
||||
@@ -55,3 +56,11 @@ class TestNode(unittest.IsolatedAsyncioTestCase):
|
||||
await self.node.process_tensor(input_tensor, None)
|
||||
|
||||
self.node.inference_engine.process_shard.assert_called_once_with(input_tensor)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_node_capabilities():
|
||||
node = Node()
|
||||
await node.initialize()
|
||||
caps = await node.get_device_capabilities()
|
||||
assert caps is not None
|
||||
assert caps.model != ""
|
||||
|
||||
166
exo/orchestration/tracing.py
Normal file
166
exo/orchestration/tracing.py
Normal file
@@ -0,0 +1,166 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Any
|
||||
from opentelemetry import trace, context
|
||||
from opentelemetry.trace import Status, StatusCode, SpanContext
|
||||
from opentelemetry.trace.propagation.tracecontext import TraceContextTextMapPropagator
|
||||
from contextlib import contextmanager
|
||||
import time
|
||||
from threading import Lock
|
||||
|
||||
@dataclass
|
||||
class TraceContext:
|
||||
request_id: str
|
||||
sequence_number: int
|
||||
current_span: Optional[trace.Span] = None
|
||||
trace_parent: Optional[str] = None
|
||||
token_group_span: Optional[trace.Span] = None
|
||||
token_count: int = 0
|
||||
token_group_size: int = 10 # Default group size
|
||||
request_span: Optional[trace.Span] = None # Track the main request span
|
||||
|
||||
class Tracer:
|
||||
def __init__(self):
|
||||
self.tracer = trace.get_tracer("exo")
|
||||
self.contexts: Dict[str, TraceContext] = {}
|
||||
self._lock = Lock()
|
||||
self.propagator = TraceContextTextMapPropagator()
|
||||
|
||||
def get_context(self, request_id: str) -> Optional[TraceContext]:
|
||||
with self._lock:
|
||||
return self.contexts.get(request_id)
|
||||
|
||||
def set_context(self, request_id: str, context: TraceContext):
|
||||
with self._lock:
|
||||
self.contexts[request_id] = context
|
||||
|
||||
def inject_context(self, span: trace.Span) -> str:
|
||||
"""Inject current span context into carrier for propagation"""
|
||||
carrier = {}
|
||||
ctx = trace.set_span_in_context(span)
|
||||
self.propagator.inject(carrier, context=ctx)
|
||||
return carrier.get("traceparent", "")
|
||||
|
||||
def extract_context(self, trace_parent: str) -> Optional[context.Context]:
|
||||
"""Extract span context from carrier"""
|
||||
if not trace_parent:
|
||||
return None
|
||||
carrier = {"traceparent": trace_parent}
|
||||
return self.propagator.extract(carrier)
|
||||
|
||||
def create_context_from_parent(self, request_id: str, trace_parent: str, sequence_number: int = 0) -> TraceContext:
|
||||
"""Create a new context with the given trace parent"""
|
||||
parent_ctx = self.extract_context(trace_parent)
|
||||
if parent_ctx:
|
||||
# Create a new request span that links to the parent context
|
||||
request_span = self.tracer.start_span(
|
||||
"request",
|
||||
context=parent_ctx,
|
||||
attributes={
|
||||
"request_id": request_id,
|
||||
"sequence_number": sequence_number
|
||||
}
|
||||
)
|
||||
return TraceContext(
|
||||
request_id=request_id,
|
||||
sequence_number=sequence_number,
|
||||
request_span=request_span,
|
||||
current_span=request_span,
|
||||
trace_parent=trace_parent
|
||||
)
|
||||
return TraceContext(request_id=request_id, sequence_number=sequence_number)
|
||||
|
||||
def handle_token(self, context: TraceContext, token: int, is_finished: bool = False):
|
||||
"""Handle token generation and manage token group spans"""
|
||||
context.token_count += 1
|
||||
|
||||
# Start a new token group span if needed
|
||||
if not context.token_group_span and context.request_span:
|
||||
group_number = (context.token_count - 1) // context.token_group_size + 1
|
||||
|
||||
# Create token group span as child of request span
|
||||
parent_ctx = trace.set_span_in_context(context.request_span)
|
||||
context.token_group_span = self.tracer.start_span(
|
||||
f"token_group_{group_number}",
|
||||
context=parent_ctx,
|
||||
attributes={
|
||||
"request_id": context.request_id,
|
||||
"group.number": group_number,
|
||||
"group.start_token": context.token_count,
|
||||
"group.max_tokens": context.token_group_size
|
||||
}
|
||||
)
|
||||
|
||||
# Add token to current group span
|
||||
if context.token_group_span:
|
||||
relative_pos = ((context.token_count - 1) % context.token_group_size) + 1
|
||||
context.token_group_span.set_attribute(f"token.{relative_pos}", token)
|
||||
context.token_group_span.set_attribute("token.count", relative_pos)
|
||||
|
||||
# End current group span if we've reached the group size or if generation is finished
|
||||
if context.token_count % context.token_group_size == 0 or is_finished:
|
||||
context.token_group_span.set_attribute("token.final_count", relative_pos)
|
||||
context.token_group_span.end()
|
||||
context.token_group_span = None
|
||||
|
||||
@contextmanager
|
||||
def start_span(self, name: str, context: TraceContext, extra_attributes: Optional[Dict[str, Any]] = None):
|
||||
"""Start a new span with proper parent context"""
|
||||
attributes = {
|
||||
"request_id": context.request_id,
|
||||
"sequence_number": context.sequence_number
|
||||
}
|
||||
if extra_attributes:
|
||||
attributes.update(extra_attributes)
|
||||
|
||||
# Use request span as parent if available
|
||||
parent_ctx = None
|
||||
if context.request_span:
|
||||
parent_ctx = trace.set_span_in_context(context.request_span)
|
||||
elif context.trace_parent:
|
||||
parent_ctx = self.extract_context(context.trace_parent)
|
||||
if parent_ctx and not context.request_span:
|
||||
# Create a new request span that links to the parent context
|
||||
context.request_span = self.tracer.start_span(
|
||||
"request",
|
||||
context=parent_ctx,
|
||||
attributes={
|
||||
"request_id": context.request_id,
|
||||
"sequence_number": context.sequence_number
|
||||
}
|
||||
)
|
||||
parent_ctx = trace.set_span_in_context(context.request_span)
|
||||
elif context.current_span:
|
||||
parent_ctx = trace.set_span_in_context(context.current_span)
|
||||
|
||||
# Create span with parent context if it exists
|
||||
if parent_ctx:
|
||||
span = self.tracer.start_span(
|
||||
name,
|
||||
context=parent_ctx,
|
||||
attributes=attributes
|
||||
)
|
||||
else:
|
||||
span = self.tracer.start_span(
|
||||
name,
|
||||
attributes=attributes
|
||||
)
|
||||
|
||||
# Update context with current span
|
||||
prev_span = context.current_span
|
||||
context.current_span = span
|
||||
|
||||
try:
|
||||
start_time = time.perf_counter()
|
||||
yield span
|
||||
duration = time.perf_counter() - start_time
|
||||
span.set_attribute("duration_s", duration)
|
||||
span.set_status(Status(StatusCode.OK))
|
||||
except Exception as e:
|
||||
span.set_status(Status(StatusCode.ERROR, str(e)))
|
||||
raise
|
||||
finally:
|
||||
span.end()
|
||||
context.current_span = prev_span
|
||||
|
||||
# Global tracer instance
|
||||
tracer = Tracer()
|
||||
@@ -1,27 +0,0 @@
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
prometheus:
|
||||
image: prom/prometheus:latest
|
||||
container_name: prometheus
|
||||
volumes:
|
||||
- ./prometheus.yml:/etc/prometheus/prometheus.yml
|
||||
command:
|
||||
- '--config.file=/etc/prometheus/prometheus.yml'
|
||||
ports:
|
||||
- "9090:9090"
|
||||
networks:
|
||||
- monitoring
|
||||
|
||||
grafana:
|
||||
image: grafana/grafana:latest
|
||||
container_name: grafana
|
||||
ports:
|
||||
- "3000:3000"
|
||||
networks:
|
||||
- monitoring
|
||||
depends_on:
|
||||
- prometheus
|
||||
|
||||
networks:
|
||||
monitoring:
|
||||
@@ -1,29 +0,0 @@
|
||||
from exo.orchestration import Node
|
||||
from prometheus_client import start_http_server, Counter, Histogram
|
||||
import json
|
||||
|
||||
# Create metrics to track time spent and requests made.
|
||||
PROCESS_PROMPT_COUNTER = Counter("process_prompt_total", "Total number of prompts processed", ["node_id"])
|
||||
PROCESS_TENSOR_COUNTER = Counter("process_tensor_total", "Total number of tensors processed", ["node_id"])
|
||||
PROCESS_TENSOR_TIME = Histogram("process_tensor_seconds", "Time spent processing tensor", ["node_id"])
|
||||
|
||||
|
||||
def start_metrics_server(node: Node, port: int):
|
||||
start_http_server(port)
|
||||
|
||||
def _on_opaque_status(request_id, opaque_status: str):
|
||||
status_data = json.loads(opaque_status)
|
||||
_type = status_data.get("type", "")
|
||||
node_id = status_data.get("node_id", "")
|
||||
if _type != "node_status":
|
||||
return
|
||||
status = status_data.get("status", "")
|
||||
|
||||
if status == "end_process_prompt":
|
||||
PROCESS_PROMPT_COUNTER.labels(node_id=node_id).inc()
|
||||
elif status == "end_process_tensor":
|
||||
elapsed_time_ns = status_data.get("elapsed_time_ns", 0)
|
||||
PROCESS_TENSOR_COUNTER.labels(node_id=node_id).inc()
|
||||
PROCESS_TENSOR_TIME.labels(node_id=node_id).observe(elapsed_time_ns/1e9) # Convert ns to seconds
|
||||
|
||||
node.on_opaque_status.register("stats").on_next(_on_opaque_status)
|
||||
@@ -1,7 +0,0 @@
|
||||
global:
|
||||
scrape_interval: 15s
|
||||
|
||||
scrape_configs:
|
||||
- job_name: 'exo-node'
|
||||
static_configs:
|
||||
- targets: ['host.docker.internal:8005']
|
||||
@@ -654,4 +654,92 @@ main {
|
||||
|
||||
.model-download-button i {
|
||||
font-size: 0.9em;
|
||||
}
|
||||
|
||||
.topology-section {
|
||||
margin-bottom: 30px;
|
||||
padding: 15px;
|
||||
background: rgba(255, 255, 255, 0.05);
|
||||
border-radius: 8px;
|
||||
}
|
||||
|
||||
.topology-visualization {
|
||||
min-height: 150px;
|
||||
position: relative;
|
||||
margin-top: 10px;
|
||||
}
|
||||
|
||||
.topology-loading {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
gap: 10px;
|
||||
color: #666;
|
||||
font-size: 0.9em;
|
||||
}
|
||||
|
||||
.topology-node {
|
||||
padding: 8px;
|
||||
background: rgba(255, 255, 255, 0.05);
|
||||
border-radius: 4px;
|
||||
margin: 4px 0;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
gap: 4px;
|
||||
}
|
||||
|
||||
.node-info {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
gap: 6px;
|
||||
font-size: 0.9em;
|
||||
}
|
||||
|
||||
.topology-node .status {
|
||||
width: 6px;
|
||||
height: 6px;
|
||||
border-radius: 50%;
|
||||
flex-shrink: 0;
|
||||
}
|
||||
|
||||
.topology-node .status.active {
|
||||
background: #4CAF50;
|
||||
}
|
||||
|
||||
.topology-node .status.inactive {
|
||||
background: #666;
|
||||
}
|
||||
|
||||
.node-details {
|
||||
padding-left: 12px;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
gap: 2px;
|
||||
font-size: 0.8em;
|
||||
opacity: 0.6;
|
||||
}
|
||||
|
||||
.node-details span {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
}
|
||||
|
||||
.peer-connections {
|
||||
margin-top: 8px;
|
||||
padding-left: 12px;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
gap: 4px;
|
||||
}
|
||||
|
||||
.peer-connection {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
gap: 8px;
|
||||
font-size: 0.85em;
|
||||
color: #a0a0a0;
|
||||
}
|
||||
|
||||
.peer-connection i {
|
||||
font-size: 0.8em;
|
||||
color: #666;
|
||||
}
|
||||
@@ -26,21 +26,36 @@
|
||||
<body>
|
||||
<main x-data="state" x-init="console.log(endpoint)">
|
||||
<div class="sidebar">
|
||||
<!-- Add topology section -->
|
||||
<div class="topology-section">
|
||||
<h2 class="megrim-regular">Network Topology</h2>
|
||||
<div class="topology-visualization"
|
||||
x-init="initTopology()"
|
||||
x-ref="topologyViz">
|
||||
<!-- Loading indicator for topology -->
|
||||
<div class="topology-loading" x-show="!topology">
|
||||
<i class="fas fa-spinner fa-spin"></i>
|
||||
<span>Loading topology...</span>
|
||||
</div>
|
||||
<!-- Topology visualization will be rendered here -->
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<h2 class="megrim-regular" style="margin-bottom: 20px;">Models</h2>
|
||||
|
||||
|
||||
<!-- Loading indicator -->
|
||||
<div class="loading-container" x-show="Object.keys(models).length === 0">
|
||||
<i class="fas fa-spinner fa-spin"></i>
|
||||
<span>Loading models...</span>
|
||||
</div>
|
||||
|
||||
|
||||
<template x-for="(model, key) in models" :key="key">
|
||||
<div class="model-option"
|
||||
<div class="model-option"
|
||||
:class="{ 'selected': cstate.selectedModel === key }"
|
||||
@click="cstate.selectedModel = key">
|
||||
<div class="model-header">
|
||||
<div class="model-name" x-text="model.name"></div>
|
||||
<button
|
||||
<button
|
||||
@click.stop="deleteModel(key, model)"
|
||||
class="model-delete-button"
|
||||
x-show="model.download_percentage > 0">
|
||||
@@ -56,7 +71,7 @@
|
||||
<template x-if="!model.loading && model.download_percentage != null">
|
||||
<span>
|
||||
<!-- Check if there's an active download for this model -->
|
||||
<template x-if="downloadProgress?.some(p =>
|
||||
<template x-if="downloadProgress?.some(p =>
|
||||
p.repo_id && p.repo_id.toLowerCase().includes(key.toLowerCase()) && !p.isComplete
|
||||
)">
|
||||
<i class="fas fa-circle-notch fa-spin"></i>
|
||||
@@ -65,7 +80,7 @@
|
||||
</span>
|
||||
</template>
|
||||
<template x-if="!model.loading && (model.download_percentage === null || model.download_percentage < 100) && !downloadProgress?.some(p => !p.isComplete)">
|
||||
<button
|
||||
<button
|
||||
@click.stop="handleDownload(key)"
|
||||
class="model-download-button">
|
||||
<i class="fas fa-download"></i>
|
||||
@@ -75,22 +90,22 @@
|
||||
</div>
|
||||
</div>
|
||||
<template x-if="model.total_size">
|
||||
<div class="model-size" x-text="model.total_downloaded ?
|
||||
`${formatBytes(model.total_downloaded)} / ${formatBytes(model.total_size)}` :
|
||||
<div class="model-size" x-text="model.total_downloaded ?
|
||||
`${formatBytes(model.total_downloaded)} / ${formatBytes(model.total_size)}` :
|
||||
formatBytes(model.total_size)">
|
||||
</div>
|
||||
</template>
|
||||
</div>
|
||||
</div>
|
||||
</template>
|
||||
</div>
|
||||
</div>
|
||||
<!-- Error Toast -->
|
||||
<div x-show="errorMessage !== null" x-transition.opacity class="toast">
|
||||
<div class="toast-header">
|
||||
<span class="toast-error-message" x-text="errorMessage?.basic || ''"></span>
|
||||
<div class="toast-header-buttons">
|
||||
<button @click="errorExpanded = !errorExpanded; if (errorTimeout) { clearTimeout(errorTimeout); errorTimeout = null; }"
|
||||
class="toast-expand-button"
|
||||
<button @click="errorExpanded = !errorExpanded; if (errorTimeout) { clearTimeout(errorTimeout); errorTimeout = null; }"
|
||||
class="toast-expand-button"
|
||||
x-show="errorMessage?.stack">
|
||||
<span x-text="errorExpanded ? 'Hide Details' : 'Show Details'"></span>
|
||||
</button>
|
||||
@@ -119,8 +134,8 @@
|
||||
" x-show="home === 0" x-transition="">
|
||||
<h1 class="title megrim-regular">tinychat</h1>
|
||||
<template x-if="histories.length">
|
||||
<button
|
||||
@click="if(confirm('Are you sure you want to clear all history?')) clearAllHistory();"
|
||||
<button
|
||||
@click="if(confirm('Are you sure you want to clear all history?')) clearAllHistory();"
|
||||
class="clear-history-button">
|
||||
<i class="fas fa-trash"></i> Clear All History
|
||||
</button>
|
||||
@@ -162,14 +177,14 @@
|
||||
</template>
|
||||
</div>
|
||||
</div>
|
||||
<button
|
||||
<button
|
||||
@click="
|
||||
home = 0;
|
||||
cstate = { time: null, messages: [], selectedModel: cstate.selectedModel };
|
||||
time_till_first = 0;
|
||||
tokens_per_second = 0;
|
||||
total_tokens = 0;
|
||||
"
|
||||
"
|
||||
class="back-button"
|
||||
x-show="home === 2">
|
||||
<i class="fas fa-arrow-left"></i>
|
||||
@@ -250,7 +265,7 @@
|
||||
<p><strong>Model:</strong> <span x-text="progress.repo_id + '@' + progress.repo_revision"></span></p>
|
||||
<p><strong>Status:</strong> <span x-text="progress.status"></span></p>
|
||||
<div class="progress-bar-container">
|
||||
<div class="progress-bar"
|
||||
<div class="progress-bar"
|
||||
:class="progress.isComplete ? 'complete' : 'in-progress'"
|
||||
:style="`width: ${progress.percentage}%;`">
|
||||
</div>
|
||||
@@ -294,10 +309,10 @@
|
||||
<i class="fas fa-times"></i>
|
||||
</button>
|
||||
</div>
|
||||
<textarea
|
||||
:disabled="generating || (downloadProgress?.length > 0 && downloadProgress.some(p => !p.isComplete))"
|
||||
<textarea
|
||||
:disabled="generating || (downloadProgress?.length > 0 && downloadProgress.some(p => !p.isComplete))"
|
||||
:placeholder="
|
||||
generating ? 'Generating...' :
|
||||
generating ? 'Generating...' :
|
||||
(downloadProgress?.length > 0 && downloadProgress.some(p => !p.isComplete)) ? 'Download in progress...' :
|
||||
'Say something'
|
||||
"
|
||||
@@ -329,9 +344,9 @@
|
||||
});
|
||||
"
|
||||
x-ref="inputForm"></textarea>
|
||||
<button
|
||||
:disabled="generating || (downloadProgress?.length > 0 && downloadProgress.some(p => !p.isComplete))"
|
||||
@click="await handleSend()"
|
||||
<button
|
||||
:disabled="generating || (downloadProgress?.length > 0 && downloadProgress.some(p => !p.isComplete))"
|
||||
@click="await handleSend()"
|
||||
class="input-button">
|
||||
<i :class="generating ? 'fa-spinner fa-spin' : 'fa-paper-plane'" class="fas"></i>
|
||||
</button>
|
||||
|
||||
@@ -5,7 +5,7 @@ document.addEventListener("alpine:init", () => {
|
||||
time: null,
|
||||
messages: [],
|
||||
selectedModel: 'llama-3.2-1b',
|
||||
},
|
||||
},
|
||||
|
||||
// historical state
|
||||
histories: JSON.parse(localStorage.getItem("histories")) || [],
|
||||
@@ -13,7 +13,7 @@ document.addEventListener("alpine:init", () => {
|
||||
home: 0,
|
||||
generating: false,
|
||||
endpoint: `${window.location.origin}/v1`,
|
||||
|
||||
|
||||
// Initialize error message structure
|
||||
errorMessage: null,
|
||||
errorExpanded: false,
|
||||
@@ -39,6 +39,9 @@ document.addEventListener("alpine:init", () => {
|
||||
// Add models state alongside existing state
|
||||
models: {},
|
||||
|
||||
topology: null,
|
||||
topologyInterval: null,
|
||||
|
||||
init() {
|
||||
// Clean up any pending messages
|
||||
localStorage.removeItem("pendingMessage");
|
||||
@@ -48,7 +51,7 @@ document.addEventListener("alpine:init", () => {
|
||||
|
||||
// Start polling for download progress
|
||||
this.startDownloadProgressPolling();
|
||||
|
||||
|
||||
// Start model polling with the new pattern
|
||||
this.startModelPolling();
|
||||
},
|
||||
@@ -82,14 +85,14 @@ document.addEventListener("alpine:init", () => {
|
||||
async populateSelector() {
|
||||
return new Promise((resolve, reject) => {
|
||||
const evtSource = new EventSource(`${window.location.origin}/modelpool`);
|
||||
|
||||
|
||||
evtSource.onmessage = (event) => {
|
||||
if (event.data === "[DONE]") {
|
||||
evtSource.close();
|
||||
resolve();
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
const modelData = JSON.parse(event.data);
|
||||
// Update existing model data while preserving other properties
|
||||
Object.entries(modelData).forEach(([modelName, data]) => {
|
||||
@@ -102,7 +105,7 @@ document.addEventListener("alpine:init", () => {
|
||||
}
|
||||
});
|
||||
};
|
||||
|
||||
|
||||
evtSource.onerror = (error) => {
|
||||
console.error('EventSource failed:', error);
|
||||
evtSource.close();
|
||||
@@ -509,7 +512,7 @@ document.addEventListener("alpine:init", () => {
|
||||
stack: error.stack || ""
|
||||
};
|
||||
this.errorExpanded = false;
|
||||
|
||||
|
||||
if (this.errorTimeout) {
|
||||
clearTimeout(this.errorTimeout);
|
||||
}
|
||||
@@ -524,10 +527,10 @@ document.addEventListener("alpine:init", () => {
|
||||
|
||||
async deleteModel(modelName, model) {
|
||||
const downloadedSize = model.total_downloaded || 0;
|
||||
const sizeMessage = downloadedSize > 0 ?
|
||||
const sizeMessage = downloadedSize > 0 ?
|
||||
`This will free up ${this.formatBytes(downloadedSize)} of space.` :
|
||||
'This will remove any partially downloaded files.';
|
||||
|
||||
|
||||
if (!confirm(`Are you sure you want to delete ${model.name}? ${sizeMessage}`)) {
|
||||
return;
|
||||
}
|
||||
@@ -541,7 +544,7 @@ document.addEventListener("alpine:init", () => {
|
||||
});
|
||||
|
||||
const data = await response.json();
|
||||
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error(data.detail || 'Failed to delete model');
|
||||
}
|
||||
@@ -600,6 +603,71 @@ document.addEventListener("alpine:init", () => {
|
||||
console.error('Error starting download:', error);
|
||||
this.setError(error);
|
||||
}
|
||||
},
|
||||
|
||||
async fetchTopology() {
|
||||
try {
|
||||
const response = await fetch(`${this.endpoint}/topology`);
|
||||
if (!response.ok) throw new Error('Failed to fetch topology');
|
||||
return await response.json();
|
||||
} catch (error) {
|
||||
console.error('Topology fetch error:', error);
|
||||
return null;
|
||||
}
|
||||
},
|
||||
|
||||
initTopology() {
|
||||
// Initial fetch
|
||||
this.updateTopology();
|
||||
|
||||
// Set up periodic updates
|
||||
this.topologyInterval = setInterval(() => this.updateTopology(), 5000);
|
||||
|
||||
// Cleanup on page unload
|
||||
window.addEventListener('beforeunload', () => {
|
||||
if (this.topologyInterval) {
|
||||
clearInterval(this.topologyInterval);
|
||||
}
|
||||
});
|
||||
},
|
||||
|
||||
async updateTopology() {
|
||||
const topologyData = await this.fetchTopology();
|
||||
if (!topologyData) return;
|
||||
|
||||
const vizElement = this.$refs.topologyViz;
|
||||
vizElement.innerHTML = ''; // Clear existing visualization
|
||||
|
||||
// Create nodes from object
|
||||
Object.entries(topologyData.nodes).forEach(([nodeId, node]) => {
|
||||
const nodeElement = document.createElement('div');
|
||||
nodeElement.className = 'topology-node';
|
||||
|
||||
// Get peer connections for this node
|
||||
const peerConnections = topologyData.peer_graph[nodeId] || [];
|
||||
const peerConnectionsHtml = peerConnections.map(peer => `
|
||||
<div class="peer-connection">
|
||||
<i class="fas fa-arrow-right"></i>
|
||||
<span>To ${peer.to_id}: ${peer.description}</span>
|
||||
</div>
|
||||
`).join('');
|
||||
|
||||
nodeElement.innerHTML = `
|
||||
<div class="node-info">
|
||||
<span class="status ${nodeId === topologyData.active_node_id ? 'active' : 'inactive'}"></span>
|
||||
<span>${node.model}</span>
|
||||
</div>
|
||||
<div class="node-details">
|
||||
<span>${node.chip}</span>
|
||||
<span>${(node.memory / 1024).toFixed(1)}GB RAM</span>
|
||||
<span>${node.flops.fp32.toFixed(1)} TF</span>
|
||||
</div>
|
||||
<div class="peer-connections">
|
||||
${peerConnectionsHtml}
|
||||
</div>
|
||||
`;
|
||||
vizElement.appendChild(nodeElement);
|
||||
});
|
||||
}
|
||||
}));
|
||||
});
|
||||
|
||||
@@ -3,6 +3,8 @@ from pydantic import BaseModel
|
||||
from exo import DEBUG
|
||||
import subprocess
|
||||
import psutil
|
||||
import asyncio
|
||||
from exo.helpers import get_mac_system_info, subprocess_pool
|
||||
|
||||
TFLOPS = 1.00
|
||||
|
||||
@@ -144,13 +146,13 @@ CHIP_FLOPS.update({f"{key} LAPTOP GPU": value for key, value in CHIP_FLOPS.items
|
||||
CHIP_FLOPS.update({f"{key} Laptop GPU": value for key, value in CHIP_FLOPS.items()})
|
||||
|
||||
|
||||
def device_capabilities() -> DeviceCapabilities:
|
||||
async def device_capabilities() -> DeviceCapabilities:
|
||||
if psutil.MACOS:
|
||||
return mac_device_capabilities()
|
||||
return await mac_device_capabilities()
|
||||
elif psutil.LINUX:
|
||||
return linux_device_capabilities()
|
||||
return await linux_device_capabilities()
|
||||
elif psutil.WINDOWS:
|
||||
return windows_device_capabilities()
|
||||
return await windows_device_capabilities()
|
||||
else:
|
||||
return DeviceCapabilities(
|
||||
model="Unknown Device",
|
||||
@@ -160,27 +162,18 @@ def device_capabilities() -> DeviceCapabilities:
|
||||
)
|
||||
|
||||
|
||||
def mac_device_capabilities() -> DeviceCapabilities:
|
||||
# Fetch the model of the Mac using system_profiler
|
||||
model = subprocess.check_output(["system_profiler", "SPHardwareDataType"]).decode("utf-8")
|
||||
model_line = next((line for line in model.split("\n") if "Model Name" in line), None)
|
||||
model_id = model_line.split(": ")[1] if model_line else "Unknown Model"
|
||||
chip_line = next((line for line in model.split("\n") if "Chip" in line), None)
|
||||
chip_id = chip_line.split(": ")[1] if chip_line else "Unknown Chip"
|
||||
memory_line = next((line for line in model.split("\n") if "Memory" in line), None)
|
||||
memory_str = memory_line.split(": ")[1] if memory_line else "Unknown Memory"
|
||||
memory_units = memory_str.split()
|
||||
memory_value = int(memory_units[0])
|
||||
if memory_units[1] == "GB":
|
||||
memory = memory_value*1024
|
||||
else:
|
||||
memory = memory_value
|
||||
|
||||
# Assuming static values for other attributes for demonstration
|
||||
return DeviceCapabilities(model=model_id, chip=chip_id, memory=memory, flops=CHIP_FLOPS.get(chip_id, DeviceFlops(fp32=0, fp16=0, int8=0)))
|
||||
async def mac_device_capabilities() -> DeviceCapabilities:
|
||||
model_id, chip_id, memory = await get_mac_system_info()
|
||||
|
||||
return DeviceCapabilities(
|
||||
model=model_id,
|
||||
chip=chip_id,
|
||||
memory=memory,
|
||||
flops=CHIP_FLOPS.get(chip_id, DeviceFlops(fp32=0, fp16=0, int8=0))
|
||||
)
|
||||
|
||||
|
||||
def linux_device_capabilities() -> DeviceCapabilities:
|
||||
async def linux_device_capabilities() -> DeviceCapabilities:
|
||||
import psutil
|
||||
from tinygrad import Device
|
||||
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List
|
||||
from typing import List, Dict
|
||||
from dataclasses import dataclass
|
||||
from .topology import Topology
|
||||
from exo.inference.shard import Shard
|
||||
from exo.topology.device_capabilities import device_capabilities
|
||||
import asyncio
|
||||
|
||||
|
||||
# Partitions shard-space into pieces of contiguous shards, represented by floating point range [start, end) between 0 and 1
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
import unittest
|
||||
import pytest
|
||||
from unittest.mock import patch
|
||||
from exo.topology.device_capabilities import mac_device_capabilities, DeviceCapabilities, DeviceFlops, TFLOPS
|
||||
from exo.topology.device_capabilities import mac_device_capabilities, DeviceCapabilities, DeviceFlops, TFLOPS, device_capabilities
|
||||
|
||||
|
||||
class TestMacDeviceCapabilities(unittest.TestCase):
|
||||
@patch("subprocess.check_output")
|
||||
def test_mac_device_capabilities_pro(self, mock_check_output):
|
||||
@pytest.mark.asyncio
|
||||
@patch("subprocess.check_output")
|
||||
async def test_mac_device_capabilities_pro(mock_check_output):
|
||||
# Mock the subprocess output
|
||||
mock_check_output.return_value = b"""
|
||||
Hardware:
|
||||
@@ -27,20 +27,19 @@ Activation Lock Status: Enabled
|
||||
"""
|
||||
|
||||
# Call the function
|
||||
result = mac_device_capabilities()
|
||||
result = await mac_device_capabilities()
|
||||
|
||||
# Check the results
|
||||
self.assertIsInstance(result, DeviceCapabilities)
|
||||
self.assertEqual(result.model, "MacBook Pro")
|
||||
self.assertEqual(result.chip, "Apple M3 Max")
|
||||
self.assertEqual(result.memory, 131072) # 16 GB in MB
|
||||
self.assertEqual(
|
||||
str(result),
|
||||
"Model: MacBook Pro. Chip: Apple M3 Max. Memory: 131072MB. Flops: 14.20 TFLOPS, fp16: 28.40 TFLOPS, int8: 56.80 TFLOPS",
|
||||
)
|
||||
assert isinstance(result, DeviceCapabilities)
|
||||
assert result.model == "MacBook Pro"
|
||||
assert result.chip == "Apple M3 Max"
|
||||
assert result.memory == 131072 # 128 GB in MB
|
||||
assert str(result) == "Model: MacBook Pro. Chip: Apple M3 Max. Memory: 131072MB. Flops: 14.20 TFLOPS, fp16: 28.40 TFLOPS, int8: 56.80 TFLOPS"
|
||||
|
||||
@patch("subprocess.check_output")
|
||||
def test_mac_device_capabilities_air(self, mock_check_output):
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@patch("subprocess.check_output")
|
||||
async def test_mac_device_capabilities_air(mock_check_output):
|
||||
# Mock the subprocess output
|
||||
mock_check_output.return_value = b"""
|
||||
Hardware:
|
||||
@@ -62,30 +61,34 @@ Activation Lock Status: Disabled
|
||||
"""
|
||||
|
||||
# Call the function
|
||||
result = mac_device_capabilities()
|
||||
result = await mac_device_capabilities()
|
||||
|
||||
# Check the results
|
||||
self.assertIsInstance(result, DeviceCapabilities)
|
||||
self.assertEqual(result.model, "MacBook Air")
|
||||
self.assertEqual(result.chip, "Apple M2")
|
||||
self.assertEqual(result.memory, 8192) # 8 GB in MB
|
||||
assert isinstance(result, DeviceCapabilities)
|
||||
assert result.model == "MacBook Air"
|
||||
assert result.chip == "Apple M2"
|
||||
assert result.memory == 8192 # 8 GB in MB
|
||||
|
||||
@unittest.skip("Unskip this test when running on a MacBook Pro, Apple M3 Max, 128GB")
|
||||
def test_mac_device_capabilities_real(self):
|
||||
|
||||
@pytest.mark.skip(reason="Unskip this test when running on a MacBook Pro, Apple M3 Max, 128GB")
|
||||
@pytest.mark.asyncio
|
||||
async def test_mac_device_capabilities_real():
|
||||
# Call the function without mocking
|
||||
result = mac_device_capabilities()
|
||||
result = await mac_device_capabilities()
|
||||
|
||||
# Check the results
|
||||
self.assertIsInstance(result, DeviceCapabilities)
|
||||
self.assertEqual(result.model, "MacBook Pro")
|
||||
self.assertEqual(result.chip, "Apple M3 Max")
|
||||
self.assertEqual(result.memory, 131072) # 128 GB in MB
|
||||
self.assertEqual(result.flops, DeviceFlops(fp32=14.20*TFLOPS, fp16=28.40*TFLOPS, int8=56.80*TFLOPS))
|
||||
self.assertEqual(
|
||||
str(result),
|
||||
"Model: MacBook Pro. Chip: Apple M3 Max. Memory: 131072MB. Flops: 14.20 TFLOPS, fp16: 28.40 TFLOPS, int8: 56.80 TFLOPS",
|
||||
)
|
||||
assert isinstance(result, DeviceCapabilities)
|
||||
assert result.model == "MacBook Pro"
|
||||
assert result.chip == "Apple M3 Max"
|
||||
assert result.memory == 131072 # 128 GB in MB
|
||||
assert result.flops == DeviceFlops(fp32=14.20*TFLOPS, fp16=28.40*TFLOPS, int8=56.80*TFLOPS)
|
||||
assert str(result) == "Model: MacBook Pro. Chip: Apple M3 Max. Memory: 131072MB. Flops: 14.20 TFLOPS, fp16: 28.40 TFLOPS, int8: 56.80 TFLOPS"
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
@pytest.mark.asyncio
|
||||
async def test_device_capabilities():
|
||||
caps = await device_capabilities()
|
||||
assert caps.model != ""
|
||||
assert caps.chip != ""
|
||||
assert caps.memory > 0
|
||||
assert caps.flops is not None
|
||||
|
||||
@@ -74,9 +74,9 @@ def gen_diff(table_old, table_new):
|
||||
|
||||
def create_json_report(table, is_diff=False):
|
||||
timestamp = datetime.now(timezone.utc).isoformat()
|
||||
commit_sha = os.environ.get('CIRCLE_SHA1', 'unknown')
|
||||
branch = os.environ.get('CIRCLE_BRANCH', 'unknown')
|
||||
pr_number = os.environ.get('CIRCLE_PR_NUMBER', '')
|
||||
commit_sha = os.environ.get('GITHUB_SHA', 'unknown')
|
||||
branch = os.environ.get('GITHUB_REF_NAME', 'unknown')
|
||||
pr_number = os.environ.get('GITHUB_EVENT_NUMBER', '')
|
||||
|
||||
if is_diff:
|
||||
files = [{
|
||||
|
||||
13
setup.py
13
setup.py
@@ -28,14 +28,19 @@ install_requires = [
|
||||
"tqdm==4.66.4",
|
||||
"transformers==4.46.3",
|
||||
"uuid==1.30",
|
||||
"uvloop==0.21.0",
|
||||
"tinygrad @ git+https://github.com/tinygrad/tinygrad.git@3b26e51fcebfc6576f4e0f99693e6f1406d61d79",
|
||||
]
|
||||
|
||||
extras_require = {
|
||||
"formatting": ["yapf==0.40.2",], "apple_silicon": [
|
||||
"mlx==0.20.0",
|
||||
"mlx-lm==0.19.3",
|
||||
], "windows": ["pywin32==308",], "nvidia-gpu": ["nvidia-ml-py==12.560.30",], "amd-gpu": ["pyrsmi==0.2.0"]
|
||||
"formatting": ["yapf==0.40.2",],
|
||||
"apple_silicon": [
|
||||
"mlx==0.21.1",
|
||||
"mlx-lm==0.20.4",
|
||||
],
|
||||
"windows": ["pywin32==308",],
|
||||
"nvidia-gpu": ["nvidia-ml-py==12.560.30",],
|
||||
"amd-gpu": ["pyrsmi==0.2.0"],
|
||||
}
|
||||
|
||||
# Check if running on macOS with Apple Silicon
|
||||
|
||||
Reference in New Issue
Block a user