collect global topology with local peer visibility, ring memory weighted partitioning strategy

This commit is contained in:
Alex Cheema
2024-06-25 12:32:03 +01:00
parent 3a66a0a4a8
commit 36b8456798
19 changed files with 384 additions and 68 deletions

View File

@@ -6,6 +6,7 @@ from inference.mlx.sharded_utils import get_model_path, load_tokenizer
from inference.shard import Shard
from networking.peer_handle import PeerHandle
from networking.grpc.grpc_peer_handle import GRPCPeerHandle
from topology.device_capabilities import DeviceCapabilities
from typing import List
import asyncio
import argparse
@@ -19,17 +20,19 @@ peers: List[PeerHandle] = [
GRPCPeerHandle(
"node1",
"localhost:8080",
DeviceCapabilities(model="test1", chip="test1", memory=10000)
),
GRPCPeerHandle(
"node2",
"localhost:8081",
DeviceCapabilities(model="test2", chip="test2", memory=20000)
)
]
shards: List[Shard] = [
# Shard(model_id=path_or_hf_repo, start_layer=0, end_layer=15, n_layers=32),
# Shard(model_id=path_or_hf_repo, start_layer=16, end_layer=31, n_layers=32),
Shard(model_id=path_or_hf_repo, start_layer=0, end_layer=30, n_layers=32),
Shard(model_id=path_or_hf_repo, start_layer=31, end_layer=31, n_layers=32),
Shard(model_id=path_or_hf_repo, start_layer=0, end_layer=15, n_layers=32),
Shard(model_id=path_or_hf_repo, start_layer=16, end_layer=31, n_layers=32),
# Shard(model_id=path_or_hf_repo, start_layer=0, end_layer=30, n_layers=32),
# Shard(model_id=path_or_hf_repo, start_layer=31, end_layer=31, n_layers=32),
]
async def run_prompt(prompt: str):

72
example_user_2.py Normal file
View File

@@ -0,0 +1,72 @@
# In this example, a user is running a home cluster with 3 shards.
# They are prompting the cluster to generate a response to a question.
# The cluster is given the question, and the user is given the response.
from inference.mlx.sharded_utils import get_model_path, load_tokenizer
from inference.shard import Shard
from networking.peer_handle import PeerHandle
from networking.grpc.grpc_peer_handle import GRPCPeerHandle
from topology.device_capabilities import DeviceCapabilities
from typing import List
import asyncio
import argparse
path_or_hf_repo = "mlx-community/Meta-Llama-3-8B-Instruct-4bit"
model_path = get_model_path(path_or_hf_repo)
tokenizer_config = {}
tokenizer = load_tokenizer(model_path, tokenizer_config)
peers: List[PeerHandle] = [
GRPCPeerHandle(
"node1",
"localhost:8080",
DeviceCapabilities(model="test1", chip="test1", memory=10000)
),
]
shards: List[Shard] = [
Shard(model_id=path_or_hf_repo, start_layer=0, end_layer=15, n_layers=32),
# Shard(model_id=path_or_hf_repo, start_layer=0, end_layer=30, n_layers=32),
# Shard(model_id=path_or_hf_repo, start_layer=31, end_layer=31, n_layers=32),
]
async def run_prompt(prompt: str):
if tokenizer.chat_template is None:
tokenizer.chat_template = tokenizer.default_chat_template
if (
hasattr(tokenizer, "apply_chat_template")
and tokenizer.chat_template is not None
):
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
for peer, shard in zip(peers, shards):
await peer.connect()
await peer.reset_shard(shard)
tokens = []
last_output = prompt
for _ in range(20):
for peer, shard in zip(peers, shards):
if isinstance(last_output, str):
last_output = await peer.send_prompt(shard, last_output)
print("prompt output:", last_output)
else:
last_output = await peer.send_tensor(shard, last_output)
print("tensor output:", last_output)
if not last_output:
break
tokens.append(last_output.item())
print(tokenizer.decode(tokens))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run prompt")
parser.add_argument("--prompt", type=str, help="The prompt to run")
args = parser.parse_args()
asyncio.run(run_prompt(args.prompt))

View File

@@ -6,7 +6,7 @@ from .shard import Shard
class InferenceEngine(ABC):
@abstractmethod
async def infer_shard(self, shard: Shard, input_data: np.ndarray) -> np.ndarray:
async def infer_tensor(self, shard: Shard, input_data: np.ndarray) -> np.ndarray:
pass
@abstractmethod

View File

@@ -19,11 +19,11 @@ class MLXFixedShardInferenceEngine(InferenceEngine):
output_data = self.stateful_sharded_model.step(mx.array(self.tokenizer.encode(prompt)))
return np.array(output_data)
async def infer_shard(self, shard: Shard, input_data: np.ndarray) -> np.ndarray:
async def infer_tensor(self, shard: Shard, input_data: np.ndarray) -> np.ndarray:
if shard != self.shard:
raise ValueError(f"Shard mismatch: {shard} != {self.shard}")
print("infer_shard", shard, input_data)
print("infer_tensor", shard, input_data)
output_data = self.stateful_sharded_model.step(mx.array(input_data))
return np.array(output_data)

View File

@@ -8,6 +8,7 @@ from networking.grpc.grpc_server import GRPCServer
from inference.mlx.sharded_inference_engine import MLXFixedShardInferenceEngine
from inference.shard import Shard
from networking.grpc.grpc_discovery import GRPCDiscovery
from topology.ring_memory_weighted_partitioning_strategy import RingMemoryWeightedPartitioningStrategy
# parse args
parser = argparse.ArgumentParser(description="Initialize GRPC Discovery")
@@ -20,11 +21,12 @@ parser.add_argument("--model-id", type=str, default="mlx-community/Meta-Llama-3-
parser.add_argument("--n-layers", type=int, default=32, help="Number of layers in the model")
parser.add_argument("--start-layer", type=int, default=0, help="Start layer index")
parser.add_argument("--end-layer", type=int, default=31, help="End layer index")
parser.add_argument("--wait-for-peers", type=int, default=0, help="Number of peers to wait to connect to before starting")
args = parser.parse_args()
inference_engine = MLXFixedShardInferenceEngine(args.model_id, shard=Shard(model_id=args.model_id, n_layers=args.n_layers, start_layer=args.start_layer, end_layer=args.end_layer))
discovery = GRPCDiscovery(args.node_id, args.node_port, args.listen_port, args.broadcast_port)
node = StandardNode(args.node_id, None, inference_engine, discovery)
node = StandardNode(args.node_id, None, inference_engine, discovery, partitioning_strategy=RingMemoryWeightedPartitioningStrategy())
server = GRPCServer(node, args.node_host, args.node_port)
node.server = server
@@ -49,7 +51,7 @@ async def main():
for s in [signal.SIGINT, signal.SIGTERM]:
loop.add_signal_handler(s, handle_exit)
await node.start()
await node.start(wait_for_peers=args.wait_for_peers)
await asyncio.Event().wait()

View File

@@ -6,12 +6,13 @@ from typing import List, Dict
from ..discovery import Discovery
from ..peer_handle import PeerHandle
from .grpc_peer_handle import GRPCPeerHandle
from topology.device_capabilities import DeviceCapabilities, mac_device_capabilities
from topology.device_capabilities import DeviceCapabilities, device_capabilities
class GRPCDiscovery(Discovery):
def __init__(self, node_id: str, node_port: int, listen_port: int, broadcast_port: int = None, broadcast_interval: int = 1):
def __init__(self, node_id: str, node_port: int, listen_port: int, broadcast_port: int = None, broadcast_interval: int = 1, device_capabilities=None):
self.node_id = node_id
self.node_port = node_port
self.device_capabilities = device_capabilities
self.listen_port = listen_port
self.broadcast_port = broadcast_port if broadcast_port is not None else listen_port
self.broadcast_interval = broadcast_interval
@@ -62,7 +63,9 @@ class GRPCDiscovery(Discovery):
return list(self.known_peers.values())
async def _broadcast_presence(self):
self.device_capabilities: DeviceCapabilities = mac_device_capabilities()
if not self.device_capabilities:
self.device_capabilities = device_capabilities()
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
sock.settimeout(0.5)
@@ -70,7 +73,11 @@ class GRPCDiscovery(Discovery):
"type": "discovery",
"node_id": self.node_id,
"grpc_port": self.node_port,
"device_capabilities": self.device_capabilities.to_dict()
"device_capabilities": {
"model": self.device_capabilities.model,
"chip": self.device_capabilities.chip,
"memory": self.device_capabilities.memory
}
}).encode('utf-8')
while True:
@@ -90,7 +97,8 @@ class GRPCDiscovery(Discovery):
peer_id = message['node_id']
peer_host = addr[0]
peer_port = message['grpc_port']
self.known_peers[peer_id] = GRPCPeerHandle(peer_id, f"{peer_host}:{peer_port}")
device_capabilities = DeviceCapabilities(**message['device_capabilities'])
self.known_peers[peer_id] = GRPCPeerHandle(peer_id, f"{peer_host}:{peer_port}", device_capabilities)
self.peer_last_seen[peer_id] = time.time()
except Exception as e:
print(f"Error in peer discovery: {e}")

View File

@@ -8,15 +8,21 @@ from . import node_service_pb2_grpc
from ..peer_handle import PeerHandle
from inference.shard import Shard
from topology.topology import Topology
from topology.device_capabilities import DeviceCapabilities
class GRPCPeerHandle(PeerHandle):
def __init__(self, id: str, address: str):
def __init__(self, id: str, address: str, device_capabilities: DeviceCapabilities):
self._id = id
self.address = address
self._device_capabilities = device_capabilities
def id(self) -> str:
return self._id
def device_capabilities(self) -> DeviceCapabilities:
return self._device_capabilities
async def connect(self):
self.channel = grpc.aio.insecure_channel(self.address)
self.stub = node_service_pb2_grpc.NodeServiceStub(self.channel)
@@ -54,3 +60,15 @@ class GRPCPeerHandle(PeerHandle):
request = node_service_pb2.ResetShardRequest(shard=node_service_pb2.Shard(model_id=shard.model_id, start_layer=shard.start_layer, end_layer=shard.end_layer, n_layers=shard.n_layers))
await self.stub.ResetShard(request)
print(f"Reset shard {shard} on {self.address}")
async def collect_topology(self, max_depth: int) -> Topology:
request = node_service_pb2.CollectTopologyRequest(max_depth=max_depth)
response = await self.stub.CollectTopology(request)
topology = Topology()
for node_id, capabilities in response.nodes.items():
device_capabilities = DeviceCapabilities(model=capabilities.model, chip=capabilities.chip, memory=capabilities.memory)
topology.update_node(node_id, device_capabilities)
for node_id, peers in response.peer_graph.items():
for peer_id in peers.peer_ids:
topology.add_edge(node_id, peer_id)
return topology

View File

@@ -48,3 +48,10 @@ class GRPCServer(node_service_pb2_grpc.NodeServiceServicer):
print(f"Received ResetShard request: {shard}")
await self.node.reset_shard(shard)
return node_service_pb2.Empty()
async def CollectTopology(self, request, context):
max_depth = request.max_depth
topology = await self.node.collect_topology(max_depth)
nodes = {node_id: node_service_pb2.DeviceCapabilities(model=cap.model, chip=cap.chip, memory=cap.memory) for node_id, cap in topology.nodes.items()}
peer_graph = {node_id: node_service_pb2.Peers(peer_ids=peers) for node_id, peers in topology.peer_graph.items()}
return node_service_pb2.Topology(nodes=nodes, peer_graph=peer_graph)

View File

@@ -6,6 +6,7 @@ service NodeService {
rpc SendPrompt (PromptRequest) returns (Tensor) {}
rpc SendTensor (TensorRequest) returns (Tensor) {}
rpc ResetShard (ResetShardRequest) returns (Empty) {}
rpc CollectTopology (CollectTopologyRequest) returns (Topology) {}
}
message Shard {
@@ -35,4 +36,23 @@ message ResetShardRequest {
Shard shard = 1;
}
message CollectTopologyRequest {
int32 max_depth = 1;
}
message Topology {
map<string, DeviceCapabilities> nodes = 1;
map<string, Peers> peer_graph = 2;
}
message Peers {
repeated string peer_ids = 1;
}
message DeviceCapabilities {
string model = 1;
string chip = 2;
int32 memory = 3;
}
message Empty {}

View File

@@ -14,13 +14,17 @@ _sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x12node_service.proto\x12\x0cnode_service\"S\n\x05Shard\x12\x10\n\x08model_id\x18\x01 \x01(\t\x12\x13\n\x0bstart_layer\x18\x02 \x01(\x05\x12\x11\n\tend_layer\x18\x03 \x01(\x05\x12\x10\n\x08n_layers\x18\x04 \x01(\x05\"C\n\rPromptRequest\x12\"\n\x05shard\x18\x01 \x01(\x0b\x32\x13.node_service.Shard\x12\x0e\n\x06prompt\x18\x02 \x01(\t\"Y\n\rTensorRequest\x12\"\n\x05shard\x18\x01 \x01(\x0b\x32\x13.node_service.Shard\x12$\n\x06tensor\x18\x02 \x01(\x0b\x32\x14.node_service.Tensor\";\n\x06Tensor\x12\x13\n\x0btensor_data\x18\x01 \x01(\x0c\x12\r\n\x05shape\x18\x02 \x03(\x05\x12\r\n\x05\x64type\x18\x03 \x01(\t\"7\n\x11ResetShardRequest\x12\"\n\x05shard\x18\x01 \x01(\x0b\x32\x13.node_service.Shard\"\x07\n\x05\x45mpty2\xd9\x01\n\x0bNodeService\x12\x41\n\nSendPrompt\x12\x1b.node_service.PromptRequest\x1a\x14.node_service.Tensor\"\x00\x12\x41\n\nSendTensor\x12\x1b.node_service.TensorRequest\x1a\x14.node_service.Tensor\"\x00\x12\x44\n\nResetShard\x12\x1f.node_service.ResetShardRequest\x1a\x13.node_service.Empty\"\x00\x62\x06proto3')
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x12node_service.proto\x12\x0cnode_service\"S\n\x05Shard\x12\x10\n\x08model_id\x18\x01 \x01(\t\x12\x13\n\x0bstart_layer\x18\x02 \x01(\x05\x12\x11\n\tend_layer\x18\x03 \x01(\x05\x12\x10\n\x08n_layers\x18\x04 \x01(\x05\"C\n\rPromptRequest\x12\"\n\x05shard\x18\x01 \x01(\x0b\x32\x13.node_service.Shard\x12\x0e\n\x06prompt\x18\x02 \x01(\t\"Y\n\rTensorRequest\x12\"\n\x05shard\x18\x01 \x01(\x0b\x32\x13.node_service.Shard\x12$\n\x06tensor\x18\x02 \x01(\x0b\x32\x14.node_service.Tensor\";\n\x06Tensor\x12\x13\n\x0btensor_data\x18\x01 \x01(\x0c\x12\r\n\x05shape\x18\x02 \x03(\x05\x12\r\n\x05\x64type\x18\x03 \x01(\t\"7\n\x11ResetShardRequest\x12\"\n\x05shard\x18\x01 \x01(\x0b\x32\x13.node_service.Shard\"+\n\x16\x43ollectTopologyRequest\x12\x11\n\tmax_depth\x18\x01 \x01(\x05\"\x19\n\x05Peers\x12\x10\n\x08peer_ids\x18\x01 \x03(\t\"\x8e\x02\n\x08Topology\x12\x30\n\x05nodes\x18\x01 \x03(\x0b\x32!.node_service.Topology.NodesEntry\x12\x39\n\npeer_graph\x18\x02 \x03(\x0b\x32%.node_service.Topology.PeerGraphEntry\x1aN\n\nNodesEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12/\n\x05value\x18\x02 \x01(\x0b\x32 .node_service.DeviceCapabilities:\x02\x38\x01\x1a\x45\n\x0ePeerGraphEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\"\n\x05value\x18\x02 \x01(\x0b\x32\x13.node_service.Peers:\x02\x38\x01\"A\n\x12\x44\x65viceCapabilities\x12\r\n\x05model\x18\x01 \x01(\t\x12\x0c\n\x04\x63hip\x18\x02 \x01(\t\x12\x0e\n\x06memory\x18\x03 \x01(\x05\"\x07\n\x05\x45mpty2\xac\x02\n\x0bNodeService\x12\x41\n\nSendPrompt\x12\x1b.node_service.PromptRequest\x1a\x14.node_service.Tensor\"\x00\x12\x41\n\nSendTensor\x12\x1b.node_service.TensorRequest\x1a\x14.node_service.Tensor\"\x00\x12\x44\n\nResetShard\x12\x1f.node_service.ResetShardRequest\x1a\x13.node_service.Empty\"\x00\x12Q\n\x0f\x43ollectTopology\x12$.node_service.CollectTopologyRequest\x1a\x16.node_service.Topology\"\x00\x62\x06proto3')
_globals = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'node_service_pb2', _globals)
if not _descriptor._USE_C_DESCRIPTORS:
DESCRIPTOR._loaded_options = None
_globals['_TOPOLOGY_NODESENTRY']._loaded_options = None
_globals['_TOPOLOGY_NODESENTRY']._serialized_options = b'8\001'
_globals['_TOPOLOGY_PEERGRAPHENTRY']._loaded_options = None
_globals['_TOPOLOGY_PEERGRAPHENTRY']._serialized_options = b'8\001'
_globals['_SHARD']._serialized_start=36
_globals['_SHARD']._serialized_end=119
_globals['_PROMPTREQUEST']._serialized_start=121
@@ -31,8 +35,20 @@ if not _descriptor._USE_C_DESCRIPTORS:
_globals['_TENSOR']._serialized_end=340
_globals['_RESETSHARDREQUEST']._serialized_start=342
_globals['_RESETSHARDREQUEST']._serialized_end=397
_globals['_EMPTY']._serialized_start=399
_globals['_EMPTY']._serialized_end=406
_globals['_NODESERVICE']._serialized_start=409
_globals['_NODESERVICE']._serialized_end=626
_globals['_COLLECTTOPOLOGYREQUEST']._serialized_start=399
_globals['_COLLECTTOPOLOGYREQUEST']._serialized_end=442
_globals['_PEERS']._serialized_start=444
_globals['_PEERS']._serialized_end=469
_globals['_TOPOLOGY']._serialized_start=472
_globals['_TOPOLOGY']._serialized_end=742
_globals['_TOPOLOGY_NODESENTRY']._serialized_start=593
_globals['_TOPOLOGY_NODESENTRY']._serialized_end=671
_globals['_TOPOLOGY_PEERGRAPHENTRY']._serialized_start=673
_globals['_TOPOLOGY_PEERGRAPHENTRY']._serialized_end=742
_globals['_DEVICECAPABILITIES']._serialized_start=744
_globals['_DEVICECAPABILITIES']._serialized_end=809
_globals['_EMPTY']._serialized_start=811
_globals['_EMPTY']._serialized_end=818
_globals['_NODESERVICE']._serialized_start=821
_globals['_NODESERVICE']._serialized_end=1121
# @@protoc_insertion_point(module_scope)

View File

@@ -3,7 +3,7 @@
import grpc
import warnings
import node_service_pb2 as node__service__pb2
from . import node_service_pb2 as node__service__pb2
GRPC_GENERATED_VERSION = '1.64.1'
GRPC_VERSION = grpc.__version__
@@ -54,6 +54,11 @@ class NodeServiceStub(object):
request_serializer=node__service__pb2.ResetShardRequest.SerializeToString,
response_deserializer=node__service__pb2.Empty.FromString,
_registered_method=True)
self.CollectTopology = channel.unary_unary(
'/node_service.NodeService/CollectTopology',
request_serializer=node__service__pb2.CollectTopologyRequest.SerializeToString,
response_deserializer=node__service__pb2.Topology.FromString,
_registered_method=True)
class NodeServiceServicer(object):
@@ -77,6 +82,12 @@ class NodeServiceServicer(object):
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def CollectTopology(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_NodeServiceServicer_to_server(servicer, server):
rpc_method_handlers = {
@@ -95,6 +106,11 @@ def add_NodeServiceServicer_to_server(servicer, server):
request_deserializer=node__service__pb2.ResetShardRequest.FromString,
response_serializer=node__service__pb2.Empty.SerializeToString,
),
'CollectTopology': grpc.unary_unary_rpc_method_handler(
servicer.CollectTopology,
request_deserializer=node__service__pb2.CollectTopologyRequest.FromString,
response_serializer=node__service__pb2.Topology.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'node_service.NodeService', rpc_method_handlers)
@@ -186,3 +202,30 @@ class NodeService(object):
timeout,
metadata,
_registered_method=True)
@staticmethod
def CollectTopology(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(
request,
target,
'/node_service.NodeService/CollectTopology',
node__service__pb2.CollectTopologyRequest.SerializeToString,
node__service__pb2.Topology.FromString,
options,
channel_credentials,
insecure,
call_credentials,
compression,
wait_for_ready,
timeout,
metadata,
_registered_method=True)

View File

@@ -3,6 +3,7 @@ from typing import Optional
import numpy as np
from inference.shard import Shard
from topology.device_capabilities import DeviceCapabilities
from topology.topology import Topology
class PeerHandle(ABC):
@abstractmethod
@@ -32,3 +33,6 @@ class PeerHandle(ABC):
@abstractmethod
async def reset_shard(self, shard: Shard) -> None:
pass
async def collect_topology(self, max_depth: int) -> Topology:
pass

View File

@@ -2,24 +2,28 @@ from typing import Optional
import numpy as np
from abc import ABC, abstractmethod
from inference.shard import Shard
from topology.topology import Topology
class Node(ABC):
@abstractmethod
def start(self, wait_for_peers: int = 0) -> None:
async def start(self, wait_for_peers: int = 0) -> None:
pass
@abstractmethod
def stop(self) -> None:
async def stop(self) -> None:
pass
@abstractmethod
def process_tensor(self, shard: Shard, tensor: np.ndarray) -> None:
async def process_tensor(self, shard: Shard, tensor: np.ndarray) -> None:
pass
@abstractmethod
def process_prompt(self, shard: Shard, prompt: str) -> None:
async def process_prompt(self, shard: Shard, prompt: str) -> None:
pass
@abstractmethod
def reset_shard(self, shard: Shard) -> None:
async def reset_shard(self, shard: Shard) -> None:
pass
async def collect_topology(self, max_depth: int = 2) -> Topology:
pass

View File

@@ -4,16 +4,20 @@ from networking import Discovery, PeerHandle, Server
from inference.inference_engine import InferenceEngine, Shard
from .node import Node
from topology.topology import Topology
from topology.device_capabilities import device_capabilities
from topology.partitioning_strategy import PartitioningStrategy
from topology.partitioning_strategy import Partition
class StandardNode(Node):
def __init__(self, id: str, server: Server, inference_engine: InferenceEngine, discovery: Discovery):
def __init__(self, id: str, server: Server, inference_engine: InferenceEngine, discovery: Discovery, partitioning_strategy: PartitioningStrategy = None):
self.id = id
self.inference_engine = inference_engine
self.server = server
self.discovery = discovery
self.partitioning_strategy = partitioning_strategy
self.peers: List[PeerHandle] = {}
self.topology: Topology = Topology()
self.successor: Optional[PeerHandle] = None
self.device_capabilities = device_capabilities()
async def start(self, wait_for_peers: int = 0) -> None:
await self.server.start()
@@ -24,6 +28,8 @@ class StandardNode(Node):
for peer in self.peers:
await peer.connect()
print(f"Connected to {peer.id()}")
await self.collect_topology()
print(f"Collected topology: {self.topology}")
async def stop(self) -> None:
await self.discovery.stop()
@@ -32,30 +38,62 @@ class StandardNode(Node):
async def process_prompt(self, shard: Shard, prompt: str) -> Optional[np.array]:
print("Process prompt", shard, prompt)
result = await self.inference_engine.infer_prompt(shard, prompt)
# Implement prompt processing logic
print(f"Got result from prompt: {prompt}. Result: {result}")
# You might want to initiate inference here
if self.successor:
await self.succesor.send_tensor()
await self.forward_tensor_to_next_shard(shard, result)
return result
async def process_tensor(self, shard: Shard, tensor: np.ndarray, target: Optional[str] = None) -> None:
async def process_tensor(self, shard: Shard, tensor: np.ndarray) -> None:
print("Process tensor", shard, tensor)
result = await self.inference_engine.infer_shard(shard, tensor)
# Implement prompt processing logic
print(f"Got result from prompt: {len(tensor)}. Result: {result}")
result = await self.inference_engine.infer_tensor(shard, tensor)
print(f"Got result from tensor: {len(tensor)}. Result: {result}")
if target:
target_peer = next((p for p in self.peers if p.id() == target), None)
if not target_peer:
raise ValueError(f"Peer {target} not found")
await target_peer.send_tensor(result)
await self.forward_tensor_to_next_shard(shard, result)
return result
async def forward_tensor_to_next_shard(self, shard: Shard, tensor: np.ndarray) -> None:
if not self.partitioning_strategy:
print("No partitioning strategy found. Skipping forward.")
return
partitions = self.partitioning_strategy.partition(self.topology)
current_partition_index = next((i for i, p in enumerate(partitions) if p.node_id == self.id), None)
print(f"Current partition index: {current_partition_index}")
if current_partition_index is not None:
next_partition_index = (current_partition_index + 1) % len(partitions)
next_partition: Partition = partitions[next_partition_index]
print(f"Computed next from: {shard}, {self.topology}. Next partition: {next_partition}")
if next_partition:
target_peer = next((p for p in self.peers if p.id() == next_partition.node_id), None)
if not target_peer:
raise ValueError(f"Peer for {next_partition} not found")
start_layer = int(next_partition.start * shard.n_layers)
end_layer = int(next_partition.end * shard.n_layers) - 1
next_shard = Shard(shard.model_id, start_layer, end_layer, shard.n_layers)
print(f"Sending tensor to {target_peer.id()} for shard: {next_shard}")
await target_peer.send_tensor(next_shard, tensor)
async def reset_shard(self, shard: Shard) -> None:
# Implement shard reset logic
print(f"Resetting shard: {shard}")
await self.inference_engine.reset_shard(shard)
async def collect_topology(self, max_depth: int = 4) -> Topology:
self.topology.update_node(self.id, self.device_capabilities)
for peer in self.peers:
self.topology.update_node(peer.id(), peer.device_capabilities())
self.topology.add_edge(self.id, peer.id())
if max_depth > 0:
other_topology = await peer.collect_topology(max_depth = max_depth - 1)
print(f"Collected topology from: {peer.id()}: {other_topology}")
self.topology.merge(other_topology)
return self.topology

View File

@@ -1,5 +1,6 @@
from dataclasses import dataclass
import subprocess
import platform
@dataclass
class DeviceCapabilities:
@@ -7,6 +8,17 @@ class DeviceCapabilities:
chip: str
memory: int
def device_capabilities() -> DeviceCapabilities:
system = platform.system()
if system == 'Darwin':
return mac_device_capabilities()
# elif system == 'Linux':
# return linux_device_capabilities()
# elif system == 'Windows':
# return windows_device_capabilities()
else:
return DeviceCapabilities(model="Unknown Model", chip="Unknown Chip", memory=0)
def mac_device_capabilities() -> DeviceCapabilities:
# Fetch the model of the Mac using system_profiler
model = subprocess.check_output(['system_profiler', 'SPHardwareDataType']).decode('utf-8')

View File

@@ -1,10 +1,22 @@
from abc import ABC, abstractmethod
from typing import List
from typing import List, Optional
from dataclasses import dataclass
from inference.shard import Shard
from networking.peer_handle import PeerHandle
from .topology import Topology
# Partitions shard-space into pieces of contiguous shards, represented by floating point range [start, end) between 0 and 1
@dataclass
class Partition:
node_id: str
start: float
end: float
class PartitioningStrategy(ABC):
def node_id(self) -> str:
pass
class PartitioningStrategy(ABC):
@abstractmethod
def next_shard(self, current_shard: Shard, topology: Topology, node_stats: dict) -> Shard:
def partition(self, topology: Topology) -> List[Partition]:
pass

View File

@@ -1,27 +1,18 @@
from typing import List
from .partitioning_strategy import PartitioningStrategy
from inference.shard import Shard
from .topology import Topology
from .partitioning_strategy import Partition
class RingMemoryWeightedPartitioningStrategy(PartitioningStrategy):
def next_shard(self, current_shard: Shard, topology: Topology, node_stats: dict) -> Shard:
# Get all nodes from the topology and include the current node
def partition(self, topology: Topology) -> List[Partition]:
nodes = list(topology.all_nodes())
nodes.append((self.id, None, node_stats))
# Sort nodes by their IDs
nodes.sort(key=lambda x: x[0])
# Calculate the total memory of all nodes
total_memory = sum(node[2]['memory'] for node in nodes)
# Calculate the number of layers to assign to each node proportional to its memory
layers_per_node = {node[0]: (node[2]['memory'] / total_memory) * current_shard.n_layers for node in nodes}
# Find the successor node
node_ids = [node[0] for node in nodes]
current_index = node_ids.index(self.id)
successor_index = (current_index + 1) % len(node_ids)
successor_id = node_ids[successor_index]
# Return the Shard calculated for the successor
return Shard(successor_id, layers_per_node[successor_id])
total_memory = sum(node[1].memory for node in nodes)
partitions = []
start = 0
for node in nodes:
end = start + (node[1].memory / total_memory)
partitions.append(Partition(node[0], start, end))
start = end
return partitions

View File

@@ -0,0 +1,31 @@
import unittest
from unittest.mock import MagicMock
from .ring_memory_weighted_partitioning_strategy import RingMemoryWeightedPartitioningStrategy
from .topology import Topology, DeviceCapabilities
from .partitioning_strategy import Partition
class TestRingMemoryWeightedPartitioningStrategy(unittest.TestCase):
def test_partition(self):
# triangle
# node1 -> node2 -> node3 -> node1
topology = Topology()
topology.update_node('node1', DeviceCapabilities(model="test1", chip="test1", memory=100))
topology.update_node('node2', DeviceCapabilities(model="test2", chip="test2", memory=300))
topology.update_node('node3', DeviceCapabilities(model="test3", chip="test3", memory=600))
topology.add_edge('node1', 'node2')
topology.add_edge('node2', 'node3')
topology.add_edge('node3', 'node1')
topology.add_edge('node1', 'node3')
strategy = RingMemoryWeightedPartitioningStrategy()
partitions = strategy.partition(topology)
self.assertEqual(len(partitions), 3)
self.assertEqual(partitions, [
Partition('node1', 0.0, 0.1),
Partition('node2', 0.1, 0.4),
Partition('node3', 0.4, 1.0)
])
if __name__ == '__main__':
unittest.main()

View File

@@ -1,12 +1,47 @@
from .device_capabilities import DeviceCapabilities
from typing import Dict, Set
class Topology:
def __init__(self):
self.nodes = {} # Maps node IDs to a tuple of (host, port, stats)
self.nodes: Dict[str, DeviceCapabilities] = {} # Maps node IDs to DeviceCapabilities
self.peer_graph: Dict[str, Set[str]] = {} # Adjacency list representing the graph
def update_node(self, node_id, stats):
self.nodes[node_id] = stats
def update_node(self, node_id: str, device_capabilities: DeviceCapabilities):
self.nodes[node_id] = device_capabilities
def get_node(self, node_id):
def get_node(self, node_id: str) -> DeviceCapabilities:
return self.nodes.get(node_id)
def all_nodes(self):
return self.nodes.items()
def add_edge(self, node1_id: str, node2_id: str):
if node1_id not in self.peer_graph:
self.peer_graph[node1_id] = set()
if node2_id not in self.peer_graph:
self.peer_graph[node2_id] = set()
self.peer_graph[node1_id].add(node2_id)
self.peer_graph[node2_id].add(node1_id)
def get_neighbors(self, node_id: str) -> Set[str]:
return self.peer_graph.get(node_id, set())
def all_edges(self):
edges = []
for node, neighbors in self.peer_graph.items():
for neighbor in neighbors:
if (neighbor, node) not in edges: # Avoid duplicate edges
edges.append((node, neighbor))
return edges
def merge(self, other: 'Topology'):
for node_id, capabilities in other.nodes.items():
self.update_node(node_id, capabilities)
for node_id, neighbors in other.peer_graph.items():
for neighbor in neighbors:
self.add_edge(node_id, neighbor)
def __str__(self):
nodes_str = ', '.join(f"{node_id}: {cap}" for node_id, cap in self.nodes.items())
edges_str = ', '.join(f"{node}: {neighbors}" for node, neighbors in self.peer_graph.items())
return f"Topology(Nodes: {{{nodes_str}}}, Edges: {{{edges_str}}})"