This commit is contained in:
cocktailpeanut
2024-08-06 18:25:00 -04:00
parent 3a65e0d247
commit 5dc49230c6
6 changed files with 70 additions and 59 deletions

21
README.md Normal file
View File

@@ -0,0 +1,21 @@
# Flux WebUI
Minimal Flux Web UI powered by Gradio & Diffusers.
# Install
## 1. One click install
The easiest way is to use https://pinokio.computer
## 2. Install manually
```
pip install -r requirements.txt
```
# Run
```
python app.py
```

96
app.py
View File

@@ -1,20 +1,39 @@
# schnell
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline
from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel
import devicetorch
dtype = torch.bfloat16
device = devicetorch.get(torch)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
selected = None
css="""
nav {
text-align: center;
}
#logo{
width: 50px;
display: inline;
}
"""
def infer(prompt, checkpoint="black-fores-labs/FLUX.1-schnell", seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
global pipe
global selected
# if the new checkpoint is different from the selected one, re-instantiate the pipe
if selected != checkpoint:
if checkpoint == "sayakpaul/FLUX.1-merged":
transformer = FluxTransformer2DModel.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=dtype)
pipe = FluxPipeline.from_pretrained("cocktailpeanut/xulf-d", transformer=transformer, torch_dtype=torch.bfloat16)
else:
pipe = FluxPipeline.from_pretrained(checkpoint, torch_dtype=torch.bfloat16)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
#pipe.enable_model_cpu_offload()
pipe.to(device)
pipe.enable_attention_slicing()
selected = checkpoint
devicetorch.empty_cache(torch)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
@@ -27,30 +46,15 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
guidance_scale=0.0
).images[0]
return image, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
def update_slider(checkpoint, num_inference_steps):
if checkpoint == "sayakpaul/FLUX.1-merged":
return 8
else:
return 4
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
gr.HTML("<nav><img id='logo' src='file/icon.webp'/></nav>")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
@@ -58,13 +62,16 @@ with gr.Blocks(css=css) as demo:
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Accordion("Advanced Settings"):
checkpoint = gr.Dropdown(
value= "black-forest-labs/FLUX.1-schnell",
choices=[
"black-forest-labs/FLUX.1-schnell",
"sayakpaul/FLUX.1-merged"
]
)
seed = gr.Slider(
label="Seed",
minimum=0,
@@ -72,11 +79,8 @@ with gr.Blocks(css=css) as demo:
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
@@ -84,18 +88,14 @@ with gr.Blocks(css=css) as demo:
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
value=576,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
@@ -103,21 +103,11 @@ with gr.Blocks(css=css) as demo:
step=1,
value=4,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
checkpoint.change(fn=update_slider, inputs=[checkpoint], outputs=[num_inference_steps])
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
inputs = [prompt, checkpoint, seed, randomize_seed, width, height, num_inference_steps],
outputs = [result, seed]
)
demo.launch()

BIN
icon.png

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

View File

@@ -7,7 +7,7 @@ module.exports = {
uri: "torch.js",
params: {
venv: "env", // Edit this to customize the venv folder path
// xformers: true // uncomment this line if your project requires xformers
xformers: true // uncomment this line if your project requires xformers
}
}
},

View File

@@ -1,8 +1,8 @@
const path = require('path')
module.exports = {
version: "2.0",
title: "flux-all",
description: "",
title: "flux-webui",
description: "Minimal Flux Web UI powered by Gradio & Diffusers",
icon: "icon.webp",
menu: async (kernel, info) => {
let installed = info.exists("env")

View File

@@ -1,8 +1,8 @@
gradio
devicetorch
accelerate
git+https://github.com/huggingface/diffusers.git@flux-pipeline
torch
git+https://github.com/peanutcocktail/diffusers.git
transformers==4.42.4
xformers
sentencepiece
protobuf
einops