4 Commits

Author SHA1 Message Date
chenzehui
c04da092ef update warning for cases 2024-02-19 03:49:54 +00:00
chenzehui
352fbe8dc8 handle batch infer for chat 2024-02-19 03:40:13 +00:00
chenzehui
5087e59e81 update code 2024-02-19 03:32:06 +00:00
chenzehui
4713c9938d update code for chatglm 2024-02-18 13:25:42 +00:00
3 changed files with 75 additions and 6 deletions

View File

@@ -1,6 +1,6 @@
from .base_api import BaseAPIModel
from .base_llm import BaseModel
from .huggingface import HFTransformer, HFTransformerCasualLM
from .huggingface import HFTransformer, HFTransformerCasualLM, HFTransformerChat
from .lmdepoly_wrapper import LMDeployClient, LMDeployPipeline, LMDeployServer
from .meta_template import INTERNLM2_META
from .openai import GPTAPI
@@ -8,5 +8,5 @@ from .openai import GPTAPI
__all__ = [
'BaseModel', 'BaseAPIModel', 'GPTAPI', 'LMDeployClient',
'LMDeployPipeline', 'LMDeployServer', 'HFTransformer',
'HFTransformerCasualLM', 'INTERNLM2_META'
'HFTransformerCasualLM', 'INTERNLM2_META', 'HFTransformerChat'
]

View File

@@ -118,7 +118,7 @@ class APITemplateParser:
return res
def _role2api_role(self, role_prompt: Dict) -> Tuple[str, bool]:
merged_prompt = self.roles[self.roles[role_prompt['role']]]
merged_prompt = self.roles[role_prompt['role']]
if merged_prompt.get('fallback_role'):
merged_prompt = self.roles[self.roles[
merged_prompt['fallback_role']]]

View File

@@ -3,6 +3,7 @@ import logging
from typing import Dict, List, Optional, Union
from lagent.schema import ModelStatusCode
from .base_api import APITemplateParser
from .base_llm import BaseModel
logger = logging.getLogger(__name__)
@@ -37,12 +38,20 @@ class HFTransformer(BaseModel):
tokenizer_only: bool = False,
model_kwargs: dict = dict(device_map='auto'),
meta_template: Optional[Dict] = None,
stop_words_id: Union[List[int], int] = None,
**kwargs):
super().__init__(
path=path,
tokenizer_only=tokenizer_only,
meta_template=meta_template,
**kwargs)
if isinstance(stop_words_id, int):
stop_words_id = [stop_words_id]
self.gen_params.update(stop_words_id=stop_words_id)
if self.gen_params['stop_words'] is not None and \
self.gen_params['stop_words_id'] is not None:
logger.warning("Both stop_words and stop_words_id are specified,"
"only stop_words_id will be used.")
self._load_tokenizer(
path=path,
@@ -57,7 +66,9 @@ class HFTransformer(BaseModel):
self.prefix_allowed_tokens_fn = None
stop_words_id = []
if self.gen_params.get('stop_words'):
if self.gen_params.get('stop_words_id'):
stop_words_id = self.gen_params.get('stop_words_id')
elif self.gen_params.get('stop_words'):
for sw in self.gen_params.get('stop_words'):
stop_words_id.append(self.tokenizer(sw)['input_ids'][-1])
self.additional_eos_token_id = stop_words_id
@@ -69,9 +80,28 @@ class HFTransformer(BaseModel):
tokenizer_path if tokenizer_path else path,
trust_remote_code=True,
**tokenizer_kwargs)
if self.tokenizer.pad_token_id is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if self.tokenizer.eos_token is not None:
logger.warning(
f'Using eos_token_id {self.tokenizer.eos_token} '
'as pad_token_id.')
self.tokenizer.pad_token = self.tokenizer.eos_token
else:
from transformers.generation import GenerationConfig
self.gcfg = GenerationConfig.from_pretrained(path)
if self.gcfg.pad_token_id is not None:
logger.warning(
f'Using pad_token_id {self.gcfg.pad_token_id} '
'as pad_token_id.')
self.tokenizer.pad_token_id = self.gcfg.pad_token_id
else:
raise ValueError(
'pad_token_id is not set for this tokenizer. Try to '
'set pad_token_id via passing '
'`pad_token_id={PAD_TOKEN_ID}` in model_cfg.')
def _load_model(self, path: str, model_kwargs: dict):
import torch
from transformers import AutoModel
@@ -127,7 +157,6 @@ class HFTransformer(BaseModel):
if isinstance(inputs, str):
inputs = [inputs]
batched = False
# import pdb; pdb.set_trace()
inputs = self.tokenizer(
inputs, padding=True, return_tensors='pt', return_length=True)
input_length = inputs['length']
@@ -148,6 +177,11 @@ class HFTransformer(BaseModel):
generation_config.bos_token_id,
generation_config.eos_token_id,
)
if eos_token_id is None:
if self.gcfg.eos_token_id is not None:
eos_token_id = self.gcfg.eos_token_id
else:
eos_token_id = []
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if self.additional_eos_token_id is not None:
@@ -267,3 +301,38 @@ class HFTransformerCasualLM(HFTransformer):
self.model = AutoModelForCausalLM.from_pretrained(
path, trust_remote_code=True, **model_kwargs)
self.model.eval()
class HFTransformerChat(HFTransformerCasualLM):
def __init__(self,
template_parser=APITemplateParser,
**kwargs):
super().__init__(template_parser=template_parser, **kwargs)
def chat(self, inputs: Union[List[dict], List[List[dict]]], do_sample: bool = True, **kwargs):
"""Return the chat completions in stream mode.
Args:
inputs (Union[List[dict], List[List[dict]]]): input messages to be completed.
do_sample (bool): do sampling if enabled
Returns:
the text/chat completion
"""
# handle batch inference with vanilla for loop
if isinstance(inputs[0], list):
resps = []
for input in inputs:
resps.append(self.chat(input, do_sample, **kwargs))
return resps
prompt = self.template_parser(inputs)
query = prompt[-1]['content']
history = prompt[:-1]
try:
response, history = self.model.chat(self.tokenizer,
query,
history=history)
except Exception as e:
# handle over-length input error
logger.warning(str(e))
response = ""
return response