20 Commits
v0.2.1 ... main

Author SHA1 Message Date
liujiangning30
581d9fb898 support demo with hf (#179) 2024-03-26 17:59:01 +08:00
RangiLyu
26672731e9 feat: support vllm (#177)
* feat: support vllm

* update requirements
2024-03-21 17:20:38 +08:00
liujiangning30
466d7aa24d Fix errmsg: cast dict to str (#172) 2024-03-20 14:27:04 +08:00
tackhwa
5f55e12736 fix typo "ablility " in overview.md (#175)
fix type "ablility " in overview.md
2024-03-20 14:26:33 +08:00
liujiangning30
e16a6bfc3a Fix bug of ppt and googlescholar (#167)
* fix bug of ppt and googlescholar

* Format required parameters
2024-03-04 13:52:06 +08:00
BraisedPork
605a921878 Fix chat return of GPTAPI (#166)
fix chat return data

Co-authored-by: wangzy <wangziyi@pjlab.org.cn>
2024-02-29 13:56:10 +08:00
liujiangning30
4fd014bebf update version (#161) 2024-02-23 19:50:49 +08:00
liujiangning30
432ffaae8a fix bug caused by static model_name (#156) 2024-02-21 14:47:40 +08:00
liukuikun
a64aa599ce fix batch generate (#158) 2024-02-20 15:11:42 +08:00
liujiangning30
662011783e Feat: no_skip_speicial_token (#148)
* Feat: no_skip_speicial_token

* fix: get_logger of lmdeploy

* update lmdeploy requirement
2024-02-19 16:33:13 +08:00
loveSnowBest
3cf20f5011 support inference for pad_token & chatglm chat (#157)
* update code for chatglm

* update code

* handle batch infer for chat

* update warning for cases
2024-02-19 15:54:48 +08:00
liujiangning30
7b71988d09 max_tokens to max_new_tokens (#149)
* Fix: max_new_tokens to max_tokens

* change `max_tokens` to `max_new_tokens` in API models

* max_tokens to max_new_tokens

* inject parameter 'max_new_tokens' for examples

---------

Co-authored-by: wangzy <wangziyi@pjlab.org.cn>
2024-02-06 12:08:53 +08:00
liujiangning30
90ef5215b6 Fix: gen_config in lmdeploypipeline updated by input gen_params (#151) 2024-02-05 15:53:08 +08:00
liujiangning30
6a5447663a Fix: filter_suffix in TritonClient (#150) 2024-02-04 17:36:52 +08:00
liujiangning30
a2c23ef9dd Fix: skip start_token (#145) 2024-02-02 16:09:46 +08:00
liukuikun
3be9ec042c [Enchance] lazy import for actions (#146) 2024-02-02 15:44:27 +08:00
BraisedPork
aa5a357a34 Fix type annotation (#144)
fix type annotation

Co-authored-by: wangzy <wangziyi@pjlab.org.cn>
2024-02-02 11:19:45 +08:00
liukuikun
5650a75f3e update readme demo (#143) 2024-02-01 23:09:47 +08:00
liujiangning30
eea6e1cb56 fix bug of TritonClient (#141) 2024-02-01 20:40:37 +08:00
liujiangning30
42c6d265e1 Fix bug of LMDeployClient (#140)
* Fix bug of LMDeployClient

* fix bug of web_demo
2024-02-01 17:58:10 +08:00
29 changed files with 638 additions and 164 deletions

1
.gitignore vendored
View File

@@ -160,3 +160,4 @@ cython_debug/
#.idea/
.vscode/
docs/*/_build/
tmp_dir/

View File

@@ -22,7 +22,7 @@ English | [简体中文](README_zh-CN.md) | [日本語](README_ja_JP.md) | [ह
<div align="center">
[![Alt text](https://img.youtube.com/vi/YAelRLi0Zak/0.jpg)](https://www.youtube.com/watch?v=YAelRLi0Zak)
https://github.com/InternLM/lagent/assets/24622904/3242f9bf-32d2-4907-8815-e16a75a4ac0e
</div>

View File

@@ -18,7 +18,7 @@ English | [简体中文](README_zh-CN.md) | [日本語](README_ja_JP.md) | [ह
<div align="center">
[![Alt text](https://img.youtube.com/vi/YAelRLi0Zak/0.jpg)](https://www.youtube.com/watch?v=YAelRLi0Zak)
https://github.com/InternLM/lagent/assets/24622904/cb851b31-6932-422e-a776-b1aa68f2a64f
</div>

View File

@@ -14,7 +14,7 @@ English | [简体中文](README_zh-CN.md) | [日本語](README_ja_JP.md) | [ह
<div align="center">
[![Alt text](https://img.youtube.com/vi/YAelRLi0Zak/0.jpg)](https://www.youtube.com/watch?v=YAelRLi0Zak)
https://github.com/InternLM/lagent/assets/24622904/cb851b31-6932-422e-a776-b1aa68f2a64f
</div>

View File

@@ -18,7 +18,7 @@ English | [简体中文](README_zh-CN.md) | [日本語](README_ja_JP.md) | [ह
<div align="center">
[![Alt text](https://img.youtube.com/vi/YAelRLi0Zak/0.jpg)](https://www.youtube.com/watch?v=YAelRLi0Zak)
https://github.com/InternLM/lagent/assets/24622904/cb851b31-6932-422e-a776-b1aa68f2a64f
</div>

View File

@@ -18,7 +18,7 @@ English | [简体中文](README_zh-CN.md) | [日本語](README_ja_JP.md) | [ह
<div align="center">
[![Alt text](https://img.youtube.com/vi/YAelRLi0Zak/0.jpg)](https://www.youtube.com/watch?v=YAelRLi0Zak)
https://github.com/InternLM/lagent/assets/24622904/cb851b31-6932-422e-a776-b1aa68f2a64f
</div>

View File

@@ -18,7 +18,7 @@ English | [简体中文](README_zh-CN.md) | [日本語](README_ja_JP.md) | [ह
<div align="center">
[![Alt text](https://img.youtube.com/vi/YAelRLi0Zak/0.jpg)](https://www.youtube.com/watch?v=YAelRLi0Zak)
https://github.com/InternLM/lagent/assets/24622904/cb851b31-6932-422e-a776-b1aa68f2a64f
</div>

View File

@@ -4,7 +4,7 @@ This chapter introduces you to the framework of Lagent, and provides links to de
## What is Lagent
Lagent is an open source LLM agent framework, which enables people to efficiently turn a large language model to agent. It also provides some typical tools to enlighten the ablility of LLM, and the whole framework is shown below:
Lagent is an open source LLM agent framework, which enables people to efficiently turn a large language model to agent. It also provides some typical tools to enlighten the ability of LLM, and the whole framework is shown below:
![image](https://github.com/InternLM/lagent/assets/24351120/e104171e-4baf-43b3-8e6d-90cff1b298b6)

View File

@@ -24,6 +24,7 @@ def main():
model = HFTransformer(
path=args.path,
meta_template=META,
max_new_tokens=1024,
top_p=0.8,
top_k=None,
temperature=0.1,
@@ -69,7 +70,7 @@ def main():
print('\nInternLm2', end='')
current_length = 0
last_status = None
for agent_return in chatbot.stream_chat(history, max_new_tokens=512):
for agent_return in chatbot.stream_chat(history):
status = agent_return.state
if status not in [
AgentStatusCode.STREAM_ING, AgentStatusCode.CODING,

View File

@@ -62,7 +62,8 @@ class StreamlitUI:
def setup_sidebar(self):
"""Setup the sidebar for model and plugin selection."""
model_name = st.sidebar.selectbox('模型选择:', options=['internlm'])
# model_name = st.sidebar.selectbox('模型选择:', options=['internlm'])
model_name = st.sidebar.text_input('模型名称:', value='internlm2-chat-7b')
meta_prompt = st.sidebar.text_area('系统提示词', value=META_CN)
da_prompt = st.sidebar.text_area('数据分析提示词', value=INTERPRETER_CN)
plugin_prompt = st.sidebar.text_area('插件提示词', value=PLUGIN_CN)
@@ -113,19 +114,20 @@ class StreamlitUI:
return model_name, model, plugin_action, uploaded_file, model_ip
def init_model(self, option, ip=None):
"""Initialize the model based on the selected option."""
def init_model(self, model_name, ip=None):
"""Initialize the model based on the input model name."""
model_url = f'http://{ip}'
st.session_state['model_map'][option] = LMDeployClient(
path='internlm2-chat-20b',
st.session_state['model_map'][model_name] = LMDeployClient(
model_name=model_name,
url=model_url,
meta_template=META,
max_new_tokens=1024,
top_p=0.8,
top_k=100,
temperature=0,
repetition_penalty=1.0,
stop_words=['<|im_end|>'])
return st.session_state['model_map'][option]
return st.session_state['model_map'][model_name]
def initialize_chatbot(self, model, plugin_action):
"""Initialize the chatbot with the given model and plugin actions."""
@@ -140,7 +142,7 @@ class StreamlitUI:
belong='assistant',
end='<|action_end|>\n',
), ),
)
max_turn=7)
def render_user(self, prompt: str):
with st.chat_message('user'):
@@ -294,8 +296,7 @@ def main():
st.session_state['ui'].render_action_results(
agent_return.actions[-1])
elif (agent_return.state == AgentStatusCode.STREAM_ING
or agent_return.state == AgentStatusCode.CODING
or agent_return.state == AgentStatusCode.END):
or agent_return.state == AgentStatusCode.CODING):
# st.markdown(agent_return.response)
# 清除占位符的当前内容,并显示新内容
with st.container():

View File

@@ -0,0 +1,332 @@
import copy
import hashlib
import json
import os
import streamlit as st
from lagent.actions import ActionExecutor, ArxivSearch, IPythonInterpreter
from lagent.agents.internlm2_agent import INTERPRETER_CN, META_CN, PLUGIN_CN, Internlm2Agent, Internlm2Protocol
from lagent.llms import HFTransformer
from lagent.llms.meta_template import INTERNLM2_META as META
from lagent.schema import AgentStatusCode
# from streamlit.logger import get_logger
class SessionState:
def init_state(self):
"""Initialize session state variables."""
st.session_state['assistant'] = []
st.session_state['user'] = []
action_list = [
ArxivSearch(),
]
st.session_state['plugin_map'] = {
action.name: action
for action in action_list
}
st.session_state['model_map'] = {}
st.session_state['model_selected'] = None
st.session_state['plugin_actions'] = set()
st.session_state['history'] = []
def clear_state(self):
"""Clear the existing session state."""
st.session_state['assistant'] = []
st.session_state['user'] = []
st.session_state['model_selected'] = None
st.session_state['file'] = set()
if 'chatbot' in st.session_state:
st.session_state['chatbot']._session_history = []
class StreamlitUI:
def __init__(self, session_state: SessionState):
self.init_streamlit()
self.session_state = session_state
def init_streamlit(self):
"""Initialize Streamlit's UI settings."""
st.set_page_config(
layout='wide',
page_title='lagent-web',
page_icon='./docs/imgs/lagent_icon.png')
st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
st.sidebar.title('模型控制')
st.session_state['file'] = set()
st.session_state['model_path'] = None
def setup_sidebar(self):
"""Setup the sidebar for model and plugin selection."""
# model_name = st.sidebar.selectbox('模型选择:', options=['internlm'])
model_name = st.sidebar.text_input('模型名称:', value='internlm2-chat-7b')
meta_prompt = st.sidebar.text_area('系统提示词', value=META_CN)
da_prompt = st.sidebar.text_area('数据分析提示词', value=INTERPRETER_CN)
plugin_prompt = st.sidebar.text_area('插件提示词', value=PLUGIN_CN)
model_path = st.sidebar.text_input(
'模型路径:', value='internlm/internlm2-chat-20b')
if model_name != st.session_state['model_selected'] or st.session_state[
'model_path'] != model_path:
st.session_state['model_path'] = model_path
model = self.init_model(model_name, model_path)
self.session_state.clear_state()
st.session_state['model_selected'] = model_name
if 'chatbot' in st.session_state:
del st.session_state['chatbot']
else:
model = st.session_state['model_map'][model_name]
plugin_name = st.sidebar.multiselect(
'插件选择',
options=list(st.session_state['plugin_map'].keys()),
default=[],
)
da_flag = st.sidebar.checkbox(
'数据分析',
value=False,
)
plugin_action = [
st.session_state['plugin_map'][name] for name in plugin_name
]
if 'chatbot' in st.session_state:
if len(plugin_action) > 0:
st.session_state['chatbot']._action_executor = ActionExecutor(
actions=plugin_action)
else:
st.session_state['chatbot']._action_executor = None
if da_flag:
st.session_state[
'chatbot']._interpreter_executor = ActionExecutor(
actions=[IPythonInterpreter()])
else:
st.session_state['chatbot']._interpreter_executor = None
st.session_state['chatbot']._protocol._meta_template = meta_prompt
st.session_state['chatbot']._protocol.plugin_prompt = plugin_prompt
st.session_state[
'chatbot']._protocol.interpreter_prompt = da_prompt
if st.sidebar.button('清空对话', key='clear'):
self.session_state.clear_state()
uploaded_file = st.sidebar.file_uploader('上传文件')
return model_name, model, plugin_action, uploaded_file, model_path
def init_model(self, model_name, path):
"""Initialize the model based on the input model name."""
st.session_state['model_map'][model_name] = HFTransformer(
path=path,
meta_template=META,
max_new_tokens=1024,
top_p=0.8,
top_k=None,
temperature=0.1,
repetition_penalty=1.0,
stop_words=['<|im_end|>'])
return st.session_state['model_map'][model_name]
def initialize_chatbot(self, model, plugin_action):
"""Initialize the chatbot with the given model and plugin actions."""
return Internlm2Agent(
llm=model,
protocol=Internlm2Protocol(
tool=dict(
begin='{start_token}{name}\n',
start_token='<|action_start|>',
name_map=dict(
plugin='<|plugin|>', interpreter='<|interpreter|>'),
belong='assistant',
end='<|action_end|>\n',
), ),
max_turn=7)
def render_user(self, prompt: str):
with st.chat_message('user'):
st.markdown(prompt)
def render_assistant(self, agent_return):
with st.chat_message('assistant'):
for action in agent_return.actions:
if (action) and (action.type != 'FinishAction'):
self.render_action(action)
st.markdown(agent_return.response)
def render_plugin_args(self, action):
action_name = action.type
args = action.args
import json
parameter_dict = dict(name=action_name, parameters=args)
parameter_str = '```json\n' + json.dumps(
parameter_dict, indent=4, ensure_ascii=False) + '\n```'
st.markdown(parameter_str)
def render_interpreter_args(self, action):
st.info(action.type)
st.markdown(action.args['text'])
def render_action(self, action):
st.markdown(action.thought)
if action.type == 'IPythonInterpreter':
self.render_interpreter_args(action)
elif action.type == 'FinishAction':
pass
else:
self.render_plugin_args(action)
self.render_action_results(action)
def render_action_results(self, action):
"""Render the results of action, including text, images, videos, and
audios."""
if (isinstance(action.result, dict)):
if 'text' in action.result:
st.markdown('```\n' + action.result['text'] + '\n```')
if 'image' in action.result:
# image_path = action.result['image']
for image_path in action.result['image']:
image_data = open(image_path, 'rb').read()
st.image(image_data, caption='Generated Image')
if 'video' in action.result:
video_data = action.result['video']
video_data = open(video_data, 'rb').read()
st.video(video_data)
if 'audio' in action.result:
audio_data = action.result['audio']
audio_data = open(audio_data, 'rb').read()
st.audio(audio_data)
elif isinstance(action.result, list):
for item in action.result:
if item['type'] == 'text':
st.markdown('```\n' + item['content'] + '\n```')
elif item['type'] == 'image':
image_data = open(item['content'], 'rb').read()
st.image(image_data, caption='Generated Image')
elif item['type'] == 'video':
video_data = open(item['content'], 'rb').read()
st.video(video_data)
elif item['type'] == 'audio':
audio_data = open(item['content'], 'rb').read()
st.audio(audio_data)
if action.errmsg:
st.error(action.errmsg)
def main():
# logger = get_logger(__name__)
# Initialize Streamlit UI and setup sidebar
if 'ui' not in st.session_state:
session_state = SessionState()
session_state.init_state()
st.session_state['ui'] = StreamlitUI(session_state)
else:
st.set_page_config(
layout='wide',
page_title='lagent-web',
page_icon='./docs/imgs/lagent_icon.png')
st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
_, model, plugin_action, uploaded_file, _ = st.session_state[
'ui'].setup_sidebar()
# Initialize chatbot if it is not already initialized
# or if the model has changed
if 'chatbot' not in st.session_state or model != st.session_state[
'chatbot']._llm:
st.session_state['chatbot'] = st.session_state[
'ui'].initialize_chatbot(model, plugin_action)
st.session_state['session_history'] = []
for prompt, agent_return in zip(st.session_state['user'],
st.session_state['assistant']):
st.session_state['ui'].render_user(prompt)
st.session_state['ui'].render_assistant(agent_return)
if user_input := st.chat_input(''):
with st.container():
st.session_state['ui'].render_user(user_input)
st.session_state['user'].append(user_input)
# Add file uploader to sidebar
if (uploaded_file
and uploaded_file.name not in st.session_state['file']):
st.session_state['file'].add(uploaded_file.name)
file_bytes = uploaded_file.read()
file_type = uploaded_file.type
if 'image' in file_type:
st.image(file_bytes, caption='Uploaded Image')
elif 'video' in file_type:
st.video(file_bytes, caption='Uploaded Video')
elif 'audio' in file_type:
st.audio(file_bytes, caption='Uploaded Audio')
# Save the file to a temporary location and get the path
postfix = uploaded_file.name.split('.')[-1]
# prefix = str(uuid.uuid4())
prefix = hashlib.md5(file_bytes).hexdigest()
filename = f'{prefix}.{postfix}'
file_path = os.path.join(root_dir, filename)
with open(file_path, 'wb') as tmpfile:
tmpfile.write(file_bytes)
file_size = os.stat(file_path).st_size / 1024 / 1024
file_size = f'{round(file_size, 2)} MB'
# st.write(f'File saved at: {file_path}')
user_input = [
dict(role='user', content=user_input),
dict(
role='user',
content=json.dumps(dict(path=file_path, size=file_size)),
name='file')
]
if isinstance(user_input, str):
user_input = [dict(role='user', content=user_input)]
st.session_state['last_status'] = AgentStatusCode.SESSION_READY
for agent_return in st.session_state['chatbot'].stream_chat(
st.session_state['session_history'] + user_input):
if agent_return.state == AgentStatusCode.PLUGIN_RETURN:
with st.container():
st.session_state['ui'].render_plugin_args(
agent_return.actions[-1])
st.session_state['ui'].render_action_results(
agent_return.actions[-1])
elif agent_return.state == AgentStatusCode.CODE_RETURN:
with st.container():
st.session_state['ui'].render_action_results(
agent_return.actions[-1])
elif (agent_return.state == AgentStatusCode.STREAM_ING
or agent_return.state == AgentStatusCode.CODING):
# st.markdown(agent_return.response)
# 清除占位符的当前内容,并显示新内容
with st.container():
if agent_return.state != st.session_state['last_status']:
st.session_state['temp'] = ''
placeholder = st.empty()
st.session_state['placeholder'] = placeholder
if isinstance(agent_return.response, dict):
action = f"\n\n {agent_return.response['name']}: \n\n"
action_input = agent_return.response['parameters']
if agent_return.response[
'name'] == 'IPythonInterpreter':
action_input = action_input['command']
response = action + action_input
else:
response = agent_return.response
st.session_state['temp'] = response
st.session_state['placeholder'].markdown(
st.session_state['temp'])
elif agent_return.state == AgentStatusCode.END:
st.session_state['session_history'] += (
user_input + agent_return.inner_steps)
agent_return = copy.deepcopy(agent_return)
agent_return.response = st.session_state['temp']
st.session_state['assistant'].append(
copy.deepcopy(agent_return))
st.session_state['last_status'] = agent_return.state
if __name__ == '__main__':
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
root_dir = os.path.join(root_dir, 'tmp_dir')
os.makedirs(root_dir, exist_ok=True)
main()

View File

@@ -26,6 +26,7 @@ def main():
model = HFTransformer(
path=args.path,
meta_template=META,
max_new_tokens=1024,
top_p=0.8,
top_k=None,
temperature=0.1,
@@ -51,8 +52,7 @@ def main():
history = [dict(role='user', content=prompt)]
print('\nInternLm2', end='')
current_length = 0
for status, response, _ in model.stream_chat(
history, max_new_tokens=512):
for status, response, _ in model.stream_chat(history):
print(response[current_length:], end='', flush=True)
current_length = len(response)
history.append(dict(role='assistant', content=response))

View File

@@ -1,7 +1,5 @@
from typing import Optional, Type
import arxiv
from lagent.actions.base_action import BaseAction, tool_api
from lagent.actions.parser import BaseParser, JsonParser
from lagent.schema import ActionReturn, ActionStatusCode
@@ -37,6 +35,8 @@ Electrical Engineering, and Economics from scientific articles on arxiv.org.
:class:`dict`: article information
* content (str): a list of 3 arxiv search papers
"""
import arxiv
try:
results = arxiv.Search( # type: ignore
query[:self.max_query_len],

View File

@@ -2,8 +2,6 @@
import os
from typing import Optional, Type
from serpapi import GoogleSearch
from lagent.actions.base_action import BaseAction, tool_api
from lagent.schema import ActionReturn, ActionStatusCode
from .parser import BaseParser, JsonParser
@@ -78,6 +76,7 @@ class GoogleScholar(BaseAction):
- organic_id: a list of the organic results' ids of the three selected papers
- pub_info: publication information of selected papers
"""
from serpapi import GoogleSearch
params = {
'q': query,
'engine': 'google_scholar',
@@ -154,6 +153,7 @@ class GoogleScholar(BaseAction):
* articles: at most 3 articles by the author
* website: the author's homepage url
"""
from serpapi import GoogleSearch
params = {
'engine': 'google_scholar_author',
'author_id': author_id,
@@ -204,6 +204,7 @@ class GoogleScholar(BaseAction):
* authors: the authors of the article
* citation: the citation format of the article
"""
from serpapi import GoogleSearch
params = {
'q': q,
'engine': 'google_scholar_cite',
@@ -246,6 +247,7 @@ class GoogleScholar(BaseAction):
:class:`dict`: author id
* author_id: the author_id of the author
"""
from serpapi import GoogleSearch
params = {
'mauthors': mauthors,
'engine': 'google_scholar_profiles',

View File

@@ -3,11 +3,7 @@ from contextlib import redirect_stdout
from dataclasses import dataclass
from enum import Enum
from io import StringIO
from typing import Optional
import json5
from IPython import InteractiveShell
from timeout_decorator import timeout as timer
from typing import Optional, Type
from ..schema import ActionReturn, ActionStatusCode
from .base_action import BaseAction, tool_api
@@ -51,10 +47,11 @@ class IPythonInteractive(BaseAction):
max_out_len: int = 2048,
use_signals: bool = True,
description: Optional[dict] = None,
parser: type[BaseParser] = JsonParser,
parser: Type[BaseParser] = JsonParser,
enable: bool = True,
):
super().__init__(description, parser, enable)
from IPython import InteractiveShell
self.timeout = timeout
self._executor = InteractiveShell()
self._highlighting = re.compile(r'\x1b\[\d{,3}(;\d{,3}){,3}m')
@@ -74,6 +71,7 @@ class IPythonInteractive(BaseAction):
timeout (:class:`Optional[int]`): timeout for execution.
This argument only works in the main thread. Defaults to ``None``.
"""
from timeout_decorator import timeout as timer
tool_return = ActionReturn(args={'text': command}, type=self.name)
ret = (
timer(timeout or self.timeout)(self.exec)(command)
@@ -171,6 +169,8 @@ class IPythonInteractive(BaseAction):
Returns:
:class:`str`: Python code
"""
import json5
# Match triple backtick blocks first
triple_match = re.search(r'```[^\n]*\n(.+?)```', text, re.DOTALL)
# Match single backtick blocks second

View File

@@ -11,10 +11,6 @@ import traceback
import uuid
from typing import Optional, Tuple, Type
import json5
import PIL.Image
from jupyter_client import KernelManager
from lagent.actions.base_action import BaseAction, tool_api
from lagent.actions.parser import BaseParser, JsonParser
from lagent.schema import ActionReturn, ActionStatusCode
@@ -75,6 +71,8 @@ class IPythonInterpreter(BaseAction):
@staticmethod
def start_kernel():
from jupyter_client import KernelManager
# start the kernel and manager
km = KernelManager()
km.start_kernel()
@@ -235,6 +233,8 @@ class IPythonInterpreter(BaseAction):
def extract_code(text):
import json5
# Match triple backtick blocks first
triple_match = re.search(r'```[^\n]*\n(.+?)```', text, re.DOTALL)
# Match single backtick blocks second
@@ -258,6 +258,7 @@ def escape_ansi(line):
def publish_image_to_local(image_base64: str, work_dir='./work_dir/tmp_dir'):
import PIL.Image
image_file = str(uuid.uuid4()) + '.png'
local_image_file = os.path.join(work_dir, image_file)

View File

@@ -1,7 +1,5 @@
from typing import Dict, Optional, Type
from pptx import Presentation
from lagent.actions.base_action import BaseAction, tool_api
from lagent.actions.parser import BaseParser, JsonParser
@@ -10,7 +8,7 @@ THEME_MAPPING = {
'template': None,
'title': 'Title Slide',
'single': 'Title and Content',
'two': 'Tow content',
'two': 'Two Content',
}
}
@@ -33,13 +31,14 @@ class PPT(BaseAction):
"""Create a pptx file with specific themes.
Args:
theme (:class:`str`): the theme used
theme (:class:`str`): the theme used. The value should be one of ['Default'].
abs_location (:class:`str`): the ppt file's absolute location
Returns:
:class:`dict`: operation status
* status: the result of the execution
"""
from pptx import Presentation
self.location = abs_location
try:
self.pointer = Presentation(self.theme_mapping[theme]['template'])
@@ -116,6 +115,7 @@ class PPT(BaseAction):
:class:`dict`: operation status
* status: the result of the execution
"""
from PIL import Image
layout_name = self.theme_mapping[self.pointer.slide_master.name]['two']
layout = next(i for i in self.pointer.slide_master.slide_layouts
if i.name == layout_name)
@@ -123,6 +123,7 @@ class PPT(BaseAction):
ph_title, ph_body1, ph_body2 = slide.placeholders
ph_title.text = title
ph = ph_body2
image = Image.open(image)
image_pil = image.to_pil()
left = ph.left
width = ph.width

View File

@@ -4,8 +4,6 @@ import io
from contextlib import redirect_stdout
from typing import Any, Optional, Type
from func_timeout import FunctionTimedOut, func_set_timeout
from lagent.actions.base_action import BaseAction, tool_api
from lagent.actions.parser import BaseParser, JsonParser
from lagent.schema import ActionReturn, ActionStatusCode
@@ -85,6 +83,7 @@ class PythonInterpreter(BaseAction):
Args:
command (:class:`str`): Python code snippet
"""
from func_timeout import FunctionTimedOut, func_set_timeout
self.runtime = GenericRuntime()
try:
tool_return = func_set_timeout(self.timeout)(self._call)(command)

View File

@@ -141,6 +141,12 @@ class Internlm2Protocol:
tool_name = api_info['name'].split('.')[0]
plugin['description'] = API_PREFIX.format(
tool_name=tool_name, description=plugin['description'])
# only keep required parameters
required_parameters = [
param for param in plugin['parameters']
if param['name'] in plugin['required']
]
plugin['parameters'] = required_parameters
plugin_descriptions.append(plugin)
plugin_prompt = self.plugin_prompt.format(
prompt=json.dumps(
@@ -170,13 +176,13 @@ class Internlm2Protocol:
return 'interpreter', message, dict(
name=interpreter_executor.action_names()[0],
parameters=dict(command=code))
return None, message, None
return None, message.split(self.tool['start_token'])[0], None
def format_response(self, action_return, name) -> dict:
if action_return.state == ActionStatusCode.SUCCESS:
response = action_return.format_result()
else:
response = action_return.errmsg
response = str(action_return.errmsg)
content = self.execute['begin'] + response + self.execute['end']
if self.execute.get('fallback_role'):
return dict(

View File

@@ -1,12 +1,13 @@
from .base_api import BaseAPIModel
from .base_llm import BaseModel
from .huggingface import HFTransformer, HFTransformerCasualLM
from .huggingface import HFTransformer, HFTransformerCasualLM, HFTransformerChat
from .lmdepoly_wrapper import LMDeployClient, LMDeployPipeline, LMDeployServer
from .meta_template import INTERNLM2_META
from .openai import GPTAPI
from .vllm_wrapper import VllmModel
__all__ = [
'BaseModel', 'BaseAPIModel', 'GPTAPI', 'LMDeployClient',
'LMDeployPipeline', 'LMDeployServer', 'HFTransformer',
'HFTransformerCasualLM', 'INTERNLM2_META'
'HFTransformerCasualLM', 'INTERNLM2_META', 'HFTransformerChat', 'VllmModel'
]

View File

@@ -118,7 +118,7 @@ class APITemplateParser:
return res
def _role2api_role(self, role_prompt: Dict) -> Tuple[str, bool]:
merged_prompt = self.roles[self.roles[role_prompt['role']]]
merged_prompt = self.roles[role_prompt['role']]
if merged_prompt.get('fallback_role'):
merged_prompt = self.roles[self.roles[
merged_prompt['fallback_role']]]
@@ -152,7 +152,7 @@ class BaseAPIModel(BaseModel):
template_parser: 'APITemplateParser' = APITemplateParser,
meta_template: Optional[Dict] = None,
*,
max_tokens: int = 512,
max_new_tokens: int = 512,
top_p: float = 0.8,
top_k: float = None,
temperature: float = 0.8,
@@ -169,7 +169,7 @@ class BaseAPIModel(BaseModel):
if isinstance(stop_words, str):
stop_words = [stop_words]
self.gen_params = dict(
max_tokens=max_tokens,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,

View File

@@ -99,8 +99,8 @@ class BaseModel:
Args:
path (str): The path to the model.
max_seq_len (int): The maximum sequence length of the model. Defaults
to 2048.
max_new_tokens (int): Maximum length of output expected to be generated by the model. Defaults
to 512.
tokenizer_only (bool): If True, only the tokenizer will be initialized.
Defaults to False.
meta_template (list of dict, optional): The model's meta prompt
@@ -116,7 +116,7 @@ class BaseModel:
template_parser: 'LMTemplateParser' = LMTemplateParser,
meta_template: Optional[List[Dict]] = None,
*,
max_tokens: int = 512,
max_new_tokens: int = 512,
top_p: float = 0.8,
top_k: float = None,
temperature: float = 0.8,
@@ -133,7 +133,7 @@ class BaseModel:
if isinstance(stop_words, str):
stop_words = [stop_words]
self.gen_params = dict(
max_tokens=max_tokens,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
@@ -183,12 +183,12 @@ class BaseModel:
Returns:
"""
if isinstance(inputs[0], list):
inputs = list()
_inputs = list()
for msg in inputs:
inputs.append(self.template_parser(msg))
_inputs.append(self.template_parser(msg))
else:
inputs = self.template_parser(inputs)
return self.generate(inputs, **gen_params)
_inputs = self.template_parser(inputs)
return self.generate(_inputs, **gen_params)
def generate_from_template(self, inputs: Union[List[dict],
List[List[dict]]],

View File

@@ -1,9 +1,9 @@
import copy
import logging
import warnings
from typing import Dict, List, Optional, Union
from lagent.schema import ModelStatusCode
from .base_api import APITemplateParser
from .base_llm import BaseModel
logger = logging.getLogger(__name__)
@@ -19,8 +19,6 @@ class HFTransformer(BaseModel):
Args:
path (str): The name or path to HuggingFace's model.
max_seq_len (int): The maximum length of the input sequence. Defaults
to 2048.
tokenizer_path (str): The path to the tokenizer. Defaults to None.
tokenizer_kwargs (dict): Keyword arguments for the tokenizer.
Defaults to {}.
@@ -40,12 +38,20 @@ class HFTransformer(BaseModel):
tokenizer_only: bool = False,
model_kwargs: dict = dict(device_map='auto'),
meta_template: Optional[Dict] = None,
stop_words_id: Union[List[int], int] = None,
**kwargs):
super().__init__(
path=path,
tokenizer_only=tokenizer_only,
meta_template=meta_template,
**kwargs)
if isinstance(stop_words_id, int):
stop_words_id = [stop_words_id]
self.gen_params.update(stop_words_id=stop_words_id)
if self.gen_params['stop_words'] is not None and \
self.gen_params['stop_words_id'] is not None:
logger.warning('Both stop_words and stop_words_id are specified,'
'only stop_words_id will be used.')
self._load_tokenizer(
path=path,
@@ -60,7 +66,9 @@ class HFTransformer(BaseModel):
self.prefix_allowed_tokens_fn = None
stop_words_id = []
if self.gen_params.get('stop_words'):
if self.gen_params.get('stop_words_id'):
stop_words_id = self.gen_params.get('stop_words_id')
elif self.gen_params.get('stop_words'):
for sw in self.gen_params.get('stop_words'):
stop_words_id.append(self.tokenizer(sw)['input_ids'][-1])
self.additional_eos_token_id = stop_words_id
@@ -72,8 +80,27 @@ class HFTransformer(BaseModel):
tokenizer_path if tokenizer_path else path,
trust_remote_code=True,
**tokenizer_kwargs)
if self.tokenizer.pad_token_id is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if self.tokenizer.eos_token is not None:
logger.warning(
f'Using eos_token_id {self.tokenizer.eos_token} '
'as pad_token_id.')
self.tokenizer.pad_token = self.tokenizer.eos_token
else:
from transformers.generation import GenerationConfig
self.gcfg = GenerationConfig.from_pretrained(path)
if self.gcfg.pad_token_id is not None:
logger.warning(
f'Using pad_token_id {self.gcfg.pad_token_id} '
'as pad_token_id.')
self.tokenizer.pad_token_id = self.gcfg.pad_token_id
else:
raise ValueError(
'pad_token_id is not set for this tokenizer. Try to '
'set pad_token_id via passing '
'`pad_token_id={PAD_TOKEN_ID}` in model_cfg.')
def _load_model(self, path: str, model_kwargs: dict):
import torch
@@ -130,7 +157,6 @@ class HFTransformer(BaseModel):
if isinstance(inputs, str):
inputs = [inputs]
batched = False
# import pdb; pdb.set_trace()
inputs = self.tokenizer(
inputs, padding=True, return_tensors='pt', return_length=True)
input_length = inputs['length']
@@ -151,55 +177,20 @@ class HFTransformer(BaseModel):
generation_config.bos_token_id,
generation_config.eos_token_id,
)
if eos_token_id is None:
if self.gcfg.eos_token_id is not None:
eos_token_id = self.gcfg.eos_token_id
else:
eos_token_id = []
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if self.additional_eos_token_id is not None:
eos_token_id.extend(self.additional_eos_token_id)
eos_token_id_tensor = torch.tensor(eos_token_id).to(
input_ids.device) if eos_token_id is not None else None
has_default_max_length = (
kwargs.get('max_length') is None
and generation_config.max_length is not None)
if (has_default_max_length
and generation_config.max_new_tokens is None):
warnings.warn(
"Using `max_length`'s default"
f'({generation_config.max_length})'
'to control the generation length. '
'This behaviour is deprecated and will be removed'
' from the config in v5 of Transformers -- we'
' recommend using `max_new_tokens` to control the'
' maximum length of the generation.',
UserWarning,
)
elif generation_config.max_new_tokens is not None:
generation_config.max_length = (
generation_config.max_new_tokens + input_ids_seq_length)
if not has_default_max_length:
logger.warn( # pylint: disable=W4902
'Both `max_new_tokens`'
f'(={generation_config.max_new_tokens})'
'and `max_length`'
f'(={generation_config.max_length})'
' seem to have been set.`max_new_tokens`'
' will take precedence. Please refer to'
' the documentation for more information. '
'(https://huggingface.co/docs/transformers/main/en'
'/main_classes/text_generation)',
UserWarning,
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = 'input_ids'
logger.warning(
f'Input length of {input_ids_string}'
f' is {input_ids_seq_length},'
' but `max_length` is set to'
f' {generation_config.max_length}.'
'This can lead to unexpected behavior.'
' You should consider increasing `max_new_tokens`.')
# 2. Set generation parameters if not already defined
generation_config.max_length = (
generation_config.max_new_tokens + input_ids_seq_length)
# Set generation parameters if not already defined
logits_processor = self.logits_processor
stopping_criteria = self.stopping_criteria
@@ -310,3 +301,39 @@ class HFTransformerCasualLM(HFTransformer):
self.model = AutoModelForCausalLM.from_pretrained(
path, trust_remote_code=True, **model_kwargs)
self.model.eval()
class HFTransformerChat(HFTransformerCasualLM):
def __init__(self, template_parser=APITemplateParser, **kwargs):
super().__init__(template_parser=template_parser, **kwargs)
def chat(self,
inputs: Union[List[dict], List[List[dict]]],
do_sample: bool = True,
**kwargs):
"""Return the chat completions in stream mode.
Args:
inputs (Union[List[dict], List[List[dict]]]): input messages to be completed.
do_sample (bool): do sampling if enabled
Returns:
the text/chat completion
"""
# handle batch inference with vanilla for loop
if isinstance(inputs[0], list):
resps = []
for input in inputs:
resps.append(self.chat(input, do_sample, **kwargs))
return resps
prompt = self.template_parser(inputs)
query = prompt[-1]['content']
history = prompt[:-1]
try:
response, history = self.model.chat(
self.tokenizer, query, history=history)
except Exception as e:
# handle over-length input error
logger.warning(str(e))
response = ''
return response

View File

@@ -46,9 +46,9 @@ class TritonClient(BaseModel):
inputs: Union[str, List[str]],
session_id: int = 2967,
request_id: str = '',
max_tokens: int = 512,
sequence_start: bool = True,
sequence_end: bool = True,
skip_special_tokens: bool = False,
**kwargs):
"""Start a new round conversation of a session. Return the chat
completions in non-stream mode.
@@ -57,10 +57,10 @@ class TritonClient(BaseModel):
inputs (str, List[str]): user's prompt(s) in this round
session_id (int): the identical id of a session
request_id (str): the identical id of this round conversation
max_tokens (int): the expected generated token numbers
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
Returns:
(a list of/batched) text/chat completion
"""
@@ -72,9 +72,12 @@ class TritonClient(BaseModel):
assert isinstance(session_id, int), \
f'INT session id is required, but got {type(session_id)}'
logger = get_logger(log_level=self.chatbot.log_level)
self.chatbot.cfg = self._update_gen_params(**kwargs)
max_new_tokens = self.chatbot.cfg.max_new_tokens
logger = get_logger('service.ft', log_level=self.chatbot.log_level)
logger.info(f'session {session_id}, request_id {request_id}, '
f'max_out_len {max_tokens}')
f'max_out_len {max_new_tokens}')
if self.chatbot._session is None:
sequence_start = True
@@ -88,32 +91,33 @@ class TritonClient(BaseModel):
self.chatbot._session.request_id = request_id
self.chatbot._session.response = ''
self.chatbot.cfg = self._update_gen_params(
max_tokens=max_tokens, **kwargs)
status, res, _ = None, '', 0
for status, res, _ in self.chatbot._stream_infer(
self.chatbot._session, prompt, max_tokens, sequence_start,
sequence_end):
if status.value < 0:
break
if status.value == 0:
self.chatbot._session.histories = (
self.chatbot._session.histories +
self.chatbot._session.prompt + self.chatbot._session.response)
# remove stop_words
res = filter_suffix(res, self.gen_params.get('stop_words'))
return res
else:
return ''
self.chatbot._session,
prompt,
max_new_tokens,
sequence_start,
sequence_end,
skip_special_tokens=skip_special_tokens):
status = self.state_map.get(status)
if status < ModelStatusCode.END:
return ''
elif status == ModelStatusCode.END:
self.chatbot._session.histories = (
self.chatbot._session.histories +
self.chatbot._session.prompt +
self.chatbot._session.response)
# remove stop_words
res = filter_suffix(res, self.gen_params.get('stop_words'))
return res
def stream_chat(self,
inputs: List[dict],
session_id: int = 2967,
request_id: str = '',
max_tokens: int = 512,
sequence_start: bool = True,
sequence_end: bool = True,
skip_special_tokens: bool = False,
**kwargs):
"""Start a new round conversation of a session. Return the chat
completions in stream mode.
@@ -122,21 +126,24 @@ class TritonClient(BaseModel):
session_id (int): the identical id of a session
inputs (List[dict]): user's inputs in this round conversation
request_id (str): the identical id of this round conversation
max_tokens (int): the expected generated token numbers
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
Returns:
tuple(Status, str, int): status, text/chat completion,
generated token number
"""
from lmdeploy.serve.turbomind.chatbot import Session, StatusCode, get_logger
from lmdeploy.serve.turbomind.chatbot import Session, get_logger
assert isinstance(session_id, int), \
f'INT session id is required, but got {type(session_id)}'
logger = get_logger(log_level=self.chatbot.log_level)
self.chatbot.cfg = self._update_gen_params(**kwargs)
max_new_tokens = self.chatbot.cfg.max_new_tokens
logger = get_logger('service.ft', log_level=self.chatbot.log_level)
logger.info(f'session {session_id}, request_id {request_id}, '
f'max_out_len {max_tokens}')
f'max_out_len {max_new_tokens}')
if self.chatbot._session is None:
sequence_start = True
@@ -150,27 +157,29 @@ class TritonClient(BaseModel):
self.chatbot._session.request_id = request_id
self.chatbot._session.response = ''
self.chatbot.cfg = self._update_gen_params(
max_tokens=max_tokens, **kwargs)
prompt = self.template_parser(inputs)
status, res, _ = None, '', 0
for status, res, _ in self.chatbot._stream_infer(
self.chatbot._session, prompt, max_tokens, sequence_start,
sequence_end):
if status == StatusCode.TRITON_STREAM_END: # remove stop_words
res = filter_suffix(res, self.gen_params.get('stop_words'))
if status.value < 0:
self.chatbot._session,
prompt,
max_new_tokens,
sequence_start,
sequence_end,
skip_special_tokens=skip_special_tokens):
status = self.state_map.get(status)
# The stop symbol also appears in the output of the last STREAM_ING state.
res = filter_suffix(res, self.gen_params.get('stop_words'))
if status < ModelStatusCode.END:
return status, res, _
elif status == ModelStatusCode.END: # remove stop_words
self.chatbot._session.histories = (
self.chatbot._session.histories +
self.chatbot._session.prompt +
self.chatbot._session.response)
yield status, res, _
break
else:
yield self.state_map.get(status), res, _
if status.value == 0:
self.chatbot._session.histories = (
self.chatbot._session.histories +
self.chatbot._session.prompt + self.chatbot._session.response)
yield self.state_map.get(status), res, _
else:
return self.state_map.get(status), res, _
yield status, res, _
def _update_gen_params(self, **kwargs):
import mmengine
@@ -226,6 +235,7 @@ class LMDeployPipeline(BaseModel):
def generate(self,
inputs: Union[str, List[str]],
do_preprocess: bool = None,
skip_special_tokens: bool = False,
**kwargs):
"""Return the chat completions in non-stream mode.
@@ -233,18 +243,23 @@ class LMDeployPipeline(BaseModel):
inputs (Union[str, List[str]]): input texts to be completed.
do_preprocess (bool): whether pre-process the messages. Default to
True, which means chat_template will be applied.
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
Returns:
(a list of/batched) text/chat completion
"""
from lmdeploy.messages import GenerationConfig
batched = True
if isinstance(inputs, str):
inputs = [inputs]
batched = False
prompt = inputs
gen_params = self.update_gen_params(**kwargs)
gen_config = GenerationConfig(
skip_special_tokens=skip_special_tokens, **gen_params)
response = self.model.batch_infer(
prompt, do_preprocess=do_preprocess, **gen_params)
prompt, gen_config=gen_config, do_preprocess=do_preprocess)
response = [resp.text for resp in response]
# remove stop_words
response = filter_suffix(response, self.gen_params.get('stop_words'))
@@ -308,6 +323,7 @@ class LMDeployServer(BaseModel):
sequence_start: bool = True,
sequence_end: bool = True,
ignore_eos: bool = False,
skip_special_tokens: Optional[bool] = False,
timeout: int = 30,
**kwargs) -> List[str]:
"""Start a new round conversation of a session. Return the chat
@@ -319,6 +335,8 @@ class LMDeployServer(BaseModel):
sequence_start (bool): start flag of a session
sequence_end (bool): end flag of a session
ignore_eos (bool): indicator for ignoring eos
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
timeout (int): max time to wait for response
Returns:
(a list of/batched) text/chat completion
@@ -330,6 +348,8 @@ class LMDeployServer(BaseModel):
batched = False
gen_params = self.update_gen_params(**kwargs)
max_new_tokens = gen_params.pop('max_new_tokens')
gen_params.update(max_tokens=max_new_tokens)
resp = [''] * len(inputs)
for text in self.client.completions_v1(
@@ -340,6 +360,7 @@ class LMDeployServer(BaseModel):
sequence_end=sequence_end,
stream=False,
ignore_eos=ignore_eos,
skip_special_tokens=skip_special_tokens,
timeout=timeout,
**gen_params):
resp = [
@@ -359,6 +380,7 @@ class LMDeployServer(BaseModel):
sequence_end: bool = True,
stream: bool = True,
ignore_eos: bool = False,
skip_special_tokens: Optional[bool] = False,
timeout: int = 30,
**kwargs):
"""Start a new round conversation of a session. Return the chat
@@ -371,12 +393,16 @@ class LMDeployServer(BaseModel):
sequence_end (bool): end flag of a session
stream (bool): return in a streaming format if enabled
ignore_eos (bool): indicator for ignoring eos
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
timeout (int): max time to wait for response
Returns:
tuple(Status, str, int): status, text/chat completion,
generated token number
"""
gen_params = self.update_gen_params(**kwargs)
max_new_tokens = gen_params.pop('max_new_tokens')
gen_params.update(max_tokens=max_new_tokens)
prompt = self.template_parser(inputs)
resp = ''
@@ -390,6 +416,7 @@ class LMDeployServer(BaseModel):
sequence_end=sequence_end,
stream=stream,
ignore_eos=ignore_eos,
skip_special_tokens=skip_special_tokens,
timeout=timeout,
**gen_params):
resp += text['choices'][0]['text']
@@ -411,12 +438,15 @@ class LMDeployClient(LMDeployServer):
"""
Args:
path (str): The path to the model.
url (str): communicating address 'http://<ip>:<port>' of
api_server
model_name (str): needed when model_path is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
"""
def __init__(self, path: str, url: str, **kwargs):
BaseModel.__init__(self, path=path, **kwargs)
def __init__(self, url: str, model_name: str, **kwargs):
BaseModel.__init__(self, path=url, **kwargs)
from lmdeploy.serve.openai.api_client import APIClient
self.client = APIClient(url)
self.model_name = model_name

View File

@@ -1,7 +1,7 @@
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor, wait
from concurrent.futures import ThreadPoolExecutor
from logging import getLogger
from threading import Lock
from typing import Dict, List, Optional, Union
@@ -106,15 +106,15 @@ class GPTAPI(BaseAPIModel):
Union[str, List[str]]: generated string(s)
"""
assert isinstance(inputs, list)
if isinstance(inputs[0], dict):
inputs = [inputs]
if 'max_tokens' in gen_params:
raise NotImplementedError('unsupported parameter: max_tokens')
gen_params = {**self.gen_params, **gen_params}
with ThreadPoolExecutor(max_workers=20) as executor:
tasks = [
executor.submit(self._chat, messages, **gen_params)
for messages in inputs
for messages in (
[inputs] if isinstance(inputs[0], dict) else inputs)
]
wait(tasks)
ret = [task.result() for task in tasks]
return ret[0] if isinstance(inputs[0], dict) else ret
@@ -133,7 +133,7 @@ class GPTAPI(BaseAPIModel):
# Hold out 100 tokens due to potential errors in tiktoken calculation
max_tokens = min(
gen_params.pop('max_tokens'),
gen_params.pop('max_new_tokens'),
self.context_window - len(self.tokenize(str(input))) - 100)
if max_tokens <= 0:
return ''

View File

@@ -0,0 +1,71 @@
from typing import List, Union
from lagent.llms.base_llm import BaseModel
from lagent.utils.util import filter_suffix
class VllmModel(BaseModel):
"""
A wrapper of vLLM model.
Args:
path (str): The path to the model.
It could be one of the following options:
- i) A local directory path of a huggingface model.
- ii) The model_id of a model hosted inside a model repo
on huggingface.co, such as "internlm/internlm-chat-7b",
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
and so on.
tp (int): tensor parallel
vllm_cfg (dict): Other kwargs for vllm model initialization.
"""
def __init__(self, path: str, tp: int = 1, vllm_cfg=dict(), **kwargs):
super().__init__(path=path, **kwargs)
from vllm import LLM
self.model = LLM(
model=self.path,
trust_remote_code=True,
tensor_parallel_size=tp,
**vllm_cfg)
def generate(self,
inputs: Union[str, List[str]],
do_preprocess: bool = None,
skip_special_tokens: bool = False,
**kwargs):
"""Return the chat completions in non-stream mode.
Args:
inputs (Union[str, List[str]]): input texts to be completed.
do_preprocess (bool): whether pre-process the messages. Default to
True, which means chat_template will be applied.
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be False.
Returns:
(a list of/batched) text/chat completion
"""
from vllm import SamplingParams
batched = True
if isinstance(inputs, str):
inputs = [inputs]
batched = False
prompt = inputs
gen_params = self.update_gen_params(**kwargs)
max_new_tokens = gen_params.pop('max_new_tokens')
stop_words = gen_params.pop('stop_words')
sampling_config = SamplingParams(
skip_special_tokens=skip_special_tokens,
max_tokens=max_new_tokens,
stop=stop_words,
**gen_params)
response = self.model.generate(prompt, sampling_params=sampling_config)
response = [resp.outputs[0].text for resp in response]
# remove stop_words
response = filter_suffix(response, self.gen_params.get('stop_words'))
if batched:
return response
return response[0]

View File

@@ -1,5 +1,5 @@
# Copyright (c) OpenMMLab. All rights reserved.
__version__ = '0.2.1'
__version__ = '0.2.2'
def parse_version_info(version_str: str, length: int = 4) -> tuple:

View File

@@ -1,4 +1,8 @@
lmdeploy>=0.2.2
streamlit
google-search-results
lmdeploy>=0.2.3
pillow
python-pptx
timeout_decorator
torch
transformers>=4.34
vllm>=0.3.3

View File

@@ -1,16 +1,13 @@
arxiv
distro
func_timeout
google-search-results
griffe
json5
jsonschema
jupyter
jupyter_client
phx-class-registry
pillow
python-pptx
requests
streamlit
tiktoken
timeout_decorator
typing-extensions