mirror of
https://github.com/pinecone-io/examples.git
synced 2023-10-11 20:04:54 +03:00
Update README.md
This commit is contained in:
@@ -2,14 +2,14 @@
|
||||
|
||||
This directory contains the code notebooks explained in the [Generative Pseudo-Labeling (GPL) article](https://www.pinecone.io/learn/gpl/). Notebooks include:
|
||||
|
||||
* `00-download-cord-19.ipynb` shows how to download the CORD-19 dataset. [](https://colab.research.google.com/github/pinecone-io/examples/blob/master/analytics-and-ml/model-training/gpl/00-download-cord-19.ipynb) [](https://nbviewer.org/github/pinecone-io/examples/blob/master/analytics-and-ml/model-training/gpl/00-download-cord-19.ipynb)
|
||||
* `00-download-cord-19.ipynb` shows how to download the CORD-19 dataset. [](https://colab.research.google.com/github/pinecone-io/examples/blob/master/learn/analytics-and-ml/model-training/gpl/00-download-cord-19.ipynb) [](https://nbviewer.org/github/pinecone-io/examples/blob/master/learn/analytics-and-ml/model-training/gpl/00-download-cord-19.ipynb)
|
||||
|
||||
* `01-query-gen.ipynb` demonstrates the synthetic query generation data prep step. [](https://colab.research.google.com/github/pinecone-io/examples/blob/master/analytics-and-ml/model-training/gpl/01-query-gen.ipynb) [](https://nbviewer.org/github/pinecone-io/examples/blob/master/analytics-and-ml/model-training/gpl/01-query-gen.ipynb)
|
||||
* `01-query-gen.ipynb` demonstrates the synthetic query generation data prep step. [](https://colab.research.google.com/github/pinecone-io/examples/blob/master/learn/analytics-and-ml/model-training/gpl/01-query-gen.ipynb) [](https://nbviewer.org/github/pinecone-io/examples/blob/master/learn/analytics-and-ml/model-training/gpl/01-query-gen.ipynb)
|
||||
|
||||
* `02-negative-mining.ipynb` works through the second data prep step of negative mining. [](https://colab.research.google.com/github/pinecone-io/examples/blob/master/analytics-and-ml/model-training/gpl/02-negative-mining.ipynb) [](https://nbviewer.org/github/pinecone-io/examples/blob/master/analytics-and-ml/model-training/gpl/02-negative-mining.ipynb)
|
||||
* `02-negative-mining.ipynb` works through the second data prep step of negative mining. [](https://colab.research.google.com/github/pinecone-io/examples/blob/master/learn/analytics-and-ml/model-training/gpl/02-negative-mining.ipynb) [](https://nbviewer.org/github/pinecone-io/examples/blob/master/learn/analytics-and-ml/model-training/gpl/02-negative-mining.ipynb)
|
||||
|
||||
* `03-ce-scoring.ipynb` details the final data prep step of pseudo-labeling. [](https://colab.research.google.com/github/pinecone-io/examples/blob/master/analytics-and-ml/model-training/gpl/03-ce-scoring.ipynb) [](https://nbviewer.org/github/pinecone-io/examples/blob/master/analytics-and-ml/model-training/gpl/03-ce-scoring.ipynb)
|
||||
* `03-ce-scoring.ipynb` details the final data prep step of pseudo-labeling. [](https://colab.research.google.com/github/pinecone-io/examples/blob/master/learn/analytics-and-ml/model-training/gpl/03-ce-scoring.ipynb) [](https://nbviewer.org/github/pinecone-io/examples/blob/master/learn/analytics-and-ml/model-training/gpl/03-ce-scoring.ipynb)
|
||||
|
||||
* `04-finetune.ipynb` shows how to use the data created in the previous notebooks to fine-tune a bi-encoder using Margin MSE loss. [](https://colab.research.google.com/github/pinecone-io/examples/blob/master/analytics-and-ml/model-training/gpl/04-finetune.ipynb) [](https://nbviewer.org/github/pinecone-io/examples/blob/master/analytics-and-ml/model-training/gpl/04-finetune.ipynb)
|
||||
* `04-finetune.ipynb` shows how to use the data created in the previous notebooks to fine-tune a bi-encoder using Margin MSE loss. [](https://colab.research.google.com/github/pinecone-io/examples/blob/master/learn/analytics-and-ml/model-training/gpl/04-finetune.ipynb) [](https://nbviewer.org/github/pinecone-io/examples/blob/master/learn/analytics-and-ml/model-training/gpl/04-finetune.ipynb)
|
||||
|
||||
All of this content is part of a course called [NLP for Semantic Search](https://www.pinecone.io/learn/nlp/).
|
||||
All of this content is part of a course called [NLP for Semantic Search](https://www.pinecone.io/learn/nlp/).
|
||||
|
||||
Reference in New Issue
Block a user