mirror of
				https://github.com/gmihaila/ml_things.git
				synced 2021-10-04 01:29:04 +03:00 
			
		
		
		
	Created using Colaboratory
This commit is contained in:
		| @@ -41,9 +41,9 @@ | ||||
|         "colab_type": "code", | ||||
|         "colab": { | ||||
|           "base_uri": "https://localhost:8080/", | ||||
|           "height": 35 | ||||
|           "height": 53 | ||||
|         }, | ||||
|         "outputId": "e6a2fb89-1ffc-4cc8-b34a-459f0f58a4fd" | ||||
|         "outputId": "539c2842-f33b-4fdf-ced5-90f1e7ff88bb" | ||||
|       }, | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
| @@ -64,7 +64,8 @@ | ||||
|         { | ||||
|           "output_type": "stream", | ||||
|           "text": [ | ||||
|             "pima-indians-diabetes.data.csv\tsample_data\n" | ||||
|             "model.json  model_weights.h5  pima-indians-diabetes.data.csv\tsample_data\n", | ||||
|             "model.png   model.yaml\t      pima-indians-diabetes.data.csv.1\twhole_model.h5\n" | ||||
|           ], | ||||
|           "name": "stdout" | ||||
|         } | ||||
| @@ -74,7 +75,11 @@ | ||||
|       "metadata": { | ||||
|         "id": "cVCl1YndhcsL", | ||||
|         "colab_type": "code", | ||||
|         "colab": {} | ||||
|         "colab": { | ||||
|           "base_uri": "https://localhost:8080/", | ||||
|           "height": 35 | ||||
|         }, | ||||
|         "outputId": "22b17207-cbe3-48f9-93e4-fb59bf515d57" | ||||
|       }, | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
| @@ -87,8 +92,16 @@ | ||||
|         "\n", | ||||
|         "from IPython.display import Image" | ||||
|       ], | ||||
|       "execution_count": 0, | ||||
|       "outputs": [] | ||||
|       "execution_count": 2, | ||||
|       "outputs": [ | ||||
|         { | ||||
|           "output_type": "stream", | ||||
|           "text": [ | ||||
|             "Using TensorFlow backend.\n" | ||||
|           ], | ||||
|           "name": "stderr" | ||||
|         } | ||||
|       ] | ||||
|     }, | ||||
|     { | ||||
|       "metadata": { | ||||
| @@ -98,7 +111,7 @@ | ||||
|           "base_uri": "https://localhost:8080/", | ||||
|           "height": 53 | ||||
|         }, | ||||
|         "outputId": "06505c42-db86-4cee-bf05-717b9736b768" | ||||
|         "outputId": "2f2aa79d-21db-49e0-f5cc-3c32e9ab439e" | ||||
|       }, | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
| @@ -159,7 +172,7 @@ | ||||
|           "base_uri": "https://localhost:8080/", | ||||
|           "height": 312 | ||||
|         }, | ||||
|         "outputId": "1d700361-332f-4c56-fa32-42f8f3c42678" | ||||
|         "outputId": "449a81f1-fdfc-4c08-b079-a2f731f13bb6" | ||||
|       }, | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
| @@ -192,7 +205,7 @@ | ||||
|           "base_uri": "https://localhost:8080/", | ||||
|           "height": 395 | ||||
|         }, | ||||
|         "outputId": "bfd006ea-791a-4f06-c4ad-c0c25560b243" | ||||
|         "outputId": "9fdd9f6f-b427-45b9-b524-b88f864f68b6" | ||||
|       }, | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
| @@ -205,25 +218,25 @@ | ||||
|           "output_type": "stream", | ||||
|           "text": [ | ||||
|             "Epoch 1/10\n", | ||||
|             "768/768 [==============================] - 1s 787us/step - loss: 5.0707 - acc: 0.6510\n", | ||||
|             "768/768 [==============================] - 0s 295us/step - loss: 6.0555 - acc: 0.5768\n", | ||||
|             "Epoch 2/10\n", | ||||
|             "768/768 [==============================] - 0s 101us/step - loss: 3.5597 - acc: 0.5807\n", | ||||
|             "768/768 [==============================] - 0s 97us/step - loss: 5.8343 - acc: 0.5990\n", | ||||
|             "Epoch 3/10\n", | ||||
|             "768/768 [==============================] - 0s 99us/step - loss: 3.3356 - acc: 0.5911\n", | ||||
|             "768/768 [==============================] - 0s 95us/step - loss: 5.7260 - acc: 0.6237\n", | ||||
|             "Epoch 4/10\n", | ||||
|             "768/768 [==============================] - 0s 95us/step - loss: 3.2350 - acc: 0.5964\n", | ||||
|             "768/768 [==============================] - 0s 93us/step - loss: 5.7296 - acc: 0.6250\n", | ||||
|             "Epoch 5/10\n", | ||||
|             "768/768 [==============================] - 0s 101us/step - loss: 1.2971 - acc: 0.5859\n", | ||||
|             "768/768 [==============================] - 0s 100us/step - loss: 5.6708 - acc: 0.6302\n", | ||||
|             "Epoch 6/10\n", | ||||
|             "768/768 [==============================] - 0s 96us/step - loss: 0.9998 - acc: 0.6107\n", | ||||
|             "768/768 [==============================] - 0s 100us/step - loss: 5.6364 - acc: 0.6224\n", | ||||
|             "Epoch 7/10\n", | ||||
|             "768/768 [==============================] - 0s 97us/step - loss: 0.9333 - acc: 0.6341\n", | ||||
|             "768/768 [==============================] - 0s 94us/step - loss: 5.6071 - acc: 0.6237\n", | ||||
|             "Epoch 8/10\n", | ||||
|             "768/768 [==============================] - 0s 101us/step - loss: 0.8510 - acc: 0.6445\n", | ||||
|             "768/768 [==============================] - 0s 99us/step - loss: 5.4702 - acc: 0.6341\n", | ||||
|             "Epoch 9/10\n", | ||||
|             "768/768 [==============================] - 0s 104us/step - loss: 0.8148 - acc: 0.6497\n", | ||||
|             "768/768 [==============================] - 0s 90us/step - loss: 5.4395 - acc: 0.6354\n", | ||||
|             "Epoch 10/10\n", | ||||
|             "768/768 [==============================] - 0s 98us/step - loss: 0.7673 - acc: 0.6406\n" | ||||
|             "768/768 [==============================] - 0s 98us/step - loss: 5.4271 - acc: 0.6250\n" | ||||
|           ], | ||||
|           "name": "stdout" | ||||
|         }, | ||||
| @@ -231,7 +244,7 @@ | ||||
|           "output_type": "execute_result", | ||||
|           "data": { | ||||
|             "text/plain": [ | ||||
|               "<keras.callbacks.History at 0x7f848c603c50>" | ||||
|               "<keras.callbacks.History at 0x7f487eaccb70>" | ||||
|             ] | ||||
|           }, | ||||
|           "metadata": { | ||||
| @@ -249,7 +262,7 @@ | ||||
|           "base_uri": "https://localhost:8080/", | ||||
|           "height": 71 | ||||
|         }, | ||||
|         "outputId": "e70237f1-8cd2-4667-bc25-a4bdae879518" | ||||
|         "outputId": "c195367a-9ccb-4442-9123-09d7ab511c68" | ||||
|       }, | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
| @@ -262,9 +275,9 @@ | ||||
|         { | ||||
|           "output_type": "stream", | ||||
|           "text": [ | ||||
|             "768/768 [==============================] - 0s 62us/step\n", | ||||
|             "768/768 [==============================] - 0s 51us/step\n", | ||||
|             "\n", | ||||
|             "acc: 62.11%\n" | ||||
|             "acc: 62.37%\n" | ||||
|           ], | ||||
|           "name": "stdout" | ||||
|         } | ||||
| @@ -288,7 +301,7 @@ | ||||
|           "base_uri": "https://localhost:8080/", | ||||
|           "height": 323 | ||||
|         }, | ||||
|         "outputId": "3b69713d-7233-4e4e-f88d-17d4f555659d" | ||||
|         "outputId": "d9e6df06-00a9-433a-d1ed-dd291be53922" | ||||
|       }, | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
| @@ -300,9 +313,9 @@ | ||||
|         "\n", | ||||
|         "# evaluate the model\n", | ||||
|         "scores = model_1.evaluate(x, y)\n", | ||||
|         "print(\"\\n%s: %.2f%%\" % (model.metrics_names[1], scores[1]*100))" | ||||
|         "print(\"\\n%s: %.2f%%\" % (model_1.metrics_names[1], scores[1]*100))" | ||||
|       ], | ||||
|       "execution_count": 13, | ||||
|       "execution_count": 8, | ||||
|       "outputs": [ | ||||
|         { | ||||
|           "output_type": "stream", | ||||
| @@ -321,9 +334,9 @@ | ||||
|             "Non-trainable params: 0\n", | ||||
|             "_________________________________________________________________\n", | ||||
|             "None\n", | ||||
|             "768/768 [==============================] - 0s 210us/step\n", | ||||
|             "768/768 [==============================] - 0s 66us/step\n", | ||||
|             "\n", | ||||
|             "acc: 62.11%\n" | ||||
|             "acc: 62.37%\n" | ||||
|           ], | ||||
|           "name": "stdout" | ||||
|         } | ||||
| @@ -336,7 +349,7 @@ | ||||
|       }, | ||||
|       "cell_type": "markdown", | ||||
|       "source": [ | ||||
|         "## Save - Load weights and architecture" | ||||
|         "## Save - Load weights and architecture [JSON format]" | ||||
|       ] | ||||
|     }, | ||||
|     { | ||||
| @@ -367,7 +380,7 @@ | ||||
|           "base_uri": "https://localhost:8080/", | ||||
|           "height": 323 | ||||
|         }, | ||||
|         "outputId": "f66defda-df92-4401-e950-b376229ff129" | ||||
|         "outputId": "1ad319f4-c648-41a7-89fd-5bc00b6aefec" | ||||
|       }, | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
| @@ -388,9 +401,9 @@ | ||||
|         "\n", | ||||
|         "# evaluate the model\n", | ||||
|         "scores = model_2.evaluate(x, y)\n", | ||||
|         "print(\"\\n%s: %.2f%%\" % (model.metrics_names[1], scores[1]*100))" | ||||
|         "print(\"\\n%s: %.2f%%\" % (model_2.metrics_names[1], scores[1]*100))" | ||||
|       ], | ||||
|       "execution_count": 20, | ||||
|       "execution_count": 10, | ||||
|       "outputs": [ | ||||
|         { | ||||
|           "output_type": "stream", | ||||
| @@ -409,9 +422,100 @@ | ||||
|             "Non-trainable params: 0\n", | ||||
|             "_________________________________________________________________\n", | ||||
|             "None\n", | ||||
|             "768/768 [==============================] - 0s 176us/step\n", | ||||
|             "768/768 [==============================] - 0s 70us/step\n", | ||||
|             "\n", | ||||
|             "acc: 62.11%\n" | ||||
|             "acc: 62.37%\n" | ||||
|           ], | ||||
|           "name": "stdout" | ||||
|         } | ||||
|       ] | ||||
|     }, | ||||
|     { | ||||
|       "metadata": { | ||||
|         "id": "m51EU-kxJNVK", | ||||
|         "colab_type": "text" | ||||
|       }, | ||||
|       "cell_type": "markdown", | ||||
|       "source": [ | ||||
|         "## Save - Load weights and architecture [YAML format]" | ||||
|       ] | ||||
|     }, | ||||
|     { | ||||
|       "metadata": { | ||||
|         "id": "v6K6YsraJQwj", | ||||
|         "colab_type": "code", | ||||
|         "colab": {} | ||||
|       }, | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "from keras.models import model_from_yaml\n", | ||||
|         "\n", | ||||
|         "# serialize model to YAML\n", | ||||
|         "model_yaml = model.to_yaml()\n", | ||||
|         "\n", | ||||
|         "with open(\"model.yaml\", \"w\") as yaml_file:\n", | ||||
|         "    yaml_file.write(model_yaml)\n", | ||||
|         "    \n", | ||||
|         "# serialize weights to HDF5\n", | ||||
|         "model.save_weights(\"model_weights.h5\")" | ||||
|       ], | ||||
|       "execution_count": 0, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "metadata": { | ||||
|         "id": "PWZx55j7JS8L", | ||||
|         "colab_type": "code", | ||||
|         "colab": { | ||||
|           "base_uri": "https://localhost:8080/", | ||||
|           "height": 323 | ||||
|         }, | ||||
|         "outputId": "4fe9725f-1cc2-4692-b187-b47a3a92158d" | ||||
|       }, | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# load YAML and create model\n", | ||||
|         "yaml_file = open('model.yaml', 'r')\n", | ||||
|         "\n", | ||||
|         "with open(\"model.yaml\", \"r\") as yaml_file:\n", | ||||
|         "    loaded_model_yaml = yaml_file.read()\n", | ||||
|         "\n", | ||||
|         "model_3 = model_from_yaml(loaded_model_yaml)\n", | ||||
|         "\n", | ||||
|         "# compile model\n", | ||||
|         "model_3.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])\n", | ||||
|         "\n", | ||||
|         "# load weights into new model\n", | ||||
|         "model_3.load_weights(\"model_weights.h5\")\n", | ||||
|         "\n", | ||||
|         "print(model_3.summary())\n", | ||||
|         "\n", | ||||
|         "# evaluate the model\n", | ||||
|         "scores = model_3.evaluate(x, y)\n", | ||||
|         "print(\"\\n%s: %.2f%%\" % (model_3.metrics_names[1], scores[1]*100))" | ||||
|       ], | ||||
|       "execution_count": 12, | ||||
|       "outputs": [ | ||||
|         { | ||||
|           "output_type": "stream", | ||||
|           "text": [ | ||||
|             "_________________________________________________________________\n", | ||||
|             "Layer (type)                 Output Shape              Param #   \n", | ||||
|             "=================================================================\n", | ||||
|             "INPUT (InputLayer)           (None, 8)                 0         \n", | ||||
|             "_________________________________________________________________\n", | ||||
|             "DENSE1 (Dense)               (None, 8)                 72        \n", | ||||
|             "_________________________________________________________________\n", | ||||
|             "OUTPUT (Dense)               (None, 1)                 9         \n", | ||||
|             "=================================================================\n", | ||||
|             "Total params: 81\n", | ||||
|             "Trainable params: 81\n", | ||||
|             "Non-trainable params: 0\n", | ||||
|             "_________________________________________________________________\n", | ||||
|             "None\n", | ||||
|             "768/768 [==============================] - 0s 75us/step\n", | ||||
|             "\n", | ||||
|             "acc: 62.37%\n" | ||||
|           ], | ||||
|           "name": "stdout" | ||||
|         } | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 George Mihaila
					George Mihaila