working streaming example

This commit is contained in:
harryjulian
2025-10-08 11:44:03 +01:00
parent e001f120bd
commit 7c97519a54
2 changed files with 15 additions and 16 deletions

View File

@@ -36,6 +36,7 @@ def main(input_text, ref_codes_path, ref_text, backbone):
print("Streaming...")
for chunk in tts.infer_stream(input_text, ref_codes, ref_text):
audio = (chunk * 32767).astype(np.int16)
print(audio)
stream.write(audio.tobytes())
stream.stop_stream()
@@ -84,5 +85,4 @@ if __name__ == "__main__":
ref_codes_path=args.ref_codes,
ref_text=args.ref_text,
backbone=args.backbone,
output_path=args.output_path,
)

View File

@@ -11,10 +11,9 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStream
from threading import Thread
def _linear_overlap_add(frames: list[torch.Tensor], stride: int):
def _linear_overlap_add(frames: list[np.ndarray], stride: int) -> np.ndarray:
# original impl --> https://github.com/facebookresearch/encodec/blob/main/encodec/utils.py
assert len(frames)
device = frames[0].device
dtype = frames[0].dtype
shape = frames[0].shape[:-1]
@@ -23,14 +22,14 @@ def _linear_overlap_add(frames: list[torch.Tensor], stride: int):
frame_end = stride * i + frame.shape[-1]
total_size = max(total_size, frame_end)
sum_weight = torch.zeros(total_size, device=device, dtype=dtype)
out = torch.zeros(*shape, total_size, device=device, dtype=dtype)
sum_weight = np.zeros(total_size, dtype=dtype)
out = np.zeros(*shape, total_size, dtype=dtype)
offset: int = 0
for frame in frames:
frame_length = frame.shape[-1]
t = torch.linspace(0, 1, frame_length + 2, device=device, dtype=dtype)[1:-1]
weight = 0.5 - (t - 0.5).abs()
t = np.linspace(0, 1, frame_length + 2, dtype=dtype)[1:-1]
weight = np.abs(0.5 - (t - 0.5))
out[..., offset : offset + frame_length] += weight * frame
sum_weight[offset : offset + frame_length] += weight
@@ -169,7 +168,7 @@ class NeuTTSAir:
return watermarked_wav
def infer_stream(self, text: str, ref_codes: np.ndarray | torch.Tensor, ref_text: str) -> Generator[np.ndarray]:
def infer_stream(self, text: str, ref_codes: np.ndarray | torch.Tensor, ref_text: str) -> Generator[np.ndarray, None, None]:
"""
Perform streaming inference to generate speech from text using the TTS model and reference audio.
@@ -182,7 +181,7 @@ class NeuTTSAir:
"""
if self._is_quantized_model:
yield self._infer_stream_ggml(ref_codes, ref_text, text)
return self._infer_stream_ggml(ref_codes, ref_text, text)
else:
raise NotImplementedError("Streaming is not implemented for the torch backend!")
@@ -294,7 +293,7 @@ class NeuTTSAir:
output_str = output["choices"][0]["text"]
return output_str
def _infer_stream_ggml(self, ref_codes: list[int], ref_text: str, input_text: str) -> Generator[np.ndarray]:
def _infer_stream_ggml(self, ref_codes: torch.Tensor, ref_text: str, input_text: str) -> Generator[np.ndarray, None, None]:
ref_text = self._to_phones(ref_text)
input_text = self._to_phones(input_text)
@@ -304,10 +303,10 @@ class NeuTTSAir:
f"<|TEXT_PROMPT_END|>\nassistant:<|SPEECH_GENERATION_START|>{codes_str}"
)
audio_cache = []
token_cache = ref_codes
n_decoded_samples = 0
n_decoded_tokens = len(ref_codes)
audio_cache: list[np.ndarray] = []
token_cache: list[str] = [f"<|speech_{idx}|>" for idx in ref_codes]
n_decoded_samples: int = 0
n_decoded_tokens: int = len(ref_codes)
for item in self.backbone(
prompt,
@@ -343,7 +342,7 @@ class NeuTTSAir:
+ (self.streaming_frames_per_chunk + 2 * self.streaming_overlap_frames) * self.hop_length
)
curr_codes = token_cache[tokens_start:tokens_end]
recon = self._decode(curr_codes)
recon = self._decode("".join(curr_codes))
recon = self.watermarker.apply_watermark(recon, sample_rate=24_000)
recon = recon[sample_start:sample_end]
audio_cache.append(recon)
@@ -375,7 +374,7 @@ class NeuTTSAir:
- self.streaming_overlap_frames
) * self.hop_length
curr_codes = token_cache[tokens_start:]
recon = self._decode(curr_codes)
recon = self._decode("".join(curr_codes))
recon = self.watermarker.apply_watermark(recon, sample_rate=24_000)
recon = recon[sample_start:]
audio_cache.append(recon)