Merge pull request #13 from brndnsvr/Added-logging-and-fixed-crashes

Added logging and fixed crashes
This commit is contained in:
Andy Peatling
2024-03-26 07:49:03 -07:00
committed by GitHub

View File

@@ -12,6 +12,12 @@ import pygame.locals
import numpy as np
import pyaudio
import whisper
import logging
import threading
import queue
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
BACK_COLOR = (0,0,0)
REC_COLOR = (255,0,0)
@@ -34,6 +40,7 @@ INPUT_CONFIG_PATH ="assistant.yaml"
class Assistant:
def __init__(self):
logging.info("Initializing Assistant")
self.config = self.init_config()
programIcon = pygame.image.load('assistant.png')
@@ -56,7 +63,8 @@ class Assistant:
rate=INPUT_RATE,
input=True,
frames_per_buffer=INPUT_CHUNK).close()
except Exception:
except Exception as e:
logging.error(f"Error opening audio stream: {str(e)}")
self.wait_exit()
self.display_message(self.config.messages.loadingModel)
@@ -76,11 +84,13 @@ class Assistant:
self.shutdown()
def shutdown(self):
logging.info("Shutting down Assistant")
self.audio.terminate()
pygame.quit()
sys.exit()
def init_config(self):
logging.info("Initializing configuration")
class Inst:
pass
@@ -107,11 +117,13 @@ class Assistant:
return config
def display_rec_start(self):
logging.info("Displaying recording start")
self.windowSurface.fill(BACK_COLOR)
pygame.draw.circle(self.windowSurface, REC_COLOR, (WIDTH/2, HEIGHT/2), REC_SIZE)
pygame.display.flip()
def display_sound_energy(self, energy):
logging.info(f"Displaying sound energy: {energy}")
COL_COUNT = 5
RED_CENTER = 100
FACTOR = 10
@@ -137,6 +149,7 @@ class Assistant:
pygame.display.flip()
def display_message(self, text):
logging.info(f"Displaying message: {text}")
self.windowSurface.fill(BACK_COLOR)
label = self.font.render(text
@@ -151,7 +164,7 @@ class Assistant:
pygame.display.flip()
def waveform_from_mic(self, key = pygame.K_SPACE) -> np.ndarray:
logging.info("Capturing waveform from microphone")
self.display_rec_start()
stream = self.audio.open(format=INPUT_FORMAT,
@@ -176,107 +189,129 @@ class Assistant:
return np.frombuffer(b''.join(frames), np.int16).astype(np.float32) * (1 / 32768.0)
def speech_to_text(self, waveform):
transcript = self.model.transcribe(waveform,
language = self.config.whisperRecognition.lang,
fp16=torch.cuda.is_available())
text = transcript["text"]
logging.info("Converting speech to text")
result_queue = queue.Queue()
print('\nMe:\n', text.strip())
return text
def transcribe_speech():
try:
logging.info("Starting transcription")
transcript = self.model.transcribe(waveform,
language=self.config.whisperRecognition.lang,
fp16=torch.cuda.is_available())
logging.info("Transcription completed")
text = transcript["text"]
print('\nMe:\n', text.strip())
result_queue.put(text)
except Exception as e:
logging.error(f"An error occurred during transcription: {str(e)}")
result_queue.put("")
transcription_thread = threading.Thread(target=transcribe_speech)
transcription_thread.start()
transcription_thread.join()
return result_queue.get()
def ask_ollama(self, prompt, responseCallback):
logging.info(f"Asking OLLaMa with prompt: {prompt}")
full_prompt = prompt if hasattr(self, "contextSent") else (prompt)
self.contextSent = True
jsonParam= {"model": self.config.ollama.model,
"stream":True,
"context":self.context,
"prompt":full_prompt}
response = requests.post(self.config.ollama.url,
json=jsonParam,
headers=OLLAMA_REST_HEADERS,
stream=True,
timeout=10) # Set the timeout value as per your requirement
response.raise_for_status()
jsonParam = {
"model": self.config.ollama.model,
"stream": True,
"context": self.context,
"prompt": full_prompt
}
try:
response = requests.post(self.config.ollama.url,
json=jsonParam,
headers=OLLAMA_REST_HEADERS,
stream=True,
timeout=30) # Increase the timeout value
response.raise_for_status()
tokens = []
for line in response.iter_lines():
body = json.loads(line)
token = body.get('response', '')
tokens.append(token)
full_response = ""
for line in response.iter_lines():
body = json.loads(line)
token = body.get('response', '')
full_response += token
# the response streams one token at a time, process only at end of sentences
if token == "." or token == ":" or token == "!" or token == "?":
current_response = "".join(tokens)
responseCallback(current_response)
tokens = []
if 'error' in body:
logging.error(f"Error from OLLaMa: {body['error']}")
responseCallback("Error: " + body['error'])
return
if 'error' in body:
responseCallback("Error: " + body['error'])
if body.get('done', False) and 'context' in body:
self.context = body['context']
break
responseCallback(full_response.strip())
except requests.exceptions.ReadTimeout as e:
logging.error(f"ReadTimeout occurred while asking OLLaMa: {str(e)}")
responseCallback("Sorry, the request timed out. Please try again.")
except requests.exceptions.RequestException as e:
logging.error(f"An error occurred while asking OLLaMa: {str(e)}")
responseCallback("Sorry, an error occurred. Please try again.")
if body.get('done', False) and 'context' in body:
self.context = body['context']
def text_to_speech(self, text):
logging.info(f"Converting text to speech: {text}")
print('\nAI:\n', text.strip())
tempPath = './temp.wav'
self.tts.save_to_file(text , tempPath)
self.tts.runAndWait()
def play_speech():
try:
logging.info("Initializing TTS engine")
engine = pyttsx3.init()
# Adjust the speech rate (optional)
rate = engine.getProperty('rate')
engine.setProperty('rate', rate - 50) # Decrease the rate by 50 units
# Add a short delay before converting text to speech
time.sleep(0.5) # Adjust the delay as needed
logging.info("Converting text to speech")
engine.say(text)
engine.runAndWait()
logging.info("Speech playback completed")
except Exception as e:
logging.error(f"An error occurred during speech playback: {str(e)}")
# Fix 64bit RIFF id for Apple Silicon
data, samplerate = soundfile.read(tempPath)
soundfile.write(tempPath, data, samplerate)
speech_thread = threading.Thread(target=play_speech)
speech_thread.start()
wf = wave.open(tempPath, 'rb')
stream = self.audio.open(format =
self.audio.get_format_from_width(wf.getsampwidth()),
channels = wf.getnchannels(),
rate = wf.getframerate(),
output = True)
chunkSize = 1024
chunk = wf.readframes(chunkSize)
while chunk:
stream.write(chunk)
tmp = np.array(np.frombuffer(chunk, np.int16), np.float32) * (1 / 32768.0)
energy_of_chunk = np.sqrt(np.mean(tmp**2))
self.display_sound_energy(energy_of_chunk)
chunk = wf.readframes(chunkSize)
wf.close()
def main():
logging.info("Starting Assistant")
pygame.init()
ass = Assistant()
push_to_talk_key = pygame.K_SPACE
quit_key = pygame.K_ESCAPE
while True:
ass.clock.tick(60)
for event in pygame.event.get():
if event.type == pygame.KEYDOWN and event.key == push_to_talk_key:
speech = ass.waveform_from_mic(push_to_talk_key)
if event.type == pygame.KEYDOWN:
if event.key == push_to_talk_key:
logging.info("Push-to-talk key pressed")
speech = ass.waveform_from_mic(push_to_talk_key)
transcription = ass.speech_to_text(waveform=speech)
transcription = ass.speech_to_text(waveform=speech)
ass.ask_ollama(transcription, ass.text_to_speech)
ass.ask_ollama(transcription, ass.text_to_speech)
time.sleep(1)
ass.display_message(ass.config.messages.pressSpace)
time.sleep(1)
ass.display_message(ass.config.messages.pressSpace)
if event.type == pygame.locals.QUIT:
ass.shutdown()
elif event.key == quit_key:
logging.info("Quit key pressed")
ass.shutdown()
if __name__ == "__main__":
main()
# Supress secure code Apple warning.
# f = open("/dev/null", "w")
# os.dup2(f.fileno(), 2)
# f.close()