1
0
mirror of https://github.com/pyscript/pyscript.git synced 2022-05-01 19:47:48 +03:00

Add altair, matplotlib and folium examples

This commit is contained in:
Philipp Rudiger
2022-04-21 00:22:29 +02:00
parent 0b6fe08663
commit cbf74c7572
3 changed files with 159 additions and 0 deletions

View File

@@ -0,0 +1,60 @@
<html>
<head>
<title>Altair</title>
<meta charset="utf-8">
<link rel="stylesheet" href="../build/pyscript.css" />
<script defer src="../build/pyscript.js"></script>
<py-env>
- altair
- pandas
- vega_datasets
</py-env>
</head>
<body>
<div id="altair" style="width: 100%; height: 100%"></div>
<py-script output="altair">
import altair as alt
from vega_datasets import data
source = data.movies.url
pts = alt.selection(type="single", encodings=['x'])
rect = alt.Chart(data.movies.url).mark_rect().encode(
alt.X('IMDB_Rating:Q', bin=True),
alt.Y('Rotten_Tomatoes_Rating:Q', bin=True),
alt.Color('count()',
scale=alt.Scale(scheme='greenblue'),
legend=alt.Legend(title='Total Records')
)
)
circ = rect.mark_point().encode(
alt.ColorValue('grey'),
alt.Size('count()',
legend=alt.Legend(title='Records in Selection')
)
).transform_filter(
pts
)
bar = alt.Chart(source).mark_bar().encode(
x='Major_Genre:N',
y='count()',
color=alt.condition(pts, alt.ColorValue("steelblue"), alt.ColorValue("grey"))
).properties(
width=550,
height=200
).add_selection(pts)
alt.vconcat(
rect + circ,
bar
).resolve_legend(
color="independent",
size="independent"
)
</py-script>
</body>
</html>

View File

@@ -0,0 +1,49 @@
<html>
<head>
<title>Folium</title>
<meta charset="utf-8">
<link rel="stylesheet" href="../build/pyscript.css" />
<script defer src="../build/pyscript.js"></script>
<py-env>
- folium
- pandas
</py-env>
</head>
<body>
<div id="folium" style="width: 100%; height: 100%"></div>
<py-script output="folium">
import folium
import json
import pandas as pd
from pyodide.http import open_url
url = (
"https://raw.githubusercontent.com/python-visualization/folium/master/examples/data"
)
state_geo = f"{url}/us-states.json"
state_unemployment = f"{url}/US_Unemployment_Oct2012.csv"
state_data = pd.read_csv(open_url(state_unemployment))
geo_json = json.loads(open_url(state_geo).read())
m = folium.Map(location=[48, -102], zoom_start=3)
folium.Choropleth(
geo_data=geo_json,
name="choropleth",
data=state_data,
columns=["State", "Unemployment"],
key_on="feature.id",
fill_color="YlGn",
fill_opacity=0.7,
line_opacity=0.2,
legend_name="Unemployment Rate (%)",
).add_to(m)
folium.LayerControl().add_to(m)
m
</py-script>
</body>
</html>

View File

@@ -0,0 +1,50 @@
<html>
<head>
<title>Matplotlib</title>
<meta charset="utf-8">
<link rel="stylesheet" href="../build/pyscript.css" />
<script defer src="../build/pyscript.js"></script>
<py-env>
- matplotlib
</py-env>
</head>
<body>
<div id="mpl"></div>
<py-script output="mpl">
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np
# First create the x and y coordinates of the points.
n_angles = 36
n_radii = 8
min_radius = 0.25
radii = np.linspace(min_radius, 0.95, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
z = (np.cos(radii) * np.cos(3 * angles)).flatten()
# Create the Triangulation; no triangles so Delaunay triangulation created.
triang = tri.Triangulation(x, y)
# Mask off unwanted triangles.
triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
y[triang.triangles].mean(axis=1))
< min_radius)
fig1, ax1 = plt.subplots()
ax1.set_aspect('equal')
tpc = ax1.tripcolor(triang, z, shading='flat')
fig1.colorbar(tpc)
ax1.set_title('tripcolor of Delaunay triangulation, flat shading')
fig1
</py-script>
</body>
</html>