mirror of
https://github.com/open-thought/reasoning-gym.git
synced 2025-10-09 13:40:09 +03:00
added llama 3b training conf
This commit is contained in:
221
training/configs/external_benchmarks/maths_llama_3b.yaml
Normal file
221
training/configs/external_benchmarks/maths_llama_3b.yaml
Normal file
@@ -0,0 +1,221 @@
|
||||
reasoning_gym:
|
||||
dataset_size: 40000
|
||||
developer_prompt: DeepSeekZero
|
||||
datasets:
|
||||
complex_arithmetic:
|
||||
weight: 1
|
||||
intermediate_integration:
|
||||
weight: 1
|
||||
polynomial_equations:
|
||||
weight: 1
|
||||
polynomial_multiplication:
|
||||
weight: 1
|
||||
simple_geometry:
|
||||
weight: 1
|
||||
bitwise_arithmetic:
|
||||
weight: 1
|
||||
chain_sum:
|
||||
weight: 1
|
||||
decimal_arithmetic:
|
||||
weight: 1
|
||||
decimal_chain_sum:
|
||||
weight: 1
|
||||
curriculum:
|
||||
enabled: False
|
||||
schedule:
|
||||
automatic: True
|
||||
update_steps: 30 # automatic curriculum updating after 50 steps
|
||||
last_k: 20
|
||||
success_threshold: 0.70
|
||||
failure_threshold: 0.10
|
||||
curricula:
|
||||
spell_backward:
|
||||
attribute_levels:
|
||||
word_len: 0
|
||||
reward:
|
||||
use_accuracy: True
|
||||
secondary_rewards:
|
||||
- name: cosine
|
||||
scaling_factor: 0.3
|
||||
- name: format
|
||||
scaling_factor: 0.2
|
||||
kwargs:
|
||||
preappend_thinking_token: False
|
||||
|
||||
data:
|
||||
tokenizer: null
|
||||
train_files: train.parquet
|
||||
val_files: test.parquet
|
||||
prompt_key: prompt
|
||||
max_prompt_length: 512
|
||||
max_response_length: 1024
|
||||
train_batch_size: 32
|
||||
val_batch_size: 64
|
||||
return_raw_chat: True
|
||||
return_raw_input_ids: True
|
||||
actor_rollout_ref:
|
||||
hybrid_engine: True
|
||||
model:
|
||||
path: meta-llama/Llama-3.2-3B-Instruct
|
||||
external_lib: null
|
||||
override_config: { }
|
||||
enable_gradient_checkpointing: True
|
||||
use_remove_padding: True
|
||||
actor:
|
||||
strategy: fsdp # This is for backward-compatibility
|
||||
ppo_mini_batch_size: 16
|
||||
ppo_micro_batch_size: null # will be deprecated, use ppo_micro_batch_size_per_gpu
|
||||
ppo_micro_batch_size_per_gpu: 4
|
||||
use_dynamic_bsz: False
|
||||
ppo_max_token_len_per_gpu: 12288 # n * ${data.max_prompt_length} + ${data.max_response_length}
|
||||
grad_clip: 1.0
|
||||
clip_ratio: 0.2
|
||||
entropy_coeff: 0.001
|
||||
use_kl_loss: True # True for GRPO
|
||||
kl_loss_coef: 0.001 # for grpo
|
||||
kl_loss_type: low_var_kl # for grpo
|
||||
ppo_epochs: 1
|
||||
shuffle: False
|
||||
ulysses_sequence_parallel_size: 1 # sp size
|
||||
optim:
|
||||
lr: 1e-6
|
||||
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
|
||||
min_lr_ratio: null # only useful for warmup with cosine
|
||||
warmup_style: constant # select from constant/cosine
|
||||
total_training_steps: 500 # must be override by program
|
||||
fsdp_config:
|
||||
wrap_policy:
|
||||
# transformer_layer_cls_to_wrap: None
|
||||
min_num_params: 0
|
||||
param_offload: False
|
||||
optimizer_offload: False
|
||||
fsdp_size: -1
|
||||
ref:
|
||||
fsdp_config:
|
||||
param_offload: True
|
||||
wrap_policy:
|
||||
# transformer_layer_cls_to_wrap: None
|
||||
min_num_params: 0
|
||||
log_prob_micro_batch_size: null # will be deprecated, use log_prob_micro_batch_size_per_gpu
|
||||
log_prob_micro_batch_size_per_gpu: 160
|
||||
log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
|
||||
log_prob_max_token_len_per_gpu: ${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
|
||||
ulysses_sequence_parallel_size: ${actor_rollout_ref.actor.ulysses_sequence_parallel_size} # sp size
|
||||
rollout:
|
||||
name: vllm
|
||||
temperature: 1.0
|
||||
top_k: -1 # 0 for hf rollout, -1 for vllm rollout
|
||||
top_p: 1
|
||||
prompt_length: ${data.max_prompt_length} # not use for opensource
|
||||
response_length: ${data.max_response_length}
|
||||
# for vllm rollout
|
||||
dtype: bfloat16 # should align with FSDP
|
||||
gpu_memory_utilization: 0.7
|
||||
ignore_eos: False
|
||||
enforce_eager: True
|
||||
free_cache_engine: True
|
||||
load_format: dummy_dtensor
|
||||
tensor_model_parallel_size: 4
|
||||
max_num_batched_tokens: 12288
|
||||
max_num_seqs: 1024
|
||||
log_prob_micro_batch_size: null # will be deprecated, use log_prob_micro_batch_size_per_gpu
|
||||
log_prob_micro_batch_size_per_gpu: 160
|
||||
log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
|
||||
log_prob_max_token_len_per_gpu: ${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
|
||||
disable_log_stats: True
|
||||
enable_chunked_prefill: True # could get higher throughput
|
||||
# for hf rollout
|
||||
do_sample: True
|
||||
use_fire_sampling: False
|
||||
max_model_len: 12288
|
||||
# number of responses (i.e. num sample times)
|
||||
n: 8 # > 1 for grpo
|
||||
val_kwargs:
|
||||
do_sample: True
|
||||
|
||||
algorithm:
|
||||
gamma: 1.0
|
||||
lam: 1.0
|
||||
adv_estimator: grpo
|
||||
kl_penalty: kl # how to estimate kl divergence
|
||||
kl_ctrl:
|
||||
type: fixed
|
||||
kl_coef: 0.001
|
||||
verbose: True
|
||||
trainer:
|
||||
balance_batch: True
|
||||
total_epochs: 1
|
||||
total_training_steps: 2000
|
||||
project_name: rg-test
|
||||
experiment_name: intra_reasoning_algebra_qwen_3b_composite
|
||||
logger: [ 'console', 'wandb' ]
|
||||
val_generations_to_log_to_wandb: 0
|
||||
nnodes: 1
|
||||
n_gpus_per_node: 4
|
||||
save_freq: 200
|
||||
# auto: find the last ckpt to resume. If can't find, start from scratch
|
||||
resume_mode: auto # or auto or resume_path if
|
||||
resume_from_path: False
|
||||
test_freq: 100
|
||||
critic_warmup: 0
|
||||
default_hdfs_dir: null
|
||||
remove_previous_ckpt_in_save: False
|
||||
del_local_ckpt_after_load: False
|
||||
default_local_dir: checkpoints/${trainer.project_name}/${trainer.experiment_name}
|
||||
|
||||
|
||||
critic:
|
||||
strategy: fsdp
|
||||
optim:
|
||||
lr: 1e-5
|
||||
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
|
||||
min_lr_ratio: null # only useful for warmup with cosine
|
||||
warmup_style: constant # select from constant/cosine
|
||||
total_training_steps: -1 # must be override by program
|
||||
model:
|
||||
path: ~/models/deepseek-llm-7b-chat
|
||||
tokenizer_path: ${actor_rollout_ref.model.path}
|
||||
override_config: { }
|
||||
external_lib: ${actor_rollout_ref.model.external_lib}
|
||||
enable_gradient_checkpointing: True
|
||||
use_remove_padding: False
|
||||
fsdp_config:
|
||||
param_offload: False
|
||||
optimizer_offload: False
|
||||
wrap_policy:
|
||||
# transformer_layer_cls_to_wrap: None
|
||||
min_num_params: 0
|
||||
fsdp_size: -1
|
||||
ppo_mini_batch_size: ${actor_rollout_ref.actor.ppo_mini_batch_size}
|
||||
ppo_micro_batch_size: null # will be deprecated, use ppo_micro_batch_size_per_gpu
|
||||
ppo_micro_batch_size_per_gpu: null
|
||||
forward_micro_batch_size: ${critic.ppo_micro_batch_size}
|
||||
forward_micro_batch_size_per_gpu: ${critic.ppo_micro_batch_size_per_gpu}
|
||||
use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
|
||||
ppo_max_token_len_per_gpu: 32768 # (${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}) * 2
|
||||
forward_max_token_len_per_gpu: ${critic.ppo_max_token_len_per_gpu}
|
||||
ulysses_sequence_parallel_size: 1 # sp size
|
||||
ppo_epochs: ${actor_rollout_ref.actor.ppo_epochs}
|
||||
shuffle: ${actor_rollout_ref.actor.shuffle}
|
||||
grad_clip: 1.0
|
||||
cliprange_value: 0.5
|
||||
|
||||
# Reward model not used for GRPO
|
||||
reward_model:
|
||||
enable: False
|
||||
strategy: fsdp
|
||||
model:
|
||||
input_tokenizer: ${actor_rollout_ref.model.path}
|
||||
path: ~/models/FsfairX-LLaMA3-RM-v0.1
|
||||
external_lib: ${actor_rollout_ref.model.external_lib}
|
||||
use_remove_padding: False
|
||||
fsdp_config:
|
||||
min_num_params: 0
|
||||
param_offload: False
|
||||
fsdp_size: -1
|
||||
micro_batch_size: null
|
||||
micro_batch_size_per_gpu: null
|
||||
max_length: null
|
||||
ulysses_sequence_parallel_size: 1
|
||||
use_dynamic_bsz: ${critic.use_dynamic_bsz}
|
||||
forward_max_token_len_per_gpu: ${critic.forward_max_token_len_per_gpu}
|
||||
Reference in New Issue
Block a user