Merge pull request #60 from huggingface/multi-language
Add support for multiple languages
This commit is contained in:
@@ -18,6 +18,15 @@ logger = logging.getLogger(__name__)
|
||||
console = Console()
|
||||
|
||||
|
||||
WHISPER_LANGUAGE_TO_LLM_LANGUAGE = {
|
||||
"en": "english",
|
||||
"fr": "french",
|
||||
"es": "spanish",
|
||||
"zh": "chinese",
|
||||
"ja": "japanese",
|
||||
"ko": "korean",
|
||||
}
|
||||
|
||||
class LanguageModelHandler(BaseHandler):
|
||||
"""
|
||||
Handles the language model part.
|
||||
@@ -69,7 +78,7 @@ class LanguageModelHandler(BaseHandler):
|
||||
def warmup(self):
|
||||
logger.info(f"Warming up {self.__class__.__name__}")
|
||||
|
||||
dummy_input_text = "Write me a poem about Machine Learning."
|
||||
dummy_input_text = "Repeat the word 'home'."
|
||||
dummy_chat = [{"role": self.user_role, "content": dummy_input_text}]
|
||||
warmup_gen_kwargs = {
|
||||
"min_new_tokens": self.gen_kwargs["min_new_tokens"],
|
||||
@@ -103,6 +112,10 @@ class LanguageModelHandler(BaseHandler):
|
||||
|
||||
def process(self, prompt):
|
||||
logger.debug("infering language model...")
|
||||
language_code = None
|
||||
if isinstance(prompt, tuple):
|
||||
prompt, language_code = prompt
|
||||
prompt = f"Please reply to my message in {WHISPER_LANGUAGE_TO_LLM_LANGUAGE[language_code]}. " + prompt
|
||||
|
||||
self.chat.append({"role": self.user_role, "content": prompt})
|
||||
thread = Thread(
|
||||
@@ -122,10 +135,10 @@ class LanguageModelHandler(BaseHandler):
|
||||
printable_text += new_text
|
||||
sentences = sent_tokenize(printable_text)
|
||||
if len(sentences) > 1:
|
||||
yield (sentences[0])
|
||||
yield (sentences[0], language_code)
|
||||
printable_text = new_text
|
||||
|
||||
self.chat.append({"role": "assistant", "content": generated_text})
|
||||
|
||||
# don't forget last sentence
|
||||
yield printable_text
|
||||
yield (printable_text, language_code)
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
from time import perf_counter
|
||||
from transformers import (
|
||||
AutoModelForSpeechSeq2Seq,
|
||||
AutoProcessor,
|
||||
AutoModelForSpeechSeq2Seq
|
||||
)
|
||||
import torch
|
||||
|
||||
from copy import copy
|
||||
from baseHandler import BaseHandler
|
||||
from rich.console import Console
|
||||
import logging
|
||||
@@ -12,6 +12,15 @@ import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
console = Console()
|
||||
|
||||
SUPPORTED_LANGUAGES = [
|
||||
"en",
|
||||
"fr",
|
||||
"es",
|
||||
"zh",
|
||||
"ja",
|
||||
"ko",
|
||||
]
|
||||
|
||||
|
||||
class WhisperSTTHandler(BaseHandler):
|
||||
"""
|
||||
@@ -24,12 +33,18 @@ class WhisperSTTHandler(BaseHandler):
|
||||
device="cuda",
|
||||
torch_dtype="float16",
|
||||
compile_mode=None,
|
||||
language=None,
|
||||
gen_kwargs={},
|
||||
):
|
||||
self.device = device
|
||||
self.torch_dtype = getattr(torch, torch_dtype)
|
||||
self.compile_mode = compile_mode
|
||||
self.gen_kwargs = gen_kwargs
|
||||
if language == 'auto':
|
||||
language = None
|
||||
self.last_language = language
|
||||
if self.last_language is not None:
|
||||
self.gen_kwargs["language"] = self.last_language
|
||||
|
||||
self.processor = AutoProcessor.from_pretrained(model_name)
|
||||
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
||||
@@ -102,11 +117,24 @@ class WhisperSTTHandler(BaseHandler):
|
||||
|
||||
input_features = self.prepare_model_inputs(spoken_prompt)
|
||||
pred_ids = self.model.generate(input_features, **self.gen_kwargs)
|
||||
language_code = self.processor.tokenizer.decode(pred_ids[0, 1])[2:-2] # remove "<|" and "|>"
|
||||
|
||||
if language_code not in SUPPORTED_LANGUAGES: # reprocess with the last language
|
||||
logger.warning("Whisper detected unsupported language:", language_code)
|
||||
gen_kwargs = copy(self.gen_kwargs)
|
||||
gen_kwargs['language'] = self.last_language
|
||||
language_code = self.last_language
|
||||
pred_ids = self.model.generate(input_features, **gen_kwargs)
|
||||
else:
|
||||
self.last_language = language_code
|
||||
|
||||
pred_text = self.processor.batch_decode(
|
||||
pred_ids, skip_special_tokens=True, decode_with_timestamps=False
|
||||
)[0]
|
||||
language_code = self.processor.tokenizer.decode(pred_ids[0, 1])[2:-2] # remove "<|" and "|>"
|
||||
|
||||
logger.debug("finished whisper inference")
|
||||
console.print(f"[yellow]USER: {pred_text}")
|
||||
logger.debug(f"Language Code Whisper: {language_code}")
|
||||
|
||||
yield pred_text
|
||||
yield (pred_text, language_code)
|
||||
|
||||
@@ -10,21 +10,44 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
console = Console()
|
||||
|
||||
WHISPER_LANGUAGE_TO_MELO_LANGUAGE = {
|
||||
"en": "EN_NEWEST",
|
||||
"fr": "FR",
|
||||
"es": "ES",
|
||||
"zh": "ZH",
|
||||
"ja": "JP",
|
||||
"ko": "KR",
|
||||
}
|
||||
|
||||
WHISPER_LANGUAGE_TO_MELO_SPEAKER = {
|
||||
"en": "EN-Newest",
|
||||
"fr": "FR",
|
||||
"es": "ES",
|
||||
"zh": "ZH",
|
||||
"ja": "JP",
|
||||
"ko": "KR",
|
||||
}
|
||||
|
||||
|
||||
class MeloTTSHandler(BaseHandler):
|
||||
def setup(
|
||||
self,
|
||||
should_listen,
|
||||
device="mps",
|
||||
language="EN_NEWEST",
|
||||
speaker_to_id="EN-Newest",
|
||||
language="en",
|
||||
speaker_to_id="en",
|
||||
gen_kwargs={}, # Unused
|
||||
blocksize=512,
|
||||
):
|
||||
self.should_listen = should_listen
|
||||
self.device = device
|
||||
self.model = TTS(language=language, device=device)
|
||||
self.speaker_id = self.model.hps.data.spk2id[speaker_to_id]
|
||||
self.language = language
|
||||
self.model = TTS(
|
||||
language=WHISPER_LANGUAGE_TO_MELO_LANGUAGE[self.language], device=device
|
||||
)
|
||||
self.speaker_id = self.model.hps.data.spk2id[
|
||||
WHISPER_LANGUAGE_TO_MELO_SPEAKER[speaker_to_id]
|
||||
]
|
||||
self.blocksize = blocksize
|
||||
self.warmup()
|
||||
|
||||
@@ -33,7 +56,28 @@ class MeloTTSHandler(BaseHandler):
|
||||
_ = self.model.tts_to_file("text", self.speaker_id, quiet=True)
|
||||
|
||||
def process(self, llm_sentence):
|
||||
language_code = None
|
||||
|
||||
if isinstance(llm_sentence, tuple):
|
||||
llm_sentence, language_code = llm_sentence
|
||||
|
||||
console.print(f"[green]ASSISTANT: {llm_sentence}")
|
||||
|
||||
if language_code is not None and self.language != language_code:
|
||||
try:
|
||||
self.model = TTS(
|
||||
language=WHISPER_LANGUAGE_TO_MELO_LANGUAGE[language_code],
|
||||
device=self.device,
|
||||
)
|
||||
self.speaker_id = self.model.hps.data.spk2id[
|
||||
WHISPER_LANGUAGE_TO_MELO_SPEAKER[language_code]
|
||||
]
|
||||
self.language = language_code
|
||||
except KeyError:
|
||||
console.print(
|
||||
f"[red]Language {language_code} not supported by Melo. Using {self.language} instead."
|
||||
)
|
||||
|
||||
if self.device == "mps":
|
||||
import time
|
||||
|
||||
@@ -44,7 +88,13 @@ class MeloTTSHandler(BaseHandler):
|
||||
time.time() - start
|
||||
) # Removing this line makes it fail more often. I'm looking into it.
|
||||
|
||||
audio_chunk = self.model.tts_to_file(llm_sentence, self.speaker_id, quiet=True)
|
||||
try:
|
||||
audio_chunk = self.model.tts_to_file(
|
||||
llm_sentence, self.speaker_id, quiet=True
|
||||
)
|
||||
except (AssertionError, RuntimeError) as e:
|
||||
logger.error(f"Error in MeloTTSHandler: {e}")
|
||||
audio_chunk = np.array([])
|
||||
if len(audio_chunk) == 0:
|
||||
self.should_listen.set()
|
||||
return
|
||||
|
||||
@@ -4,7 +4,7 @@ from dataclasses import dataclass, field
|
||||
@dataclass
|
||||
class MeloTTSHandlerArguments:
|
||||
melo_language: str = field(
|
||||
default="EN_NEWEST",
|
||||
default="en",
|
||||
metadata={
|
||||
"help": "The language of the text to be synthesized. Default is 'EN_NEWEST'."
|
||||
},
|
||||
@@ -16,7 +16,7 @@ class MeloTTSHandlerArguments:
|
||||
},
|
||||
)
|
||||
melo_speaker_to_id: str = field(
|
||||
default="EN-Newest",
|
||||
default="en",
|
||||
metadata={
|
||||
"help": "Mapping of speaker names to speaker IDs. Default is ['EN-Newest']."
|
||||
},
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -51,9 +52,13 @@ class WhisperSTTHandlerArguments:
|
||||
"help": "The task to perform, typically 'transcribe' for transcription. Default is 'transcribe'."
|
||||
},
|
||||
)
|
||||
stt_gen_language: str = field(
|
||||
default="en",
|
||||
language: Optional[str] = field(
|
||||
default='en',
|
||||
metadata={
|
||||
"help": "The language of the speech to transcribe. Default is 'en' for English."
|
||||
"help": """The language for the conversation.
|
||||
Choose between 'en' (english), 'fr' (french), 'es' (spanish),
|
||||
'zh' (chinese), 'ko' (korean), 'ja' (japanese), or 'None'.
|
||||
If using 'auto', the language is automatically detected and can
|
||||
change during the conversation. Default is 'en'."""
|
||||
},
|
||||
)
|
||||
)
|
||||
Reference in New Issue
Block a user