mirror of
https://github.com/QData/TextAttack.git
synced 2021-10-13 00:05:06 +03:00
remove unnecessary messages
This commit is contained in:
@@ -5,5 +5,6 @@ scipy
|
||||
torch==1.3.0
|
||||
transformers==2.0.0
|
||||
tensorflow-gpu
|
||||
scikit-learn
|
||||
|
||||
# visdom
|
||||
# visdom
|
||||
|
||||
@@ -26,6 +26,14 @@ Description: # TextAttack
|
||||
nltk.download('stopwords')
|
||||
```
|
||||
|
||||
### Common Errors
|
||||
|
||||
#### Errors regarding GCC
|
||||
If you see an error that GCC is incompatible, make sure your system has an up-to-date version of the GCC compiler. On distributed systems with a `module` system, typing `module load gcc` may be sufficient.
|
||||
|
||||
#### Errors regarding Java
|
||||
Using the LanguageTool constraint relies on Java 8 internally (it's not ideal, we know). Please install Java 8 if you're interested in using the LanguageTool grammaticality constraint. If your system has the `module` command, try typing `module load java8`.
|
||||
|
||||
## Features
|
||||
|
||||
### Models
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
README.md
|
||||
setup.py
|
||||
textattack/__init__.py
|
||||
textattack/run_attack.py
|
||||
textattack/tokenized_text.py
|
||||
textattack/utils.py
|
||||
textattack.egg-info/PKG-INFO
|
||||
@@ -26,7 +27,12 @@ textattack/constraints/syntax/__init__.py
|
||||
textattack/constraints/syntax/language_tool.py
|
||||
textattack/datasets/__init__.py
|
||||
textattack/datasets/dataset.py
|
||||
textattack/datasets/yelp_sentiment.py
|
||||
textattack/datasets/classification/__init__.py
|
||||
textattack/datasets/classification/ag_news.py
|
||||
textattack/datasets/classification/imdb_sentiment.py
|
||||
textattack/datasets/classification/kaggle_fake_news.py
|
||||
textattack/datasets/classification/movie_review_sentiment.py
|
||||
textattack/datasets/classification/yelp_sentiment.py
|
||||
textattack/models/__init__.py
|
||||
textattack/models/bert_for_sentiment_classification.py
|
||||
textattack/models/infer_sent.py
|
||||
@@ -34,5 +40,4 @@ textattack/models/lstm_for_sentiment_classification.py
|
||||
textattack/transformations/__init__.py
|
||||
textattack/transformations/transformation.py
|
||||
textattack/transformations/word_swap.py
|
||||
textattack/transformations/word_swap_counterfit.py
|
||||
textattack/transformations/word_swap_embedding.py
|
||||
@@ -1,6 +1,8 @@
|
||||
language_check
|
||||
nltk
|
||||
numpy<1.17
|
||||
scipy
|
||||
torch==1.3.0
|
||||
transformers==2.0.0
|
||||
tensorflow-gpu
|
||||
scikit-learn
|
||||
|
||||
@@ -134,13 +134,13 @@ class InferSent(nn.Module):
|
||||
assert hasattr(self, 'w2v_path'), 'w2v path not set'
|
||||
word_dict = self.get_word_dict(sentences, tokenize)
|
||||
self.word_vec = self.get_w2v(word_dict)
|
||||
print('Vocab size : %s' % (len(self.word_vec)))
|
||||
# print('Vocab size : %s' % (len(self.word_vec)))
|
||||
|
||||
# build w2v vocab with k most frequent words
|
||||
def build_vocab_k_words(self, K):
|
||||
assert hasattr(self, 'w2v_path'), 'w2v path not set'
|
||||
self.word_vec = self.get_w2v_k(K)
|
||||
print('Vocab size : %s' % (K))
|
||||
# print('Vocab size : %s' % (K))
|
||||
|
||||
def update_vocab(self, sentences, tokenize=True):
|
||||
assert hasattr(self, 'w2v_path'), 'warning : w2v path not set'
|
||||
|
||||
@@ -11,8 +11,6 @@ class TokenizedText:
|
||||
|
||||
def words(self):
|
||||
""" Returns the distinct words from self.text.
|
||||
|
||||
@TODO Should we ever consider case when substituting words?
|
||||
"""
|
||||
return self.raw_words
|
||||
|
||||
|
||||
Reference in New Issue
Block a user