Upgrade transformers version and handle device assignment in llama trainer

This commit is contained in:
deep1401
2025-04-09 11:30:58 -04:00
parent 0d29dd4812
commit fba3f629c8
5 changed files with 9 additions and 9 deletions

View File

@@ -132,7 +132,7 @@ httpcore==1.0.7
# via httpx
httpx==0.28.1
# via fschat
huggingface-hub==0.28.0
huggingface-hub==0.30.2
# via
# accelerate
# datasets
@@ -450,7 +450,7 @@ tqdm==4.66.5
# peft
# sentence-transformers
# transformers
transformers==4.50.0
transformers==4.51.0
# via
# -r requirements.in
# peft

View File

@@ -132,7 +132,7 @@ httpcore==1.0.7
# via httpx
httpx==0.28.1
# via fschat
huggingface-hub==0.28.0
huggingface-hub==0.30.2
# via
# accelerate
# datasets
@@ -482,7 +482,7 @@ tqdm==4.67.1
# peft
# sentence-transformers
# transformers
transformers==4.50.0
transformers==4.51.0
# via
# -r requirements.in
# peft

View File

@@ -21,7 +21,7 @@ tiktoken
torch==2.6.0
torchaudio==2.6.0
torchvision==0.21.0
transformers==4.50.0
transformers==4.51.0
peft
watchfiles
wandb==0.19.8

View File

@@ -4,7 +4,7 @@
"description": "A training script adapted from https://www.philschmid.de/instruction-tune-llama-2 for training Llama2 using PeFT",
"plugin-format": "python",
"type": "trainer",
"version": "1.0.18",
"version": "1.0.19",
"model_architectures": ["LlamaForCausalLM", "Qwen2ForCausalLM"],
"git": "",
"url": "",

View File

@@ -3,6 +3,9 @@ import os
from random import randrange
import torch
if torch.cuda.is_available():
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from jinja2 import Environment
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoConfig
@@ -16,9 +19,6 @@ use_flash_attention = False
# Initialize Jinja environment
jinja_environment = Environment()
if torch.cuda.is_available():
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
@tlab_trainer.job_wrapper()
def train_model():