Merge pull request #52 from ahmetoner/43-make-swagger-doc-not-depend-on-internet-connection

43 make swagger doc not depend on internet connection
This commit is contained in:
Ahmet Oner
2022-12-03 23:50:26 +01:00
committed by GitHub
5 changed files with 82 additions and 11522 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

View File

@@ -5,6 +5,8 @@ from fastapi.openapi.docs import get_swagger_ui_html
import whisper
from whisper.utils import write_srt, write_vtt
import os
from os import path
from pathlib import Path
import ffmpeg
from typing import BinaryIO, Union
from .languages import LANGUAGES, LANGUAGE_CODES
@@ -12,7 +14,7 @@ import numpy as np
from io import StringIO
from threading import Lock
import torch
import fastapi_offline_swagger_ui
import importlib.metadata
SAMPLE_RATE=16000
@@ -31,25 +33,25 @@ app = FastAPI(
"url": projectMetadata['License']
}
)
app.mount("/assets", StaticFiles(directory="app/static/assets"), name="static")
def swagger_monkey_patch(*args, **kwargs):
return get_swagger_ui_html(
*args,
**kwargs,
swagger_favicon_url="",
swagger_css_url="/assets/css/swagger-ui.css",
swagger_js_url="/assets/js/swagger-ui-bundle.js",
)
applications.get_swagger_ui_html = swagger_monkey_patch
assets_path = fastapi_offline_swagger_ui.__path__[0]
if path.exists(assets_path + "/swagger-ui.css") and path.exists(assets_path + "/swagger-ui-bundle.js"):
app.mount("/assets", StaticFiles(directory=assets_path), name="static")
def swagger_monkey_patch(*args, **kwargs):
return get_swagger_ui_html(
*args,
**kwargs,
swagger_favicon_url="",
swagger_css_url="/assets/swagger-ui.css",
swagger_js_url="/assets/swagger-ui-bundle.js",
)
applications.get_swagger_ui_html = swagger_monkey_patch
model_name= os.getenv("ASR_MODEL", "base")
if torch.cuda.is_available():
model = whisper.load_model(model_name).cuda()
else:
model = whisper.load_model(model_name)
model_lock = Lock()
@app.get("/", response_class=RedirectResponse, include_in_schema=False)
@@ -142,5 +144,3 @@ def load_audio(file: BinaryIO, sr: int = SAMPLE_RATE):
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0

115
poetry.lock generated
View File

@@ -93,6 +93,21 @@ dev = ["autoflake (>=1.4.0,<2.0.0)", "flake8 (>=3.8.3,<6.0.0)", "pre-commit (>=2
doc = ["mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-markdownextradata-plugin (>=0.1.7,<0.3.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pyyaml (>=5.3.1,<7.0.0)", "typer[all] (>=0.6.1,<0.7.0)"]
test = ["anyio[trio] (>=3.2.1,<4.0.0)", "black (==22.8.0)", "databases[sqlite] (>=0.3.2,<0.7.0)", "email-validator (>=1.1.1,<2.0.0)", "flake8 (>=3.8.3,<6.0.0)", "flask (>=1.1.2,<3.0.0)", "httpx (>=0.23.0,<0.24.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.982)", "orjson (>=3.2.1,<4.0.0)", "passlib[bcrypt] (>=1.7.2,<2.0.0)", "peewee (>=3.13.3,<4.0.0)", "pytest (>=7.1.3,<8.0.0)", "pytest-cov (>=2.12.0,<5.0.0)", "python-jose[cryptography] (>=3.3.0,<4.0.0)", "python-multipart (>=0.0.5,<0.0.6)", "pyyaml (>=5.3.1,<7.0.0)", "requests (>=2.24.0,<3.0.0)", "sqlalchemy (>=1.3.18,<=1.4.41)", "types-orjson (==3.6.2)", "types-ujson (==5.5.0)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0,<6.0.0)"]
[[package]]
name = "fastapi-offline-swagger-ui"
version = "1.0.0"
description = "By default FastAPI uses CDN for swagger ui assets, with this repository you can use it offline."
category = "main"
optional = false
python-versions = ">=3.6"
develop = false
[package.source]
type = "git"
url = "https://github.com/ahmetoner/fastapi-offline-swagger-ui"
reference = "HEAD"
resolved_reference = "91dbbc3513de7d51ab396fe5324eeb3838ea8d73"
[[package]]
name = "ffmpeg-python"
version = "0.2.0"
@@ -165,7 +180,7 @@ test = ["Cython (>=0.29.24,<0.30.0)"]
[[package]]
name = "huggingface-hub"
version = "0.11.0"
version = "0.11.1"
description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub"
category = "main"
optional = false
@@ -208,7 +223,7 @@ python-versions = "*"
[[package]]
name = "numpy"
version = "1.23.4"
version = "1.23.5"
description = "NumPy is the fundamental package for array computing with Python."
category = "main"
optional = false
@@ -350,7 +365,7 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]]
name = "setuptools"
version = "65.5.1"
version = "65.6.3"
description = "Easily download, build, install, upgrade, and uninstall Python packages"
category = "main"
optional = false
@@ -432,7 +447,7 @@ telegram = ["requests"]
[[package]]
name = "transformers"
version = "4.24.0"
version = "4.25.1"
description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow"
category = "main"
optional = false
@@ -451,15 +466,15 @@ tqdm = ">=4.27"
[package.extras]
accelerate = ["accelerate (>=0.10.0)"]
all = ["Pillow", "accelerate (>=0.10.0)", "codecarbon (==1.2.0)", "flax (>=0.4.1)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "librosa", "onnxconverter-common", "optax (>=0.0.8)", "optuna", "phonemizer", "protobuf (<=3.20.2)", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.4)", "tensorflow-text", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.7,!=1.12.0)", "torchaudio"]
all = ["Pillow", "accelerate (>=0.10.0)", "codecarbon (==1.2.0)", "flax (>=0.4.1)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8)", "optuna", "phonemizer", "protobuf (<=3.20.2)", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.4,<2.11)", "tensorflow-text", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.7,!=1.12.0)", "torchaudio"]
audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
codecarbon = ["codecarbon (==1.2.0)"]
deepspeed = ["accelerate (>=0.10.0)", "deepspeed (>=0.6.5)"]
deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.10.0)", "beautifulsoup4", "black (==22.3)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.6.5)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "optuna", "parameterized", "protobuf (<=3.20.2)", "psutil", "pytest", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "timeout-decorator"]
dev = ["GitPython (<3.1.19)", "Pillow", "accelerate (>=0.10.0)", "beautifulsoup4", "black (==22.3)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flake8 (>=3.8.3)", "flax (>=0.4.1)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8)", "optuna", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pyknp (>=0.6.1)", "pytest", "pytest-timeout", "pytest-xdist", "ray[tune]", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorflow (>=2.4)", "tensorflow-text", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.7,!=1.12.0)", "torchaudio", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"]
dev-tensorflow = ["GitPython (<3.1.19)", "Pillow", "beautifulsoup4", "black (==22.3)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flake8 (>=3.8.3)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pytest", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorflow (>=2.4)", "tensorflow-text", "tf2onnx", "timeout-decorator", "tokenizers (>=0.11.1,!=0.11.3,<0.14)"]
dev = ["GitPython (<3.1.19)", "Pillow", "accelerate (>=0.10.0)", "beautifulsoup4", "black (==22.3)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flake8 (>=3.8.3)", "flax (>=0.4.1)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8)", "optuna", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pyknp (>=0.6.1)", "pytest", "pytest-timeout", "pytest-xdist", "ray[tune]", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorflow (>=2.4,<2.11)", "tensorflow-text", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.7,!=1.12.0)", "torchaudio", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"]
dev-tensorflow = ["GitPython (<3.1.19)", "Pillow", "beautifulsoup4", "black (==22.3)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flake8 (>=3.8.3)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pytest", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorflow (>=2.4,<2.11)", "tensorflow-text", "tf2onnx", "timeout-decorator", "tokenizers (>=0.11.1,!=0.11.3,<0.14)"]
dev-torch = ["GitPython (<3.1.19)", "Pillow", "beautifulsoup4", "black (==22.3)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flake8 (>=3.8.3)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf (<=3.20.2)", "psutil", "pyctcdecode (>=0.4.0)", "pyknp (>=0.6.1)", "pytest", "pytest-timeout", "pytest-xdist", "ray[tune]", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.7,!=1.12.0)", "torchaudio", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"]
docs = ["Pillow", "accelerate (>=0.10.0)", "codecarbon (==1.2.0)", "flax (>=0.4.1)", "hf-doc-builder", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "librosa", "onnxconverter-common", "optax (>=0.0.8)", "optuna", "phonemizer", "protobuf (<=3.20.2)", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.4)", "tensorflow-text", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.7,!=1.12.0)", "torchaudio"]
docs = ["Pillow", "accelerate (>=0.10.0)", "codecarbon (==1.2.0)", "flax (>=0.4.1)", "hf-doc-builder", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8)", "optuna", "phonemizer", "protobuf (<=3.20.2)", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.4,<2.11)", "tensorflow-text", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.7,!=1.12.0)", "torchaudio"]
docs-specific = ["hf-doc-builder"]
fairscale = ["fairscale (>0.3)"]
flax = ["flax (>=0.4.1)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "optax (>=0.0.8)"]
@@ -468,6 +483,7 @@ ftfy = ["ftfy"]
integrations = ["optuna", "ray[tune]", "sigopt"]
ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "pyknp (>=0.6.1)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"]
modelcreation = ["cookiecutter (==1.7.3)"]
natten = ["natten (>=0.14.4)"]
onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"]
onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"]
optuna = ["optuna"]
@@ -481,8 +497,8 @@ sigopt = ["sigopt"]
sklearn = ["scikit-learn"]
speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"]
testing = ["GitPython (<3.1.19)", "beautifulsoup4", "black (==22.3)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "parameterized", "protobuf (<=3.20.2)", "psutil", "pytest", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "safetensors (>=0.2.1)", "timeout-decorator"]
tf = ["onnxconverter-common", "tensorflow (>=2.4)", "tensorflow-text", "tf2onnx"]
tf-cpu = ["onnxconverter-common", "tensorflow-cpu (>=2.3)", "tensorflow-text", "tf2onnx"]
tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>=2.4,<2.11)", "tensorflow-text", "tf2onnx"]
tf-cpu = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>=2.4,<2.11)", "tensorflow-text", "tf2onnx"]
tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
timm = ["timm"]
tokenizers = ["tokenizers (>=0.11.1,!=0.11.3,<0.14)"]
@@ -509,11 +525,11 @@ python-versions = ">=3.5"
[[package]]
name = "urllib3"
version = "1.26.12"
version = "1.26.13"
description = "HTTP library with thread-safe connection pooling, file post, and more."
category = "main"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, <4"
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*"
[package.extras]
brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotlipy (>=0.6.0)"]
@@ -595,7 +611,7 @@ resolved_reference = "eff383b27b783e280c089475852ba83f20f64998"
[metadata]
lock-version = "1.1"
python-versions = "^3.9"
content-hash = "124c3056e10ec9cad971f21bd67445ae9b0ecfb6156faa4910f76a7a3319e573"
content-hash = "6a28444a1082fcba6509e00c867030f8a784bc28dab6270fc8f64846a40ec5fa"
[metadata.files]
anyio = [
@@ -629,6 +645,7 @@ fastapi = [
{file = "fastapi-0.85.2-py3-none-any.whl", hash = "sha256:6292db0edd4a11f0d938d6033ccec5f706e9d476958bf33b119e8ddb4e524bde"},
{file = "fastapi-0.85.2.tar.gz", hash = "sha256:3e10ea0992c700e0b17b6de8c2092d7b9cd763ce92c49ee8d4be10fee3b2f367"},
]
fastapi-offline-swagger-ui = []
ffmpeg-python = [
{file = "ffmpeg-python-0.2.0.tar.gz", hash = "sha256:65225db34627c578ef0e11c8b1eb528bb35e024752f6f10b78c011f6f64c4127"},
{file = "ffmpeg_python-0.2.0-py3-none-any.whl", hash = "sha256:ac441a0404e053f8b6a1113a77c0f452f1cfc62f6344a769475ffdc0f56c23c5"},
@@ -692,8 +709,8 @@ httptools = [
{file = "httptools-0.5.0.tar.gz", hash = "sha256:295874861c173f9101960bba332429bb77ed4dcd8cdf5cee9922eb00e4f6bc09"},
]
huggingface-hub = [
{file = "huggingface_hub-0.11.0-py3-none-any.whl", hash = "sha256:1f540c6d57cb1684d3578d7bf2d35041a5145b17e8af932505db7f4fbcc7640d"},
{file = "huggingface_hub-0.11.0.tar.gz", hash = "sha256:b48860d791502c2b8a0e6c841214df19c67999198a75d1417512b45752508ac6"},
{file = "huggingface_hub-0.11.1-py3-none-any.whl", hash = "sha256:11eed7aab4fa4d1fb532f2aea3379ef4998d9f6bc24a330834dfedd3dac7f441"},
{file = "huggingface_hub-0.11.1.tar.gz", hash = "sha256:8b9ebf9bbb1782f6f0419ec490973a6487c6c4ed84293a8a325d34c4f898f53f"},
]
idna = [
{file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"},
@@ -704,34 +721,34 @@ iniconfig = [
{file = "iniconfig-1.1.1.tar.gz", hash = "sha256:bc3af051d7d14b2ee5ef9969666def0cd1a000e121eaea580d4a313df4b37f32"},
]
numpy = [
{file = "numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:95d79ada05005f6f4f337d3bb9de8a7774f259341c70bc88047a1f7b96a4bcb2"},
{file = "numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:926db372bc4ac1edf81cfb6c59e2a881606b409ddc0d0920b988174b2e2a767f"},
{file = "numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c237129f0e732885c9a6076a537e974160482eab8f10db6292e92154d4c67d71"},
{file = "numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8365b942f9c1a7d0f0dc974747d99dd0a0cdfc5949a33119caf05cb314682d3"},
{file = "numpy-1.23.4-cp310-cp310-win32.whl", hash = "sha256:2341f4ab6dba0834b685cce16dad5f9b6606ea8a00e6da154f5dbded70fdc4dd"},
{file = "numpy-1.23.4-cp310-cp310-win_amd64.whl", hash = "sha256:d331afac87c92373826af83d2b2b435f57b17a5c74e6268b79355b970626e329"},
{file = "numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:488a66cb667359534bc70028d653ba1cf307bae88eab5929cd707c761ff037db"},
{file = "numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ce03305dd694c4873b9429274fd41fc7eb4e0e4dea07e0af97a933b079a5814f"},
{file = "numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8981d9b5619569899666170c7c9748920f4a5005bf79c72c07d08c8a035757b0"},
{file = "numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a70a7d3ce4c0e9284e92285cba91a4a3f5214d87ee0e95928f3614a256a1488"},
{file = "numpy-1.23.4-cp311-cp311-win32.whl", hash = "sha256:5e13030f8793e9ee42f9c7d5777465a560eb78fa7e11b1c053427f2ccab90c79"},
{file = "numpy-1.23.4-cp311-cp311-win_amd64.whl", hash = "sha256:7607b598217745cc40f751da38ffd03512d33ec06f3523fb0b5f82e09f6f676d"},
{file = "numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7ab46e4e7ec63c8a5e6dbf5c1b9e1c92ba23a7ebecc86c336cb7bf3bd2fb10e5"},
{file = "numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8aae2fb3180940011b4862b2dd3756616841c53db9734b27bb93813cd79fce6"},
{file = "numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c053d7557a8f022ec823196d242464b6955a7e7e5015b719e76003f63f82d0f"},
{file = "numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0882323e0ca4245eb0a3d0a74f88ce581cc33aedcfa396e415e5bba7bf05f68"},
{file = "numpy-1.23.4-cp38-cp38-win32.whl", hash = "sha256:dada341ebb79619fe00a291185bba370c9803b1e1d7051610e01ed809ef3a4ba"},
{file = "numpy-1.23.4-cp38-cp38-win_amd64.whl", hash = "sha256:0fe563fc8ed9dc4474cbf70742673fc4391d70f4363f917599a7fa99f042d5a8"},
{file = "numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c67b833dbccefe97cdd3f52798d430b9d3430396af7cdb2a0c32954c3ef73894"},
{file = "numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f76025acc8e2114bb664294a07ede0727aa75d63a06d2fae96bf29a81747e4a7"},
{file = "numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:12ac457b63ec8ded85d85c1e17d85efd3c2b0967ca39560b307a35a6703a4735"},
{file = "numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95de7dc7dc47a312f6feddd3da2500826defdccbc41608d0031276a24181a2c0"},
{file = "numpy-1.23.4-cp39-cp39-win32.whl", hash = "sha256:f2f390aa4da44454db40a1f0201401f9036e8d578a25f01a6e237cea238337ef"},
{file = "numpy-1.23.4-cp39-cp39-win_amd64.whl", hash = "sha256:f260da502d7441a45695199b4e7fd8ca87db659ba1c78f2bbf31f934fe76ae0e"},
{file = "numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:61be02e3bf810b60ab74e81d6d0d36246dbfb644a462458bb53b595791251911"},
{file = "numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:296d17aed51161dbad3c67ed6d164e51fcd18dbcd5dd4f9d0a9c6055dce30810"},
{file = "numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:4d52914c88b4930dafb6c48ba5115a96cbab40f45740239d9f4159c4ba779962"},
{file = "numpy-1.23.4.tar.gz", hash = "sha256:ed2cc92af0efad20198638c69bb0fc2870a58dabfba6eb722c933b48556c686c"},
{file = "numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63"},
{file = "numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d"},
{file = "numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43"},
{file = "numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e05b1c973a9f858c74367553e236f287e749465f773328c8ef31abe18f691e1"},
{file = "numpy-1.23.5-cp310-cp310-win32.whl", hash = "sha256:522e26bbf6377e4d76403826ed689c295b0b238f46c28a7251ab94716da0b280"},
{file = "numpy-1.23.5-cp310-cp310-win_amd64.whl", hash = "sha256:dbee87b469018961d1ad79b1a5d50c0ae850000b639bcb1b694e9981083243b6"},
{file = "numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ce571367b6dfe60af04e04a1834ca2dc5f46004ac1cc756fb95319f64c095a96"},
{file = "numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:56e454c7833e94ec9769fa0f86e6ff8e42ee38ce0ce1fa4cbb747ea7e06d56aa"},
{file = "numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5039f55555e1eab31124a5768898c9e22c25a65c1e0037f4d7c495a45778c9f2"},
{file = "numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58f545efd1108e647604a1b5aa809591ccd2540f468a880bedb97247e72db387"},
{file = "numpy-1.23.5-cp311-cp311-win32.whl", hash = "sha256:b2a9ab7c279c91974f756c84c365a669a887efa287365a8e2c418f8b3ba73fb0"},
{file = "numpy-1.23.5-cp311-cp311-win_amd64.whl", hash = "sha256:0cbe9848fad08baf71de1a39e12d1b6310f1d5b2d0ea4de051058e6e1076852d"},
{file = "numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f063b69b090c9d918f9df0a12116029e274daf0181df392839661c4c7ec9018a"},
{file = "numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0aaee12d8883552fadfc41e96b4c82ee7d794949e2a7c3b3a7201e968c7ecab9"},
{file = "numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92c8c1e89a1f5028a4c6d9e3ccbe311b6ba53694811269b992c0b224269e2398"},
{file = "numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d208a0f8729f3fb790ed18a003f3a57895b989b40ea4dce4717e9cf4af62c6bb"},
{file = "numpy-1.23.5-cp38-cp38-win32.whl", hash = "sha256:06005a2ef6014e9956c09ba07654f9837d9e26696a0470e42beedadb78c11b07"},
{file = "numpy-1.23.5-cp38-cp38-win_amd64.whl", hash = "sha256:ca51fcfcc5f9354c45f400059e88bc09215fb71a48d3768fb80e357f3b457e1e"},
{file = "numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8969bfd28e85c81f3f94eb4a66bc2cf1dbdc5c18efc320af34bffc54d6b1e38f"},
{file = "numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a7ac231a08bb37f852849bbb387a20a57574a97cfc7b6cabb488a4fc8be176de"},
{file = "numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf837dc63ba5c06dc8797c398db1e223a466c7ece27a1f7b5232ba3466aafe3d"},
{file = "numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33161613d2269025873025b33e879825ec7b1d831317e68f4f2f0f84ed14c719"},
{file = "numpy-1.23.5-cp39-cp39-win32.whl", hash = "sha256:af1da88f6bc3d2338ebbf0e22fe487821ea4d8e89053e25fa59d1d79786e7481"},
{file = "numpy-1.23.5-cp39-cp39-win_amd64.whl", hash = "sha256:09b7847f7e83ca37c6e627682f145856de331049013853f344f37b0c9690e3df"},
{file = "numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:abdde9f795cf292fb9651ed48185503a2ff29be87770c3b8e2a14b0cd7aa16f8"},
{file = "numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f9a909a8bae284d46bbfdefbdd4a262ba19d3bc9921b1e76126b1d21c3c34135"},
{file = "numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:01dd17cbb340bf0fc23981e52e1d18a9d4050792e8fb8363cecbf066a84b827d"},
{file = "numpy-1.23.5.tar.gz", hash = "sha256:1b1766d6f397c18153d40015ddfc79ddb715cabadc04d2d228d4e5a8bc4ded1a"},
]
packaging = [
{file = "packaging-21.3-py3-none-any.whl", hash = "sha256:ef103e05f519cdc783ae24ea4e2e0f508a9c99b2d4969652eed6a2e1ea5bd522"},
@@ -935,8 +952,8 @@ requests = [
{file = "requests-2.28.1.tar.gz", hash = "sha256:7c5599b102feddaa661c826c56ab4fee28bfd17f5abca1ebbe3e7f19d7c97983"},
]
setuptools = [
{file = "setuptools-65.5.1-py3-none-any.whl", hash = "sha256:d0b9a8433464d5800cbe05094acf5c6d52a91bfac9b52bcfc4d41382be5d5d31"},
{file = "setuptools-65.5.1.tar.gz", hash = "sha256:e197a19aa8ec9722928f2206f8de752def0e4c9fc6953527360d1c36d94ddb2f"},
{file = "setuptools-65.6.3-py3-none-any.whl", hash = "sha256:57f6f22bde4e042978bcd50176fdb381d7c21a9efa4041202288d3737a0c6a54"},
{file = "setuptools-65.6.3.tar.gz", hash = "sha256:a7620757bf984b58deaf32fc8a4577a9bbc0850cf92c20e1ce41c38c19e5fb75"},
]
six = [
{file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
@@ -997,8 +1014,8 @@ tqdm = [
{file = "tqdm-4.64.1.tar.gz", hash = "sha256:5f4f682a004951c1b450bc753c710e9280c5746ce6ffedee253ddbcbf54cf1e4"},
]
transformers = [
{file = "transformers-4.24.0-py3-none-any.whl", hash = "sha256:b7ab50039ef9bf817eff14ab974f306fd20a72350bdc9df3a858fd009419322e"},
{file = "transformers-4.24.0.tar.gz", hash = "sha256:486f353a8e594002e48be0e2aba723d96eda839e63bfe274702a4b5eda85559b"},
{file = "transformers-4.25.1-py3-none-any.whl", hash = "sha256:60f1be15e17e4a54373c787c713ec149dabcc63464131ac45611618fe7c2016e"},
{file = "transformers-4.25.1.tar.gz", hash = "sha256:6dad398b792d45dc04e9ee7e9e06bf758ab19dca2efc119065e661bb0f8f843b"},
]
typing-extensions = [
{file = "typing_extensions-4.4.0-py3-none-any.whl", hash = "sha256:16fa4864408f655d35ec496218b85f79b3437c829e93320c7c9215ccfd92489e"},
@@ -1009,8 +1026,8 @@ unidecode = [
{file = "Unidecode-1.3.6.tar.gz", hash = "sha256:fed09cf0be8cf415b391642c2a5addfc72194407caee4f98719e40ec2a72b830"},
]
urllib3 = [
{file = "urllib3-1.26.12-py2.py3-none-any.whl", hash = "sha256:b930dd878d5a8afb066a637fbb35144fe7901e3b209d1cd4f524bd0e9deee997"},
{file = "urllib3-1.26.12.tar.gz", hash = "sha256:3fa96cf423e6987997fc326ae8df396db2a8b7c667747d47ddd8ecba91f4a74e"},
{file = "urllib3-1.26.13-py2.py3-none-any.whl", hash = "sha256:47cc05d99aaa09c9e72ed5809b60e7ba354e64b59c9c173ac3018642d8bb41fc"},
{file = "urllib3-1.26.13.tar.gz", hash = "sha256:c083dd0dce68dbfbe1129d5271cb90f9447dea7d52097c6e0126120c521ddea8"},
]
uvicorn = [
{file = "uvicorn-0.18.3-py3-none-any.whl", hash = "sha256:0abd429ebb41e604ed8d2be6c60530de3408f250e8d2d84967d85ba9e86fe3af"},

View File

@@ -22,6 +22,7 @@ transformers = "^4.22.1"
python-multipart = "^0.0.5"
ffmpeg-python = "^0.2.0"
fastapi = "^0.85.0"
fastapi-offline-swagger-ui = {git = "https://github.com/ahmetoner/fastapi-offline-swagger-ui"}
[tool.poetry.dev-dependencies]
pytest = "^6.2.5"