mirror of
https://github.com/ranaroussi/yfinance.git
synced 2024-01-29 09:38:56 +03:00
Merge pull request #1772 from JuliaLWang8/feat/holders-insiders
Feat/Holders insider data
This commit is contained in:
@@ -107,6 +107,9 @@ msft.quarterly_cashflow
|
||||
msft.major_holders
|
||||
msft.institutional_holders
|
||||
msft.mutualfund_holders
|
||||
msft.insider_transactions
|
||||
msft.insider_purchases
|
||||
msft.insider_roster_holders
|
||||
|
||||
# Show future and historic earnings dates, returns at most next 4 quarters and last 8 quarters by default.
|
||||
# Note: If more are needed use msft.get_earnings_dates(limit=XX) with increased limit argument.
|
||||
|
||||
@@ -24,6 +24,9 @@ ticker_attributes = (
|
||||
("major_holders", pd.DataFrame),
|
||||
("institutional_holders", pd.DataFrame),
|
||||
("mutualfund_holders", pd.DataFrame),
|
||||
("insider_transactions", pd.DataFrame),
|
||||
("insider_purchases", pd.DataFrame),
|
||||
("insider_roster_holders", pd.DataFrame),
|
||||
("splits", pd.Series),
|
||||
("actions", pd.DataFrame),
|
||||
("shares", pd.DataFrame),
|
||||
@@ -349,6 +352,30 @@ class TestTickerHolders(unittest.TestCase):
|
||||
data_cached = self.ticker.mutualfund_holders
|
||||
self.assertIs(data, data_cached, "data not cached")
|
||||
|
||||
def test_insider_transactions(self):
|
||||
data = self.ticker.insider_transactions
|
||||
self.assertIsInstance(data, pd.DataFrame, "data has wrong type")
|
||||
self.assertFalse(data.empty, "data is empty")
|
||||
|
||||
data_cached = self.ticker.insider_transactions
|
||||
self.assertIs(data, data_cached, "data not cached")
|
||||
|
||||
def test_insider_purchases(self):
|
||||
data = self.ticker.insider_purchases
|
||||
self.assertIsInstance(data, pd.DataFrame, "data has wrong type")
|
||||
self.assertFalse(data.empty, "data is empty")
|
||||
|
||||
data_cached = self.ticker.insider_purchases
|
||||
self.assertIs(data, data_cached, "data not cached")
|
||||
|
||||
def test_insider_roster_holders(self):
|
||||
data = self.ticker.insider_roster_holders
|
||||
self.assertIsInstance(data, pd.DataFrame, "data has wrong type")
|
||||
self.assertFalse(data.empty, "data is empty")
|
||||
|
||||
data_cached = self.ticker.insider_roster_holders
|
||||
self.assertIs(data, data_cached, "data not cached")
|
||||
|
||||
|
||||
class TestTickerMiscFinancials(unittest.TestCase):
|
||||
session = None
|
||||
|
||||
@@ -1762,6 +1762,30 @@ class TickerBase:
|
||||
if as_dict:
|
||||
return data.to_dict()
|
||||
return data
|
||||
|
||||
def get_insider_purchases(self, proxy=None, as_dict=False):
|
||||
self._holders.proxy = proxy or self.proxy
|
||||
data = self._holders.insider_purchases
|
||||
if data is not None:
|
||||
if as_dict:
|
||||
return data.to_dict()
|
||||
return data
|
||||
|
||||
def get_insider_transactions(self, proxy=None, as_dict=False):
|
||||
self._holders.proxy = proxy or self.proxy
|
||||
data = self._holders.insider_transactions
|
||||
if data is not None:
|
||||
if as_dict:
|
||||
return data.to_dict()
|
||||
return data
|
||||
|
||||
def get_insider_roster_holders(self, proxy=None, as_dict=False):
|
||||
self._holders.proxy = proxy or self.proxy
|
||||
data = self._holders.insider_roster
|
||||
if data is not None:
|
||||
if as_dict:
|
||||
return data.to_dict()
|
||||
return data
|
||||
|
||||
def get_info(self, proxy=None) -> dict:
|
||||
self._quote.proxy = proxy or self.proxy
|
||||
|
||||
@@ -1,8 +1,12 @@
|
||||
from io import StringIO
|
||||
# from io import StringIO
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from yfinance.data import YfData
|
||||
from yfinance.const import _BASE_URL_
|
||||
from yfinance.exceptions import YFinanceDataException
|
||||
|
||||
_QUOTE_SUMMARY_URL_ = f"{_BASE_URL_}/v10/finance/quoteSummary/"
|
||||
|
||||
|
||||
class Holders:
|
||||
@@ -14,57 +18,213 @@ class Holders:
|
||||
self.proxy = proxy
|
||||
|
||||
self._major = None
|
||||
self._major_direct_holders = None
|
||||
self._institutional = None
|
||||
self._mutualfund = None
|
||||
|
||||
self._insider_transactions = None
|
||||
self._insider_purchases = None
|
||||
self._insider_roster = None
|
||||
|
||||
@property
|
||||
def major(self) -> pd.DataFrame:
|
||||
if self._major is None:
|
||||
self._scrape(self.proxy)
|
||||
# self._scrape(self.proxy)
|
||||
self._fetch_and_parse()
|
||||
return self._major
|
||||
|
||||
@property
|
||||
def institutional(self) -> pd.DataFrame:
|
||||
if self._institutional is None:
|
||||
self._scrape(self.proxy)
|
||||
# self._scrape(self.proxy)
|
||||
self._fetch_and_parse()
|
||||
return self._institutional
|
||||
|
||||
@property
|
||||
def mutualfund(self) -> pd.DataFrame:
|
||||
if self._mutualfund is None:
|
||||
self._scrape(self.proxy)
|
||||
# self._scrape(self.proxy)
|
||||
self._fetch_and_parse()
|
||||
return self._mutualfund
|
||||
|
||||
def _scrape(self, proxy):
|
||||
ticker_url = f"{self._SCRAPE_URL_}/{self._symbol}"
|
||||
@property
|
||||
def insider_transactions(self) -> pd.DataFrame:
|
||||
if self._insider_transactions is None:
|
||||
# self._scrape_insider_transactions(self.proxy)
|
||||
self._fetch_and_parse()
|
||||
return self._insider_transactions
|
||||
|
||||
@property
|
||||
def insider_purchases(self) -> pd.DataFrame:
|
||||
if self._insider_purchases is None:
|
||||
# self._scrape_insider_transactions(self.proxy)
|
||||
self._fetch_and_parse()
|
||||
return self._insider_purchases
|
||||
|
||||
@property
|
||||
def insider_roster(self) -> pd.DataFrame:
|
||||
if self._insider_roster is None:
|
||||
# self._scrape_insider_ros(self.proxy)
|
||||
self._fetch_and_parse()
|
||||
return self._insider_roster
|
||||
|
||||
def _fetch(self, proxy):
|
||||
modules = ','.join(
|
||||
["institutionOwnership", "fundOwnership", "majorDirectHolders", "majorHoldersBreakdown", "insiderTransactions", "insiderHolders", "netSharePurchaseActivity"])
|
||||
params_dict = {"modules": modules, "corsDomain": "finance.yahoo.com", "symbol": self._symbol, "formatted": "false"}
|
||||
result = self._data.get_raw_json(_QUOTE_SUMMARY_URL_, user_agent_headers=self._data.user_agent_headers, params=params_dict, proxy=proxy)
|
||||
return result
|
||||
|
||||
def _fetch_and_parse(self):
|
||||
result = self._fetch(self.proxy)
|
||||
try:
|
||||
resp = self._data.cache_get(ticker_url + '/holders', proxy=proxy)
|
||||
holders = pd.read_html(StringIO(resp.text))
|
||||
except Exception:
|
||||
holders = []
|
||||
data = result["quoteSummary"]["result"][0]
|
||||
# parse "institutionOwnership", "fundOwnership", "majorDirectHolders", "majorHoldersBreakdown", "insiderTransactions", "insiderHolders", "netSharePurchaseActivity"
|
||||
self._parse_institution_ownership(data["institutionOwnership"])
|
||||
self._parse_fund_ownership(data["fundOwnership"])
|
||||
# self._parse_major_direct_holders(data["majorDirectHolders"]) # need more data to investigate
|
||||
self._parse_major_holders_breakdown(data["majorHoldersBreakdown"])
|
||||
self._parse_insider_transactions(data["insiderTransactions"])
|
||||
self._parse_insider_holders(data["insiderHolders"])
|
||||
self._parse_net_share_purchase_activity(data["netSharePurchaseActivity"])
|
||||
except (KeyError, IndexError):
|
||||
raise YFinanceDataException("Failed to parse holders json data.")
|
||||
|
||||
if len(holders) >= 3:
|
||||
self._major = holders[0]
|
||||
self._institutional = holders[1]
|
||||
self._mutualfund = holders[2]
|
||||
elif len(holders) >= 2:
|
||||
self._major = holders[0]
|
||||
self._institutional = holders[1]
|
||||
elif len(holders) >= 1:
|
||||
self._major = holders[0]
|
||||
@staticmethod
|
||||
def _parse_raw_values(data):
|
||||
if isinstance(data, dict) and "raw" in data:
|
||||
return data["raw"]
|
||||
return data
|
||||
|
||||
if self._institutional is not None:
|
||||
if 'Date Reported' in self._institutional:
|
||||
self._institutional['Date Reported'] = pd.to_datetime(
|
||||
self._institutional['Date Reported'])
|
||||
if '% Out' in self._institutional:
|
||||
self._institutional['% Out'] = self._institutional[
|
||||
'% Out'].str.replace('%', '').astype(float) / 100
|
||||
def _parse_institution_ownership(self, data):
|
||||
holders = data["ownershipList"]
|
||||
for owner in holders:
|
||||
for k, v in owner.items():
|
||||
owner[k] = self._parse_raw_values(v)
|
||||
del owner["maxAge"]
|
||||
df = pd.DataFrame(holders)
|
||||
if not df.empty:
|
||||
df["reportDate"] = pd.to_datetime(df["reportDate"], unit="s")
|
||||
df.rename(columns={"reportDate": "Date Reported", "organization": "Holder", "position": "Shares", "value": "Value"}, inplace=True) # "pctHeld": "% Out"
|
||||
self._institutional = df
|
||||
|
||||
if self._mutualfund is not None:
|
||||
if 'Date Reported' in self._mutualfund:
|
||||
self._mutualfund['Date Reported'] = pd.to_datetime(
|
||||
self._mutualfund['Date Reported'])
|
||||
if '% Out' in self._mutualfund:
|
||||
self._mutualfund['% Out'] = self._mutualfund[
|
||||
'% Out'].str.replace('%', '').astype(float) / 100
|
||||
def _parse_fund_ownership(self, data):
|
||||
holders = data["ownershipList"]
|
||||
for owner in holders:
|
||||
for k, v in owner.items():
|
||||
owner[k] = self._parse_raw_values(v)
|
||||
del owner["maxAge"]
|
||||
df = pd.DataFrame(holders)
|
||||
if not df.empty:
|
||||
df["reportDate"] = pd.to_datetime(df["reportDate"], unit="s")
|
||||
df.rename(columns={"reportDate": "Date Reported", "organization": "Holder", "position": "Shares", "value": "Value"}, inplace=True)
|
||||
self._mutualfund = df
|
||||
|
||||
def _parse_major_direct_holders(self, data):
|
||||
holders = data["holders"]
|
||||
for owner in holders:
|
||||
for k, v in owner.items():
|
||||
owner[k] = self._parse_raw_values(v)
|
||||
del owner["maxAge"]
|
||||
df = pd.DataFrame(holders)
|
||||
if not df.empty:
|
||||
df["reportDate"] = pd.to_datetime(df["reportDate"], unit="s")
|
||||
df.rename(columns={"reportDate": "Date Reported", "organization": "Holder", "positionDirect": "Shares", "valueDirect": "Value"}, inplace=True)
|
||||
self._major_direct_holders = df
|
||||
|
||||
def _parse_major_holders_breakdown(self, data):
|
||||
if "maxAge" in data:
|
||||
del data["maxAge"]
|
||||
df = pd.DataFrame.from_dict(data, orient="index")
|
||||
if not df.empty:
|
||||
df.columns.name = "Breakdown"
|
||||
df.rename(columns={df.columns[0]: 'Value'}, inplace=True)
|
||||
self._major = df
|
||||
|
||||
def _parse_insider_transactions(self, data):
|
||||
holders = data["transactions"]
|
||||
for owner in holders:
|
||||
for k, v in owner.items():
|
||||
owner[k] = self._parse_raw_values(v)
|
||||
del owner["maxAge"]
|
||||
df = pd.DataFrame(holders)
|
||||
if not df.empty:
|
||||
df["startDate"] = pd.to_datetime(df["startDate"], unit="s")
|
||||
df.rename(columns={
|
||||
"startDate": "Start Date",
|
||||
"filerName": "Insider",
|
||||
"filerRelation": "Position",
|
||||
"filerUrl": "URL",
|
||||
"moneyText": "Transaction",
|
||||
"transactionText": "Text",
|
||||
"shares": "Shares",
|
||||
"value": "Value",
|
||||
"ownership": "Ownership" # ownership flag, direct or institutional
|
||||
}, inplace=True)
|
||||
self._insider_transactions = df
|
||||
|
||||
def _parse_insider_holders(self, data):
|
||||
holders = data["holders"]
|
||||
for owner in holders:
|
||||
for k, v in owner.items():
|
||||
owner[k] = self._parse_raw_values(v)
|
||||
del owner["maxAge"]
|
||||
df = pd.DataFrame(holders)
|
||||
if not df.empty:
|
||||
df["positionDirectDate"] = pd.to_datetime(df["positionDirectDate"], unit="s")
|
||||
df["latestTransDate"] = pd.to_datetime(df["latestTransDate"], unit="s")
|
||||
|
||||
df.rename(columns={
|
||||
"name": "Name",
|
||||
"relation": "Position",
|
||||
"url": "URL",
|
||||
"transactionDescription": "Most Recent Transaction",
|
||||
"latestTransDate": "Latest Transaction Date",
|
||||
"positionDirectDate": "Position Direct Date",
|
||||
"positionDirect": "Shares Owned Directly",
|
||||
"positionIndirectDate": "Position Indirect Date",
|
||||
"positionIndirect": "Shares Owned Indirectly"
|
||||
}, inplace=True)
|
||||
|
||||
df["Name"] = df["Name"].astype(str)
|
||||
df["Position"] = df["Position"].astype(str)
|
||||
df["URL"] = df["URL"].astype(str)
|
||||
df["Most Recent Transaction"] = df["Most Recent Transaction"].astype(str)
|
||||
|
||||
self._insider_roster = df
|
||||
|
||||
def _parse_net_share_purchase_activity(self, data):
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"Insider Purchases Last " + data.get("period", ""): [
|
||||
"Purchases",
|
||||
"Sales",
|
||||
"Net Shares Purchased (Sold)",
|
||||
"Total Insider Shares Held",
|
||||
"% Net Shares Purchased (Sold)",
|
||||
"% Buy Shares",
|
||||
"% Sell Shares"
|
||||
],
|
||||
"Shares": [
|
||||
data.get('buyInfoShares'),
|
||||
data.get('sellInfoShares'),
|
||||
data.get('netInfoShares'),
|
||||
data.get('totalInsiderShares'),
|
||||
data.get('netPercentInsiderShares'),
|
||||
data.get('buyPercentInsiderShares'),
|
||||
data.get('sellPercentInsiderShares')
|
||||
],
|
||||
"Trans": [
|
||||
data.get('buyInfoCount'),
|
||||
data.get('sellInfoCount'),
|
||||
data.get('netInfoCount'),
|
||||
pd.NA,
|
||||
pd.NA,
|
||||
pd.NA,
|
||||
pd.NA
|
||||
]
|
||||
}
|
||||
).convert_dtypes()
|
||||
self._insider_purchases = df
|
||||
|
||||
|
||||
@@ -117,6 +117,18 @@ class Ticker(TickerBase):
|
||||
def mutualfund_holders(self) -> _pd.DataFrame:
|
||||
return self.get_mutualfund_holders()
|
||||
|
||||
@property
|
||||
def insider_purchases(self) -> _pd.DataFrame:
|
||||
return self.get_insider_purchases()
|
||||
|
||||
@property
|
||||
def insider_transactions(self) -> _pd.DataFrame:
|
||||
return self.get_insider_transactions()
|
||||
|
||||
@property
|
||||
def insider_roster_holders(self) -> _pd.DataFrame:
|
||||
return self.get_insider_roster_holders()
|
||||
|
||||
@property
|
||||
def dividends(self) -> _pd.Series:
|
||||
return self.get_dividends()
|
||||
|
||||
Reference in New Issue
Block a user